JP2004218060A - Cast material with earthquake-proof performance - Google Patents

Cast material with earthquake-proof performance Download PDF

Info

Publication number
JP2004218060A
JP2004218060A JP2003038990A JP2003038990A JP2004218060A JP 2004218060 A JP2004218060 A JP 2004218060A JP 2003038990 A JP2003038990 A JP 2003038990A JP 2003038990 A JP2003038990 A JP 2003038990A JP 2004218060 A JP2004218060 A JP 2004218060A
Authority
JP
Japan
Prior art keywords
earthquake
construction
steel
present
mild steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038990A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshimura
博文 吉村
Yuji Fukumoto
▲誘▼士 福本
Minoru Kaminotani
実 上野谷
Akio Nakayama
昭夫 中山
Masaki Nakamura
雅樹 中村
Jun Nakahigashi
潤 中東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGYO KAGAKU KENKYUSHO
Original Assignee
NIPPON SANGYO KAGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGYO KAGAKU KENKYUSHO filed Critical NIPPON SANGYO KAGAKU KENKYUSHO
Priority to JP2003038990A priority Critical patent/JP2004218060A/en
Publication of JP2004218060A publication Critical patent/JP2004218060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the destruction of the whole of a construction by absorbing impact energy due to earthquake or the like by a local deformation. <P>SOLUTION: In order to reduce the loss or damage of a construction by remarkably improving the earthquake-proofness of the construction, structures for earthquake-proofing, i.e. devices capable of absorbing energy generated by earthquake or the like, are locally incorporated into the main part of the construction. A material used for the device is provided. By using a cast material of nickel-chromium steel having coarse crystal grains, a larger amount of energy such as of earthquake against the construction is absorbed, thereby minimizing the damage of the whole of the construction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、土木、建築などの構造物内の一部に、局所的に設けられる小構造物(これをデバイスと呼ぶことにする)、すなわち地震によって生じるエネルギーをこの部分の変形によって吸収しうるデバイスに用いられる材料に関するものである。
【0002】
一般に、土木あるいは建築分野における比較的大型の構造物の主要部分には、通常普通鋼を主体として、圧延などの加工によって作られた鉄鋼材料が用いられている。したがって、地震が起こった場合などには、この振動が構造物に直接伝わり、時には破壊、崩壊に至る大きな被害を被る場合がある。
【0003】
本発明は、このような構造物の損傷、被害を少しでも軽減する、いわゆる構造物の耐震性を著しく向上させるために、これらの主要構造物の中の一部にデバイスを組み入れることとし、このデバイスの効果を高めるために、これに用いられる特殊な金属材料を提供しようとするものである。このことによって構造物に対する地震のエネルギーをデバイスの過度の変形によってより多く吸収させて、構造物全体の被害を最小限に食いとどめようとするものである。また変形したデバイス部分のみを取り替えることにより、地震後の構造物の復旧作業を迅速に行うことが出来る。
【0004】
【従来の技術】
現在、土木、建築構造物の主要部分には鉄鋼材料が使用され、しかも大型化、高層化が進んでいる。これに伴って材料に要求される特性も高強度化し、これに応えるために今までに多くの高張力鋼が開発されてきた。
【0005】
【発明が解決しようとする課題】
このような土木、建築などの構造物は、地震の衝撃などによって、構造物自身が損傷あるいは破壊に至る大きな被害を被ることも多く、このような状況の中で、従来行われてきた材料の開発の動向は、使用される材料あるいはこれらの材料を接合して作られる部材の結晶粒径を細かくするなどして強度を向上させてより強固な構造物にすることであった。
【0006】
しかし、このような材料の高強度化は、材料自身の脆化感受性も大きくなり、かつ地震などの自然の力、とりわけ巨大な地震力のような場合にはその力に耐えきれず、局部的に大きな力がかかり、かつ応力集中を招いて破壊する場合もあって、このような衝撃的な荷重に対しては、構造物全体の材料の高強度化のみが必ずしも得策ではないこともあった。
一方、上記構造物の耐震性能向上に応える方法として、デバイスを設け、極低炭素鋼のような低降伏点鋼を適用することも行われているが、これでは降伏点が低いと同時に引張強度も低いために、ある程度の効果はあるものの十分とは言い難い。
【0007】
【課題を解決するための手段】
本発明のポイントは、引張強度が主に400MPa級の鋼材で作られている土木、建築などの一般構造物の中に局所的にデバイスを組み入れて、地震などの衝撃エネルギーを局所的変形によって吸収させる、あるいは地震のように、繰り返してかかる応力を局所的変形によって吸収させて、構造物全体を破壊に至らせないようにすることを目的とし、このデバイス用に適切な材料を見いだしたことである。すなわち、本発明者は、従来の土木、建築などの構造物に関して、構造物の耐震性能を向上すべく種々検討した結果、構造物内のデバイス用材料に結晶構造が面心立方格子(略してFCCと記す)あるいはFCCを主体とした金属材料で、かつ粗大な結晶粒を有する鋳造材を用いることによって、400MPa級もしくはこれ以上の鋼材で作られている土木、建築などの一般構造物の耐震性を著しく向上させることが出来ることを見出して、本発明を完成させた。本発明材料は、通常の構造物鋼材よりも耐食性にも優れている。
【0008】
このFCCもしくはFCC を主体とし、かつ粗大な結晶粒を有する鋳造材の降伏点は軟鋼よりも低く、極低炭素鋼(極軟鋼)のそれ並、もしくはそれよりも低く、降伏現象の出現及び降伏伸びも現れない。そして低い強度点から塑性変形が始まって歪み硬化が起こり、引張強度は極軟鋼以上、軟鋼並もしくはそれ以下である。すなわち、本発明のデバイス材は、低応力からの塑性変形を容易にし、地震の初期段階から、わずかの地震エネルギーでも塑性変形してエネルギーを吸収し、かつ繰り返されてかかる応力をも吸収しうるようにしたものである。そして、繰り返し応力が加わった後での強さは、一般材の軟鋼並もしくはそれ以上となるものである。
【0009】
本発明でのこの局所的に組み込まれるデバイスに用いられる材料のことを、本発明では耐震性能を有する鋳造材と呼ぶことにする。
【0010】
本発明での耐震性能を有する鋳造材は、FCCもしくはFCCを主体とし、かつ粗大な結晶粒を有する鋳造材である。金属材料内部に含まれる成分は、主要構造材料よりも降伏強度、本発明鋼の場合には降伏点が現れないので0.2%耐力(σ0.2)になるが、このσ0.2が低く、かつ最高強度である引張強度(σ)は、極軟鋼以上、軟鋼以下であるような成分系である。すなわち本発明では、FCCもしくはFCCを主体とし、かつ粗大な結晶粒を有する鋳造材が適正であることを見出した。そしてそれは、Niを12.5%及びこれ以上、17.5%及びこれ以下、Crを9.5%及びこれ以上、21.0%及びこれ以下で、かつ(Ni+Cr)%が27%及びこれ以上、33.5%及びこれ以下を主成分として含み、かつ不可避不純物からなる鋳造材のことである。なお、この鋳造材の結晶粒径は、例えば3〜5mmのものである。
【0011】
また、本発明材料は断面が形状、板状、管状などで形状は特に限定しない。これら鋳造材は土木、建築用の種々の形状を有する構造物、もしくは部品に使われ、またコンクリート内での鉄筋材としても適用される。
【0012】
【発明の実施の形態】
本発明は、土木、建築などの構造物内に、地震などによる衝撃エネルギーを吸収して構造物全体を破壊に至らせないようにするために、構造物内で変形を集中させる局所的デバイスに使われる材料のことで、結晶構造がFCCもしくはFCCを主体とし、かつ粗大な結晶粒を有する鋳造材に関するものである。
【0013】
土木、建築用デバイスとして使用される種々の形状を有する構造物用材料、またコンクリート内での鉄筋材としても適用される。
【0014】
【実施例−1】
通常の軟鋼、極軟鋼及び本発明の耐震性能を有するFCCの結晶構造を有するNi−Cr鋼鋳造材の引張特性を表1に示す。これによると、本発明のNi−Cr鋼鋳造材のσ0.2はいずれも100MPa以下で、従来使われている極低炭素の極軟鋼並、もしくはそれ以下であるが、σは極軟鋼よりも高く、しかし一般鋼材のSS400のような軟鋼よりも低い。伸びは軟鋼よりも高く、極軟鋼並み、もしくはそれ以上を示し、高延性である。すなわち、本発明の耐震性能を有する材料は、σ0.2は従来の極軟鋼並、もしくはそれより低い。そしてσは極軟鋼以上だが、軟鋼のそれ以下である。
【0015】
【実施例−2】
通常の軟鋼、極軟鋼及び本発明の耐震性能を有するFCCの結晶構造を有するNi−Cr鋼鋳造材の繰り返しせん断試験の結果を表2に示す。本発明のNi−Cr鋼鋳造材は、最大せん断歪みはほぼ極軟鋼並みを有し、しかも最大せん断強度は従来使われている極軟鋼、あるいは軟鋼よりも高い。この試験で得られた値は、耐震性能を有する材料としては十分満足するものである。
なお、繰り返しせん断試験とは、材料にせん断力を繰り返し加えて、繰り返しせん断特性を調べる試験のことである。
【0016】
【発明の効果】
本発明は、以上のように構成されているので、以下に記載されるような効果を奏する。
【0017】
まず本発明のように、土木、建築などの構造物内に、結晶構造がFCCあるいはFCCを主体とする金属材料の鋳造材によって作られたデバイスを組み入れることによって、地震などによる衝撃エネルギーを局所的変形によって吸収させることにより、構造物全体を破壊に至らせないようにすることが出来る。本発明は、構造物の材料が形材、板材の場合あるいは鉄筋材のような形の材料の場合のいずれかにおいても適用でき、効果を発揮することが出来る。

Figure 2004218060
Figure 2004218060
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention can absorb a small structure locally provided in a part of a structure such as civil engineering or a building (hereinafter referred to as a device), that is, energy generated by an earthquake by deformation of this part. It relates to materials used for devices.
[0002]
2. Description of the Related Art In general, a major part of a relatively large structure in the civil engineering or architectural fields generally uses a steel material mainly made of ordinary steel and made by processing such as rolling. Therefore, when an earthquake occurs, the vibration is directly transmitted to the structure, and sometimes large damages such as destruction and collapse may occur.
[0003]
The present invention intends to incorporate devices into some of these main structures in order to reduce the damage and damage of such structures as much as possible, in order to significantly improve the so-called seismic resistance of the structures, In order to enhance the effect of the device, it is intended to provide a special metal material used for the device. This seeks to absorb more of the seismic energy to the structure due to excessive deformation of the device, minimizing damage to the entire structure. Also, by replacing only the deformed device part, the restoration work of the structure after the earthquake can be quickly performed.
[0004]
[Prior art]
At present, iron and steel materials are used for the main parts of civil engineering and building structures, and they are becoming larger and higher in height. Along with this, the properties required of the material have also been increased in strength, and many high-strength steels have been developed so far in order to respond to this.
[0005]
[Problems to be solved by the invention]
Such structures, such as civil engineering and construction, often suffer large damages such as damage or destruction due to the impact of earthquakes. The trend in development has been to improve the strength by making the crystal grain size of the materials used or members made by joining these materials smaller, and to make the structure stronger.
[0006]
However, increasing the strength of such materials increases the susceptibility of the materials themselves to embrittlement, and cannot withstand natural forces such as earthquakes, especially in the case of huge seismic forces, and local In some cases, a large force is applied to the structure, and there is a case where the material is broken due to stress concentration. .
On the other hand, as a method of responding to the improvement of the seismic performance of the above-mentioned structure, a device is provided and a low yield point steel such as an ultra-low carbon steel is also applied. Is low, so it has some effect but is not enough.
[0007]
[Means for Solving the Problems]
The point of the present invention is that the device is locally incorporated into civil engineering, construction and other general structures made of steel with a tensile strength of 400 MPa class, and the impact energy such as earthquake is absorbed by local deformation. Finding the right material for this device, with the aim of preventing the entire structure from being destroyed, such as by causing local stresses to absorb repeated stresses, such as earthquakes is there. That is, the present inventor has made various studies on conventional structures such as civil engineering and buildings in order to improve the seismic performance of the structures. As a result, the crystal structure of the device material in the structures has a face-centered cubic lattice (abbreviated for short). By using a metal material mainly composed of FCC or a metal material mainly composed of FCC and having coarse crystal grains, seismic resistance of civil engineering and general structures such as constructions made of steel materials of 400 MPa class or higher. It has been found that the properties can be significantly improved, and the present invention has been completed. The material of the present invention has better corrosion resistance than ordinary structural steel materials.
[0008]
The yield point of this FCC or cast material mainly composed of FCC and having coarse crystal grains is lower than that of mild steel, and is equal to or lower than that of ultra-low carbon steel (extremely mild steel). No growth appears. Then, plastic deformation starts from a low strength point and strain hardening occurs, and the tensile strength is not less than extremely mild steel, equal to or less than mild steel. That is, the device material of the present invention facilitates plastic deformation from low stress, and from the initial stage of an earthquake, even a small amount of seismic energy plastically deforms and absorbs energy, and can repeatedly absorb such stress. It is like that. The strength after the repeated stress is applied is equal to or higher than the mild steel of general materials.
[0009]
In the present invention, the material used for the locally incorporated device is referred to as a cast material having seismic performance in the present invention.
[0010]
The cast material having seismic performance in the present invention is a cast material mainly composed of FCC or FCC and having coarse crystal grains. Components contained within the metal material, yield strength than the main structural material, becomes 0.2% proof stress (sigma 0.2) because the yield point does not appear in the case of the invention steels, the sigma 0.2 Is low and the tensile strength (σ B ), which is the highest strength, is a component system such that it is not less than extremely mild steel and not more than mild steel. That is, in the present invention, it has been found that FCC or a cast material mainly composed of FCC and having coarse crystal grains is appropriate. It is found that Ni is 12.5% and above, 17.5% and below, Cr is 9.5% and above, 21.0% and below, and (Ni + Cr)% is 27% and below. As described above, the casting material contains 33.5% or less as a main component and is made of unavoidable impurities. The crystal grain size of the cast material is, for example, 3 to 5 mm.
[0011]
The cross section of the material of the present invention is not limited to a specific shape, such as a plate, a tube, or the like. These cast materials are used for structures or parts having various shapes for civil engineering and construction, and are also used as reinforcing bars in concrete.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is directed to a local device that concentrates deformation in a structure such as civil engineering or a building in order to absorb impact energy due to an earthquake or the like so that the entire structure is not destroyed. A material to be used, which relates to a cast material whose crystal structure is mainly FCC or FCC and has coarse crystal grains.
[0013]
It is also applied as a material for structures having various shapes used for civil engineering and building devices, and as a reinforcing material in concrete.
[0014]
Example-1
Table 1 shows the tensile properties of ordinary mild steel, extreme mild steel, and the cast Ni-Cr steel having the crystal structure of FCC having the earthquake resistance of the present invention. According to this, σ 0.2 of the Ni-Cr steel cast material of the present invention is 100 MPa or less in each case, which is equal to or lower than that of a conventional ultra-low carbon ultra-mild steel, but σ B is Higher, but lower than mild steel such as general steel SS400. The elongation is higher than that of mild steel, it is equal to or higher than that of extremely mild steel, and it is highly ductile. That is, in the material having the earthquake resistance of the present invention, σ 0.2 is equal to or lower than that of conventional mild steel. And σ B is equal to or higher than extremely mild steel, but lower than that of mild steel.
[0015]
Example-2
Table 2 shows the results of a repeated shear test of a normal mild steel, an extremely mild steel, and a cast Ni-Cr steel having a crystal structure of FCC having the earthquake resistance of the present invention. The Ni-Cr steel cast material of the present invention has a maximum shear strain substantially equal to that of extremely mild steel, and has a maximum shear strength higher than that of conventionally used mild steel or mild steel. The values obtained in this test are sufficiently satisfactory as a material having seismic performance.
The repetitive shear test is a test in which a shear force is repeatedly applied to a material to check the repetitive shear characteristics.
[0016]
【The invention's effect】
Since the present invention is configured as described above, it has the following effects.
[0017]
First, as in the present invention, by incorporating a device whose crystalline structure is made of FCC or a cast material of a metal material mainly composed of FCC into a structure such as civil engineering or architecture, impact energy due to an earthquake or the like is locally applied. By absorbing by deformation, it is possible to prevent the entire structure from being destroyed. The present invention can be applied to the case where the material of the structure is a shape material, a plate material, or a shape material such as a reinforcing steel material, and can exert effects.
Figure 2004218060
Figure 2004218060

Claims (1)

結晶構造が主に面心立方格子で、Niを12.5%及びこれ以上、17.5%及びこれ以下、Crを9.5%及びこれ以上、21.0%及びこれ以下で、かつ(Ni+Cr)%が27%及びこれ以上、33.5%及びこれ以下を主成分として含み、かつ不可避不純物からなる耐震性能を有するニッケル(Ni)−クロム(Cr)鋼の鋳造材。The crystal structure is mainly a face-centered cubic lattice, and Ni is 12.5% or more, 17.5% or less, Cr is 9.5% or more, 21.0% or less, and ( (Ni + Cr)% is a cast material of nickel (Ni) -chromium (Cr) steel which contains 27% or more and 33.5% or less as a main component and has seismic performance composed of unavoidable impurities.
JP2003038990A 2003-01-10 2003-01-10 Cast material with earthquake-proof performance Pending JP2004218060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038990A JP2004218060A (en) 2003-01-10 2003-01-10 Cast material with earthquake-proof performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038990A JP2004218060A (en) 2003-01-10 2003-01-10 Cast material with earthquake-proof performance

Publications (1)

Publication Number Publication Date
JP2004218060A true JP2004218060A (en) 2004-08-05

Family

ID=32905140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038990A Pending JP2004218060A (en) 2003-01-10 2003-01-10 Cast material with earthquake-proof performance

Country Status (1)

Country Link
JP (1) JP2004218060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261067A1 (en) * 2020-06-24 2021-12-30 国立研究開発法人物質・材料研究機構 WELDED STRUCTURE AND Fe-Mn-Cr-Ni-Si-BASED ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261067A1 (en) * 2020-06-24 2021-12-30 国立研究開発法人物質・材料研究機構 WELDED STRUCTURE AND Fe-Mn-Cr-Ni-Si-BASED ALLOY
JP7468874B2 (en) 2020-06-24 2024-04-16 国立研究開発法人物質・材料研究機構 Welded structure and Fe-Mn-Cr-Ni-Si alloy used therein

Similar Documents

Publication Publication Date Title
JP2009052097A (en) Damping member
JP2010048039A (en) Prestressed reinforced concrete pile
JPWO2011152009A1 (en) Copper-based alloy and structural material using the same
JP2004218060A (en) Cast material with earthquake-proof performance
JP2021179129A (en) Residual strain restraint structure of rc columnar structure and plastic hinge part repair method of rc columnar structure
CN114351884B (en) Core energy dissipation structure and axial steel damper
Dolce et al. Passive seismic devices based on shape memory alloys
JP6328430B2 (en) Buckling brace
JP2001123250A (en) Vibration proof material
JP2002275587A (en) Earthquake resistant nickel-chromium steel
JP2005083136A (en) Composite structure support
CN114263287B (en) Core energy dissipation structure with enhanced ductility and buckling-restrained energy dissipation brace
Kim et al. Compressive behavior of H-shaped brace strengthened with non-welded cold-formed element
JP5648569B2 (en) CFT column steel pipe design method
Parra-Montesinos et al. Elimination of diagonal reinforcement in earthquake-resistant coupling beams through use of fiber-reinforced concrete
JP2003336349A (en) Composite structural member of reinforced concrete
Hsiao et al. The effect of frame deformation on the welded gusset plates for diagonal bracing elements loaded in tension
JP2009270281A (en) Super highrise building
JP2006249790A (en) Shear block damper
JP3728211B2 (en) Fireproof coated steel structure
JPH10331323A (en) Steel member excellent in buckling resistant characteristic
JP2001323597A (en) Concrete structure body and construction method thereof
Alemayehu et al. Flange Local Buckling Behaviour of All-Steel Buckling Restrained Brace with H-Section Core
Sabouri-Ghomi et al. Study the feasibility of transferring the energy absorption from link beam to braces in eccentrically braced frames
Bilow et al. Capacity of Joints to Resist Impact Loads in Concrete Moment-Resisting Frame Buildings