JP2004217541A - Tumor cytotoxic porphyrin - Google Patents

Tumor cytotoxic porphyrin Download PDF

Info

Publication number
JP2004217541A
JP2004217541A JP2003004662A JP2003004662A JP2004217541A JP 2004217541 A JP2004217541 A JP 2004217541A JP 2003004662 A JP2003004662 A JP 2003004662A JP 2003004662 A JP2003004662 A JP 2003004662A JP 2004217541 A JP2004217541 A JP 2004217541A
Authority
JP
Japan
Prior art keywords
compound
plant
cells
tumor
photosensitizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004662A
Other languages
Japanese (ja)
Inventor
Yukinae Yamazaki
幸苗 山崎
Yasuhiro Kono
泰広 河野
Gun Gi Kim
グン ギ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003004662A priority Critical patent/JP2004217541A/en
Publication of JP2004217541A publication Critical patent/JP2004217541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new and useful photosensitizer for organisms or tumor cytotoxic agent which has high uptake efficiency in tumor cells, is a safe and natural porphyrin compound, has absorption maximum shifted to a long wavelength side of 700 nm and exhibits tumor cytotoxicity stronger than that of a conventional compound by photoirradiation. <P>SOLUTION: The photosensitizer for organisms or the tumor cytotoxic agent contains two kinds of compounds which are isolated from a plant containing various kinds of porphyrin derivatives as metabolites of chlorophyll and kill tumor cells by photoirradiation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、植物から抽出した天然のポルフィリン誘導体からなる生体用光増感剤及び腫瘍細胞殺傷剤に関する。
【0002】
【従来の技術】
腫瘍の治療法の1つに光力学療法という方法がある(非特許文献1参照)。この方法は、腫瘍細胞に対する選択性を有する光感受性物質を腫瘍細胞に取り込ませ、光を照射して光による化学反応(光反応)を腫瘍細胞内に起こさせることにより、酸素を活性化し、その結果生じる一重項酸素やスーパーオキシドラジカルにより腫瘍細胞を死滅させるものである。類似する放射線治療法に比べて、骨髄等に対する重篤な副作用がほとんどなく、外科的方法のように組織の大部分を取り去るということもないので、腫瘍以外の組織・臓器の機能を保全することも容易になる。従来、光を照射しやすい皮膚ガンや眼底病変の治療にもっぱら用いられてきたが、最近、光源としてのレーザーや導波管(光ファイバー)等ハードウェア面での著しい進歩があいまって、肺ガンや大腸ガン等の臓器ガンにも積極的に応用されている。特に中心性早期肺ガンについては、米国NCIのプロトコールで治療の第1選択肢となっており、我が国でも本法のみにより85%以上の治癒率があげられている(非特許文献2参照)。ところで、このような光力学療法にとって重要な要素は、腫瘍細胞に対する選択性を有し、かつ光によって酸素を活性化する仲立ちとなる化合物(光増感剤)である。
【0003】
この光増感剤として従来用いられてきたものにはヘマトポルフィリン(非特許文献3参照)やピロフェオホーバイドエステル(非特許文献4、5参照)など天然のポルフィリン誘導体やそれをモデルとしたフタロシアニン系色素 (非特許文献6参照)などがあるが、これらの中ではヘマトポルフィリンの加工品であるフォトフリンのみが我が国では治療薬として認可されている。また、これらは、癌細胞に対する親和性を利用して診断剤として使用する試みもなされている。
しかし、癌の光力学療法に用いられている従来の光増感剤、とくにフォトフリンは光の吸収極大が625nmと比較的短波長側にあるため、組織浸透性の良い700nmに近いもしくはそれよりも長い長波長の光による細胞殺傷効果が弱いという問題があった。また、第2世代の光増感剤と期待されているクロリンe6誘導体(特許文献1参照)は吸収波長の問題をクリアしているが、ガン細胞への取り込みが必ずしも良いとは言えない(非特許文献7参照)。また、フタロシアニンやローダミンのような合成色素(特許文献2参照)の場合は非選択的毒性と副作用も強いという問題があり、この点からは天然ポルフィリンが優れていると考えられ、またガン細胞への取り込み効率からも、天然のポルフィリン誘導体に新たな期待が高まっている。
【0004】
【非特許文献1】
奥仲、加藤、日本外科学会雑誌、第103巻、第2号、258−262頁(2002年)
【非特許文献2】
古川、加藤、 日本臨床、第60巻、増刊5、414−418頁、(2002年)
【非特許文献3】
Pass, HI, Journal of the National Cancer Institute, 85(6), 443 −456 (1993))
【非特許文献4】
Matroule J.Y. et al., Oncogene, 20, 4070 −4084 (2001)
【非特許文献5】
Hajri A. et al., Photochemistry and Photobiology, 75(2), 140 −148(2002)
【非特許文献6】
Lam M. et al., The Journal of Biological Chemistry, 276 (50), 47379 −47386 (2001)
【非特許文献7】
Spikes J.D., Journal of Photochemistry and Photobiology B: 6, 259 −274 (1990)
【特許文献1】
特開昭2001−233877号公報
【特許文献1】
再表98/14453号公報
【特許文献2】
特表平10−505349号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明は、腫瘍細胞への取り込み効率が高く、安全な天然のポルフィリン化合物であって、吸収極大が700 nmの長波長側へシフトし、かつ、光照射により、従来のものよりさらに強力な腫瘍細胞傷害性を発揮する化合物を見いだし、これにより、新規かつ有用な生体用光増感剤ないしは腫瘍細胞傷害剤を開発することを課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、鋭意研究の結果、本発明者等は、クロロフィルの代謝産物として各種のポルフィリン誘導体を含有する植物において、光増感作用を有し、光の照射により腫瘍細胞を殺傷する成分を検索した結果、植物抽出物中に含まれる、以下の式I及びIIの構造式で表されるポルフィリン誘導体が上記課題の解決に有用であることを見いだし、本発明を完成するに至ったものである。
【0007】
すなわち、本発明は、以下の(1)〜(12)からなるものである。
(1) 下記構造式I又は式IIで表される化合物を含有することを特徴とする生体用光増感剤。
【化1】

Figure 2004217541
Figure 2004217541
【化2】
Figure 2004217541
Figure 2004217541
(2) 上記構造式I及び/又は式IIで表される化合物を含む植物の抽出物からなる生体用光増感剤。
(3) 植物がイネ科植物である(2)に記載の生体用光増感剤。
(4) イネ科植物が、Phyllostachys属に属する植物である(3)の生体用光増感剤。
(5) 上記構造式I又はIIで表される化合物を含有することを特徴とする腫瘍細胞殺傷剤。
(6) 上記構造式I及び/又は式IIで表される化合物を含む植物の抽出物からなる腫瘍細胞殺傷剤。
(7) 植物がイネ科植物である(6)に記載の腫瘍細胞殺傷剤。
(8) イネ科植物がPhyllostachys属に属する植物である(7)に記載の腫瘍細胞殺傷剤。
(9) 上記構造式Iで表される化合物。
(10)上記構造式I又はIIで表される化合物を含有する植物から溶媒を用いて抽出することを特徴とする上記構造式I又はIIで表される化合物の製造方法。
(11)植物がイネ科植物である(10)に記載の製造方法。
(12)イネ科植物が、Phyllostachys属に属する植物である(11)に記載の方法。
【0008】
【発明の実施の形態】
本発明において使用する上記構造式I及びIIの化合物(以下、前者を化合物1といい、後者を化合物2という。)は、植物から抽出される。抽出原料となる植物としては、例えば、モウソウチク、マダケ等Phyllostachys属の植物の他、クマザサ等Sasa属、イネ等Oryza属、トウモロコシ等Zea属等のイネ科(Gramineae科)の植物が挙げられるが、 特に、モウソウチク、マダケ等Phyllostachys属に属する植物が好適である。しかし、本発明の化合物1及び/又は化合物2を含んでいれば他科の植物であっても、もちろん良い。これら植物の植物体のうち、化合物1及び/又は化合物2 を多く含む部位はクロロフィル多く含む部位であり、主として葉、茎等である。これら植物体は本化合物含量が最高の時期に収穫する。すなわち、本化合物が多く含まれる部位、時期等は植物によって異なるが、一般的には、本発明の化合物1及び/又は化合物2の母体であるクロロフィルの代謝が盛んな部位、時期が望ましく、緑葉を収穫することになる。
本発明においては、このように収穫した植物体を水または有機溶媒で抽出する。有機溶媒としてはメタノール、エタノール、酢酸エチル、クロロホルム等が用いられる。このような粗抽出物は有毒成分を含まない限りそのまま適宜濃縮、希釈して用いることができるが、活性物質である化合物1または化合物2を精製して用いる方が良い場合には、シリカゲルカラムクロマトグラフィー、逆相カラムクロマトグラフィー、分取薄層クロマトグラフィー等、公知の手段で精製することができる。
【0009】
上記方法により精製した化合物1及び2は、水、エタノール等の溶媒に溶解するか、もしくは適当なリン脂質等の界面活性剤を含む水に懸濁して、生体に適用する光増感剤として用いる。
すなわち、本発明の化合物1及び2は、そのUVスペクトルにおいて、Qバンドの吸収極大がともに668nmにあり、従来、光力学療法用の光増感剤として使用されていたフォトフリン(625nm)よりもはるかに長波長域側であり、また、従来、最も長波長域側に吸収極大があるとされるクロリンe6(654nm)よりもさらに長波長域側に吸収極大がある。したがって、本発明の化合物1及び2は、これら従来の光力学療法に使用する光増感剤に比べ、より、組織浸透性の高い波長域の光に対しても光増感性を示し、これらの長波長域の光照射により、より深い部位にある癌組織あるいは癌細胞を有効に殺傷できる。特に、本発明の化合物のうち、化合物1は文献未記載の新規化合物であり、光力学療法用光増感剤として極めて顕著な腫瘍細胞殺傷性を有する。
【0010】
次に、本発明の化合物の使用形態について説明するが、基本的には従来の光力学療法における光増感剤の使用形態と同様である。
本発明の化合物1及び2は、上記溶媒に溶解して静注により生体内に投与され、これら化合物の腫瘍細胞に対する選択的親和性により、これら化合物は腫瘍組織、細胞に集積する。
次いで、腫瘍組織あるいは細胞に対し光照射を行うが、光照射は、腫瘍組織、細胞に対して、光を直接あるいは導波管(光ファイバー)を介して照射する。
使用する光源としては、例えば、白色蛍光灯、半導体レーザ(670nm)、YAG−OPOレーザ(620−670nmの可変波長)、Nd/YAGレーザ、ハロゲンランプ、ダイオードアレイ(diode array)及びキセノンアークラプ(Xenon arc lamp)等が挙げられる。
腫瘍に集積した本発明の化合物1、2は、この光照射により励起されて光化学反応を惹起し、これにより、腫瘍組織内において活性酸素が産生される。活性酸素は、腫瘍細胞に対しネクローシスを生じさせ、また、ミトコンドリアからのシトクロムcの放出を介してカスパーゼ3を活性化させアポトーシスを誘導して、腫瘍を壊死させる。本発明の化合物1及び2を用いた癌細胞の殺傷試験においては、光照射により、癌細胞におけるカスパーゼ活性が増大し、アポトーシスを起こすことが確認されている。
【0011】
以下、実施例により本発明をさらに詳細に説明する。
【実施例】
【実施例1】竹の葉抽出物の調製
10月に採取したモウソウチクの葉を20日間陰干しし、500gの乾燥葉を得た。これを約10リットルのメタノールに浸漬、ホモジェナイザーで処理し10日間暗所に放置した。葉を濾過で除いた抽出液をロータリーエバポレーターで濃縮し、105gの油状残渣を得た。この104gを10分の1づつ200mlの酢酸エチルと混合し30分攪拌した。静置し、上清をデカンテーションで得た。全部の上清を合わせ、ロータリーエバポレーターで濃縮し、油状残渣28gを得た。
【0012】
【実施例2】化合物1のクロマトグラフィーによる精製
実施例1で得た酢酸エチル抽出物(油状残渣)のうち5 gを取り少量のヘキサンと酢酸エチルの混合液に溶かし、ヘキサンで充填したシリカゲルカラム(120 cm)の頂部に流し込み吸着させた。ヘキサンと酢酸エチルを5:1、3:1、2:1、1:1で混合した溶液600 mlづつを流し、溶出液を60 mlづつ分画した。ヘキサン:酢酸エチル=3:1の混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。この操作を4本のカラムについて繰返し、合計6gの濃縮残渣を得た。
上記の濃縮残渣6gのうち2gをベンゼンで充填したシリカゲルカラム(60cm)の頂部に吸着させ、ベンゼンと酢酸エチルを20:1、10:1、8:1、6:1、3:1、1:1で混合した溶液240 mlづつを流し、溶出液を30 mlづつ分画した。10:1から6:1のベンゼン/酢酸エチル混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。この操作を3本のカラムについて繰返し、合計0.8gの濃縮残渣を得た。
【0013】
濃縮残渣0.8gのうち0.2gをベンゼンで充填したシリカゲルカラム(30 cm)の頂部に吸着させ、ベンゼンと酢酸エチルを100:1、50:1、30:1、20:1、10:1、8:1、5:1、1:1で混合した溶液120 mlづつを流し、溶出液を20 mlづつ分画した。30:1から10:1のベンゼン/酢酸エチル混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。この操作を4回繰返して合計200mgの濃縮残渣を得た。
濃縮残渣200mgのうち40mgを少量のアセトニトリルに溶かし、水とアセトニトリル(2:1)の混液で充填したワコーゲルLP−60C18のカラム(15 cm)の頂部に流し込み、次いで水とアセトニトリルを2:1、1:1、1:2、1:2.5、1:3、1:4、1:5、1:6、1:8、1:20、1:40、1:80、及び0:100の割合で混合した溶液を30 mlづつ流し、溶出液を8 mlづつ分画した。1:3から1:5の水/アセトニトリル混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。この操作を5回繰返して20mgの残渣を得た。
【0014】
この濃縮残渣の半分をヘキサンで充填したシリカゲルカラム(12 cm)の頂部に吸着させ、ヘキサンと酢酸エチルを4:1、3.5:1、3:1、2.5:1、2:1、1.5:1、及び1:1の割合で混合した溶液20 mlづつを流し、溶出液を4 mlづつ分画した。2.5:1から1.5:1の混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。残り半分の残渣についても同様に処理し、合わせた濃縮残渣を真空ポンプで乾燥し、4.0mgの化合物1を灰緑色のガム状物として得た。このようにして得られた化合物1はTLC(シリカゲル60 F254、0.25 mm、ヘキサン/酢酸エチル=1:1で展開)においてR 0.30の単一スポットを示したことから単一化合物と判断された。
本化合物はFAB−MSにおいてm/z 653とm/z 675に顕著なピークを示し、それぞれ[M+1]、[M+Na]ピークと判断された。またESI−MSにおいてもm/z 653.4に[M+1]と判断されるピークを示した。UVスペクトルは酢酸エチル中で、398、496、527、611、及び668nmに吸収極大を示した。モル吸光係数はこの順に1.25 x 10、1.11 x 10、7.91 x 10、5.54 x 10、4.51 x 10であった。このUVスペクトルのデータから、本化合物はクロロフィルの関連物と推定されたので、H−NMR及び13C−NMRスペクトルを測定し、既知のクロロフィル関連化合物の文献データと比較した。この比較を表1及び表2に示す。
【0015】
【表1】
表1 H−NMR(400/500MHz,CDCl)のデータの比較(数字はケミカルシフト、ppm)
Figure 2004217541
【0016】
【表2】
表2 13C−NMR(400MHz, CDCl)のデータの比較
(数字はケミカルシフト、ppm)
Figure 2004217541
文献値はTakashima et al., (Chem. Lett., 1995, 1015−1016)による。
*検出されず。
【0017】
上表からわかるように、本化合物のNMRスペクトルはMaら(Ma L. and Dolphin D., J. Org. Chem., 61, 2501−2510 (1996))及びTakashimaら(Takashima H., Jin S., Yoshida M., Abe J., and Murai A., Chem. Lett., 1015 −1016, 1995)に記載のある18−carboxy−20−(1,1−dihydroxy−2−methoxy−2−oxoethyl)−8−ethenyl−13−ethyl−2,3−dihydro−3,7,12,17−tetramethyl−22H,24H−porphine−2−propanoic acid δ−lactone methyl esterのスペクトルによく一致し、ただdimethylesterでなくethyl methyl esterである点が異なると結論された。これにより、本化合物の分子式はC3740となるが、この式量(652.736)は前述のマススペクトルのデータによく一致する。さらにH−NMRを詳細に解析したところ、2位のプロトンのシグナルが4.095 ppmと4.99 ppmに分かれて出現していることを認めた(積分曲線比6.15:1.01)。このことはMaらによって既に指摘されているが、20位のヒドロキシル基がセミケタール構造のためにエピメリ化し、20−(S)体(主成分)と20−(R)体(副成分)のジアステレオマー混合物となるためである。従って、本発明の化合物1は上記δ−lactone ethyl methyl esterの20−(S)体と20−(R)体が6:1で混ざった混合物と結論される。本化合物1は文献未載の新規化合物である上、上記のMaらやTakashimaらのdimethyl esterとmonomethyl esterを含めて、光増感作用による細胞殺傷効果が初めて明らかにされた20−hydroxypurpurin−7 δ−lactone型ポルフィリン誘導体である。
【0018】
【実施例3】化合物2のクロマトグラフィーによる精製
実施例1で得られた酢酸エチル抽出物(油状残渣)のうち2gを取り少量のヘキサンと酢酸エチルの混合液に溶かし、ヘキサンで充填したシリカゲルカラム(65 cm)の頂部に流し込み吸着させた。ヘキサンと酢酸エチルを80:1、60:1、40:1、20:1、10:1、8:1、6:1、4:1、2:1、1:1、1:2、
1:5、1:6、1:50、及び0:1で混合した溶液150 mlづつを流し、溶出液を20 mlづつ分画した。ヘキサン:酢酸エチル4:1から1:50の混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。この操作を4本のカラムについて行ない、合計3gの濃縮残渣を得た。
上記の濃縮残渣3gのうち0.5gを再度ヘキサンで充填したシリカゲルカラム(30 cm)の頂部に吸着させ、ヘキサンと酢酸エチルを3:1、2.5:1、2:1、1.5:1、1:1、1:1.5で混合した溶液120 mlづつを流し、溶出液を15 mlづつ分画した。2.5:1から1.5:1のヘキサン/酢酸エチル混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮した。以上の操作を6回繰返して合計500mgの濃縮残渣を得た。
【0019】
この濃縮残渣を分取用TLC(シリカゲル、厚さ1mm、20 x 20 cm)にアプライし、ヘキサン/酢酸エチル3:1の混液で2回、3:2の混液で3回、1:1の混液で1回、合計6回多重展開した。最終的にR0.6の緑色ゾーンのシリカゲルを掻き取り、酢酸エチルで抽出した。
この抽出物を濃縮して得た8mgの油状残渣をヘキサンで充填したシリカゲルカラム(10 cm)の頂部に流し込み吸着させた。ヘキサンと酢酸エチルを3:1、3:1.5、3:2、及び0:1で混合した溶液30 mlづつを流し、溶出液を5 mlづつ分画した。ヘキサン:酢酸エチル3:1.5の混合液で溶出したフラクションを合わせ、ロータリーエバポレーターで濃縮、真空ポンプで乾燥し、2.0mgの化合物2を灰緑色ガムとして得た。本化合物はTLC(シリカゲル60 F254、0.25 mm、ヘキサン/酢酸エチル=3:2で展開)においてR 0.53の単一スポットを示したことから単一化合物と判断された。
【0020】
本化合物はFAB−MSにおいてm/z 903とm/z 925に顕著なピークを示し、それぞれ[M+1]、[M+Na]ピークと判断された。UVスペクトルは酢酸エチル中で前述の化合物1とほぼ同様に、398、496、527、611、及び668nmに吸収極大を示した。モル吸光係数はこの順に1.19 x 10、1.21 x 10、7.27 x 10、5.05 x 10、4.29 x 10であった。このUVスペクトルのデータから、本化合物もクロロフィルの関連物と推定されたので、H−NMR及び13C−NMRスペクトルを測定し、既知のクロロフィル関連化合物の文献データ及び前述の化合物1のスペクトルと比較した。この比較を前記表1、及び下記表3に示す。
【0021】
【表3】
表3 13C−NMR(270MHz,aceton−d)のデータの比較
(数字はケミカルシフト、ppm)
Figure 2004217541
18−(R)−Chl aのデータはHyvaerinenら(Mag.Res.Chem.,
33,646−656(1995))による。ただし、表のnumberingは
Chemical Abstractの体系による。
*検出されず。
【0022】
これによれば、化合物2は化合物1のエチルエステルがフィチルエステルに置換された構造であることが判明した。これにより、本化合物の分子式はC5574となるが、その式量(902.5557)は前述のマススペクトルのデータによく一致する。さらにH−NMRを詳細に解析したところ、2位のプロトンのシグナルが4.06ppmと4.96 ppmに分かれて出現していることを認めた(積分曲線比8.7:1.4)。従って、本発明の化合物2は18−carboxy−20−(1,1−dihydroxy−2−methoxy−2−oxoethyl)−8−ethenyl−13−ethyl−2,3−dihydro−3,7,12,17−tetramethyl−22H,24H−porphine−2−propanoic acidδ−lactone phytyl esterの20−(S)体と20−(R)体が6:1で混合しているジアステレオマー混合物と結論される。なお、Gandul−Rojasら(Gandul−Rojas B., Gallardo−Guerrero L., Minguez−Mosquera M., Journal of Food Protection, 62(10), 1172 −1177 (1999))はオリーブから同じ構造の化合物が得られたと記載しているが、UVとMSスペクトルにのみ基づいて判断している。H−NMRと13C−NMRを測定し、構造を厳密に確認した上での報告としては本明細書が初めてである。
【0023】
【実施例4】
ヒト白血病細胞株U−937を10%の子牛胎児血清を含むRPMI−1640培地に1x10個/mlの割合で懸濁し、12−wellの細胞培養プレート2枚のウェルに0.8mlづつ入れた。サンプルは20%アセトンを含むエタノールに溶解し、適宜希釈した上で、8μlづつ上記0.8mlの細胞培養液に添加した。この際、2枚のプレートの両方に同じように添加した。1枚のプレートはサンプル添加後アルミフォイルでくるみ、炭酸ガスインキュベーターに入れた。もう1枚のプレートは5時間インキュベート後、蛍光灯(NEC製昼白色、20型18W、FL20SSN/18)の10cm直下(約2000lux、0.24 mW/cm)に10分置いた後、インキュベータに戻し培養を継続した。6時間後に位相差顕微鏡で細胞を観察し、ネクロシスが見られる場合はトリパンブルー染色で確認した。
【0024】
結果を図1と図2に示す。図1においてAはコントロール、BとCには化合物1を1μM濃度で添加し、DとEには標準の光増感剤であるPPBMe(ピロフェオフォーバイドメチルエステル, Frontier Scientific Inc.社(ユタ州、U.S.A.)製)を1μM濃度で添加した。サンプル添加後、BとDは上述のように光を照射し、CとEは光を断って培養した。図1ではBが位相差顕微鏡下にネクロシスの像を示したので、A〜Eの各ウェルをトリパンブルーで染色した。B(化合物1添加、光照射)のみ、全細胞が青に染まり、ネクロシスを起こしていることがわかる。一方、PPBMeでは光照射しても、ほとんどネクロシスはおきていない(図1のD)。図2は位相差顕微鏡写真であり、本図においてAはコントロール、BとCには化合物1を0.3μM濃度で添加し、DとEにはPPBMeを0.3μM濃度で添加した。サンプル添加後、BとDは上述のように光を照射し、CとEは光を断って培養した。図2B(0.3μMの化合物1添加、光照射)では、大部分の細胞が断片化し、アポトーシスが起きていることがわかる。一方、図2D(0.3μM PPBMe、光照射)では断片化した細胞はわずかである。いずれも、光照射なし(図1CとE、図2CとE)ではアポトーシスは起きず、ネクロシスもほとんど起きていない。このように、本発明の化合物1は1μM程度の濃度では光照射によりネクロシスを、また0.3μM程度の濃度では光照射によりアポトーシスを誘起し、いずれにおいても標準のPPBMeより強い活性を示している。
【0025】
【実施例5】
U−937細胞を1x10個/mlの割合で上記培地に懸濁し、12−wellの細胞培養プレートの各ウェルに0.8 mlづつ入れた。次いで、本発明の化合物1、化合物2、もしくは標準の光増感剤であるPPBMeを1, 0.1,0.03または0.01 mMの濃度で溶かした20%アセトン/エタノール溶液の8μlづつを入れ、プレートをゆすってよく混合した。コントロールとしてはサンプルを含まない上記溶媒を8μl添加した。各サンプルについてプレートを2枚づつ準備し、1枚は光照射なしでインキュベートし、他の1枚は実施例1の場合と同様に5時間前培養後10分間蛍光灯直下に置き、光照射後インキュベータに戻し、培養を継続した。7時間後、細胞を遠心分離で集め、氷冷したPBS(リン酸緩衝化塩溶液)で洗浄した。次いで、公知の方法(Yamazaki Y. et al., Exp. Cell Res., 259, 64 −78 (2000))でアポトーシスの指標となるカスパーゼ−3の活性を測定した。結果を図3に示すが、化合物1は光を当てた場合にのみカスパーゼを活性化しアポトーシスを誘導すること、そしてその活性は同濃度のPPBMeと比べて顕著に強く、特に低濃度(0.1μM)では40倍以上強いことがわかる(光照射なしのバックグラウンドを差し引いて比較)。また、化合物2も、化合物1に比べると弱いが、やはり光を当てられるとカスパーゼを活性化することがわかる。(図3のデータは3回の平均値と標準偏差で示されている。)
【0026】
【実施例6】
ヒト大腸がん細胞株Colo320DMを10%FBS入りRPMI−1640培地で培養し、3 x10個/mlの割合で同培地に懸濁した。これを0.1mlづつ96−wellプレートの各ウェルに入れ、3日間培養しウェルの底に張りつかせた。次に、実施例4と同様にして、化合物1を1μM(B、F)、同0.1μM(C、G)、PPBMe1μM(D、H)、溶媒のみ(A、E)を添加した。この際、2枚のプレートを用意し、一方のプレートに対してサンプル(A、B、C、D)を添加し、他方のプレートにサンプル(E、F、G、H)を添加した。この後、それぞれ6時間前培養後、一方のプレート(サンプルA、B、C、D)に対し15分間光照射処理し(A、B、C、D)、他方のプレート(サンプルE、F、G、H)に対しては光照射せずに、さらに24時間培養した。次いで、培地をピペットで吸引除去し、4%のホルマリン液(10%液をPBSで希釈)0.1mlづつを入れ、氷上に15分放置した。ホルマリン液を除き、氷冷PBSで1回洗浄後、0.5%のTween20と0.2%の牛血清アルブミンを含むPBS0.1mlづつを入れ、室温に10分放置した。処理液を捨て、SSC(X2)液で洗浄後、PBSで3回洗浄した。Promega社のin situアポトーシス検出キットを用い、DNAの断片化をTUNEL法で検出した。すなわち、DNA断端にTdT酵素でビオチン結合ヌクレオチドを導入し、そのビオチンにホース・ラディッシュ・ペロキシダーゼ(HRP)を結合したアビジンを結合させ、最後に過酸化水素と色素前駆体をHRPに作用させ発色反応を行い、アポトーシスでDNAが断片化した核を褐色に染色した。結果を図4に示すが、1μMの化合物1を作用させ、光処理した細胞(B)はほぼすべてアポトーシスしていることがわかる。同条件下で1μMのPPBMeはDNAの断片化を完全には進行させていない(D)。さらに、化合物1は0.1μMの濃度でも光照射でアポトーシスを誘導していた(C)。以上すべての場合について、光照射がなければ褐色の細胞はほとんど検出されなかった(F、G、H)。このように、化合物1はColo320DM細胞のアポトーシスを光照射下でPPBMeより強く誘導する。
【0027】
【実施例7】
Colo320DM細胞の懸濁液(3 x 10個/ml)を0.8 mlづつ12−wellプレートのウェルに入れ、3日間培養した。次いで、化合物2を10及び0.1μMの濃度で、PPBMeを0.1μMの濃度で、実施例5と同様に上記各ウエルの細胞懸濁液に添加し、前培養、光照射処理し、さらに18時間培養後、ウェルごとに細胞をスクレーパーで剥がして集めた。氷冷PBSで洗浄後、前述のようにカスパーゼ−3の活性を測定した。結果を図5に示すが、10μMの化合物2は0.1μMのPPBMeより強くカスパーゼを活性化する。(データは2回の平均値と標準偏差で示されている。)
【0028】
【実施例8】
ヒト大腸がん細胞株HT−29を10%のFBSを含むMcCoy’5A培地で培養し、実施例7と同様にして、12−wellプレートに植え込み、化合物1を1μMおよび0.1μMの濃度でそれぞれ添加、前培養、光照射を行った。 この際、化合物1を添加しないものをコントロールとして、同様に前培養、光照射した。24時間後細胞をスクレーパーで集め、PBSで洗浄後、0.5%Triton X100含有0.1Mリン酸緩衝液で細胞を破壊しDNAを抽出した。抽出液をRNaseとプロティナーゼKで処理し、寒天ゲル電気泳動を行い、エチジウムブロマイドでDNAを検出した。結果を図6に示す。
図6中、レーン1は分子量マーカー、レーン2はコントロール、レーン3は化合物1を1μM濃度で添加したもの、レーン4は化合物1を0.1μM濃度で添加したものをそれぞれ示す。
これによれば、化合物1を加え光照射した細胞では小サイズのDNA断片が増加し、アポトーシスが進行していることが確認された。
【0029】
【実施例9】
ヒト肉腫細胞株HT−1080を10%FBS入りDMEM培地で培養し、2 x 10個/mlの懸濁液とし、0.1mlづつ96−wellプレートに撒き込んだ。実施例4と同様に化合物1を1μM濃度で添加、前培養、光照射を行い、16時間培養後、4%ホルマリンで固定し、Sytox(10μM、Molecular Probes社)で細胞核を染色し、蛍光顕微鏡で観察した。結果を図7に示す。なお、図中Aは、コントロール(化合物1無添加)。Bは化合物1(1μM)を添加し、光照射した場合、Cは化合物1(1μM)を添加し、遮光して培養した場合をそれぞれ示す。Bに示されるように、化合物1を添加して光照射した場合にのみ核が凝集、断片化しており、アポトーシスが誘導されたことが確認された。
【0030】
【実施例10】
HT−1080細胞を1 x 10個づつ1mlの培地と共に12−wellプレートに植え込み、実施例1で得た竹の葉のメタノール抽出物(粗抽出物)を1、0.1及び0.01μg/mlの濃度で添加し、光照射処理、18時間培養後、実施例7と同様に細胞を集め、カスパーゼ−3の活性を測定した。図8に示すように、粗抽出物も光照射でHT−1080細胞のカスパーゼを活性化した。(データは3回の平均値と標準偏差で示されている。)
【0031】
【発明の効果】
本発明のポルフィリン誘導体のUVスペクトルは、Qバンドの吸収極大が668nmにあり、従来用いられてきたポルフィリン系光増感剤のフォトフリン(625 nm)やクロリンe6 (654 nm)などより長波長側にシフトしている。また、実際の腫瘍細胞傷害性試験においても、ヒト白血病細胞や大腸ガン細胞について同一の条件で薬剤処理、光照射を行なった場合、本発明の化合物1は従来用いられてきたピロフェオホーバイドより強力な細胞傷害性を示した。すなわち、本発明は、従来の光力学療法用光増感性ポルフィリン誘導体よりも強力なガン細胞傷害性を示す新しい天然由来ポルフィリン誘導体を提供するものである。
【0032】
【図面の簡単な説明】
【図1】化合物1(B, C)又はPPBMe (D, E)を1μMの濃度で添加したU−937細胞をFL20SSN/18蛍光灯で10分間光照射し(B、D)または照射せずに(C, E)6時間インキュベート後、トリパンブルーで染色した顕微鏡写真である。
【図2】化合物1(B, C)又はPPBMe (D, E)を0.3μMの濃度で添加したU−937細胞を図1と同様に光照射し(B、D)または照射せずに(C, E)インキュベート後、位相差顕微鏡で観察した写真である。
【図3】化合物1と化合物2及びPPBMeを10, 1, 0.3 又は0.1μM濃度でU−937細胞に添加し、光照射せずに(黒いバー)またはFL20SSN/18蛍光灯で光照射し(斜線のバー)、7時間インキュベート後のカスパーゼ−3の活性を示すグラフである。
【図4】化合物1[1μM(B、F)及び0.1μM(C、G)]、PPBMe [1μM(D、H)]、またはこれらを含まない溶媒のみ(A、E)をColo320DM細胞に添加し、蛍光灯で光照射し(A、B、C、D)または照射せずに(E、F、G、H)インキュベート後、DNAの断端をTUNEL法でラベルし、HRP反応(褐色に呈色)で検出した顕微鏡写真である。
【図5】化合物2を10及び1μM、PPBMeを0.1μMの濃度でColo320DM細胞に添加し、6時間前培養後蛍光灯で光照射し、さらに18時間インキュベート後のカスパーゼ−3の活性を示すグラフである。
【図6】化合物1添加下に光照射されたHT−29細胞のDNAの電気泳動写真である。
【図7】HT−1080細胞に化合物1を添加し、光照射することによりアポトーシスの特徴である細胞核の凝縮と断片化が起きることを示す蛍光顕微鏡写真である。
【図8】竹の葉粗抽出物と光照射によるHT−1080細胞のカスパーゼ−3活性化を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biological photosensitizer comprising a natural porphyrin derivative extracted from a plant and a tumor cell killing agent.
[0002]
[Prior art]
One of the methods for treating tumors is a method called photodynamic therapy (see Non-Patent Document 1). In this method, a photosensitizer having selectivity for a tumor cell is incorporated into the tumor cell, and a light-induced chemical reaction (photoreaction) is caused in the tumor cell to activate oxygen. It kills tumor cells with the resulting singlet oxygen and superoxide radicals. Preserving the function of tissues and organs other than tumors, as there are almost no serious side effects on bone marrow and the like compared to similar radiotherapy, and there is no need to remove most of the tissue unlike surgical methods Will also be easier. Conventionally, it has been used exclusively for the treatment of skin cancers and fundus lesions that are easily irradiated with light, but recently, remarkable advances in hardware such as lasers and waveguides (optical fibers) as light sources have led to It is also actively applied to organ cancers such as colon cancer. In particular, central early lung cancer is the first treatment option in the protocol of the United States NCI, and in Japan, a cure rate of 85% or more is achieved by this method alone (see Non-Patent Document 2). By the way, an important factor for such photodynamic therapy is a compound (photosensitizer) which has selectivity for tumor cells and which mediates activation of oxygen by light.
[0003]
Conventionally used photosensitizers include natural porphyrin derivatives such as hematoporphyrin (see Non-Patent Document 3) and pyropheophorbide esters (see Non-Patent Documents 4 and 5) and phthalocyanines modeled on them. Among them, there is a dye (see Non-Patent Document 6). Among them, only photofrin, which is a processed product of hematoporphyrin, is approved as a therapeutic drug in Japan. Attempts have also been made to use these as diagnostic agents utilizing their affinity for cancer cells.
However, conventional photosensitizers used in cancer photodynamic therapy, especially photofrin, have a light absorption maximum on the relatively short wavelength side of 625 nm, so that tissue permeability is close to 700 nm or better. However, there is also a problem that the cell killing effect by long long wavelength light is weak. Further, the chlorin e6 derivative (see Patent Document 1), which is expected to be a second-generation photosensitizer, clears the problem of the absorption wavelength, but it cannot be said that the uptake into cancer cells is always good. See Patent Document 7). In addition, in the case of synthetic dyes such as phthalocyanine and rhodamine (see Patent Document 2), there is a problem that non-selective toxicity and side effects are strong. In this respect, natural porphyrin is considered to be superior, and it is considered that natural porphyrin is excellent. From the viewpoint of the efficiency of incorporation of porphyrin, new expectations have been raised for natural porphyrin derivatives.
[0004]
[Non-patent document 1]
Okunaka and Kato, Journal of the Japanese Surgical Society, Vol. 103, No. 2, 258-262 (2002)
[Non-patent document 2]
Furukawa, Kato, Nippon Clinic, Vol. 60, extra number 5, pp. 414-418, (2002)
[Non-Patent Document 3]
Pass, HI, Journal of the National Cancer Institute, 85 (6), 443-456 (1993))
[Non-patent document 4]
Matrole J .; Y. et al. , Oncogene, 20, 4070-4084 (2001).
[Non-Patent Document 5]
Hajri A. et al. , Photochemistry and Photobiology, 75 (2), 140-148 (2002).
[Non-Patent Document 6]
Lam M. et al. , The Journal of Biological Chemistry, 276 (50), 47379-47386 (2001).
[Non-Patent Document 7]
Spikes J. et al. D. , Journal of Photochemistry and Photobiology B: 6, 259-274 (1990).
[Patent Document 1]
JP-A-2001-233877
[Patent Document 1]
JP-A-98 / 14453
[Patent Document 2]
Japanese Patent Publication No. 10-505349
[0005]
[Problems to be solved by the invention]
Therefore, the present invention provides a safe porphyrin compound having a high efficiency of incorporation into tumor cells and having a maximum absorption shifted to a longer wavelength side of 700 nm, and further enhanced by light irradiation. It is an object of the present invention to find a compound exhibiting a novel tumor cytotoxicity, and thereby to develop a novel and useful biological photosensitizer or tumor cytotoxic agent.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, as a result of intensive studies, the present inventors have found that plants containing various porphyrin derivatives as metabolites of chlorophyll have a photosensitizing effect and kill tumor cells by irradiation with light. As a result of searching the components, the porphyrin derivatives represented by the following structural formulas I and II contained in the plant extract were found to be useful for solving the above-mentioned problems, and the present invention was completed. Things.
[0007]
That is, the present invention includes the following (1) to (12).
(1) A biological photosensitizer containing a compound represented by the following structural formula I or II.
Embedded image
Figure 2004217541
Figure 2004217541
Embedded image
Figure 2004217541
Figure 2004217541
(2) A biological photosensitizer comprising a plant extract containing the compound represented by the above structural formula I and / or formula II.
(3) The biological photosensitizer according to (2), wherein the plant is a gramineous plant.
(4) The biological photosensitizer according to (3), wherein the gramineous plant is a plant belonging to the genus Phyllostachys.
(5) A tumor cell killing agent comprising a compound represented by the above structural formula I or II.
(6) A tumor cell killing agent comprising a plant extract containing a compound represented by the above structural formula I and / or formula II.
(7) The tumor cell killing agent according to (6), wherein the plant is a gramineous plant.
(8) The tumor cell killing agent according to (7), wherein the gramineous plant is a plant belonging to the genus Phyllostachys.
(9) The compound represented by the above structural formula I.
(10) A method for producing a compound represented by the above structural formula I or II, comprising extracting from a plant containing the compound represented by the above structural formula I or II with a solvent.
(11) The method according to (10), wherein the plant is a gramineous plant.
(12) The method according to (11), wherein the gramineous plant is a plant belonging to the genus Phyllostachys.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The compounds of the above structural formulas I and II used in the present invention (hereinafter, the former is referred to as Compound 1 and the latter is referred to as Compound 2) are extracted from plants. Examples of plants to be used as extraction raw materials include plants of the genus Gramineae, such as plants of the genus Phyllostachys such as Moso bamboo and Madake, Sasa genus such as Kumazasa, Oryza genus such as rice, and Zea genus such as corn. In particular, plants belonging to the genus Phyllostachys, such as Moso bamboo and Madake, are suitable. However, as long as it contains the compound 1 and / or the compound 2 of the present invention, it may be a plant of another family. Among the plant bodies of these plants, a portion containing a large amount of compound 1 and / or compound 2 is a portion containing a large amount of chlorophyll, and is mainly a leaf, a stem or the like. These plants are harvested at the time when the compound content is highest. That is, although the site and timing of a large amount of the present compound vary depending on the plant, in general, the site and timing where metabolism of chlorophyll, which is the parent of compound 1 and / or compound 2 of the present invention, is active is desirable. Will be harvested.
In the present invention, the plant thus harvested is extracted with water or an organic solvent. As the organic solvent, methanol, ethanol, ethyl acetate, chloroform or the like is used. Such a crude extract can be appropriately concentrated and diluted as it is as long as it does not contain a toxic component. However, when it is better to purify and use the active substance, Compound 1 or Compound 2, it is preferable to use silica gel column chromatography. It can be purified by known means such as chromatography, reverse phase column chromatography, preparative thin layer chromatography and the like.
[0009]
Compounds 1 and 2 purified by the above method are dissolved in a solvent such as water or ethanol, or suspended in water containing a surfactant such as an appropriate phospholipid and used as a photosensitizer applied to a living body. .
That is, Compounds 1 and 2 of the present invention both have an absorption maximum of the Q band at 668 nm in the UV spectrum, which is higher than that of photofrin (625 nm) which has been conventionally used as a photosensitizer for photodynamic therapy. It is much longer in the wavelength region, and has an absorption maximum in the longer wavelength region than chlorin e6 (654 nm), which is conventionally considered to have the absorption maximum in the longest wavelength region. Therefore, Compounds 1 and 2 of the present invention show photosensitization to light in a wavelength region with higher tissue permeability than those of photosensitizers used in these conventional photodynamic therapies. By irradiation with light in a long wavelength region, cancer tissue or cancer cells at a deeper site can be effectively killed. In particular, among the compounds of the present invention, compound 1 is a novel compound not described in the literature, and has extremely remarkable tumor cell killing properties as a photosensitizer for photodynamic therapy.
[0010]
Next, the usage of the compound of the present invention will be described, but it is basically the same as the usage of the photosensitizer in the conventional photodynamic therapy.
The compounds 1 and 2 of the present invention are dissolved in the above-mentioned solvent and administered to a living body by intravenous injection, and these compounds accumulate in tumor tissues and cells due to their selective affinity for tumor cells.
Next, light irradiation is performed on the tumor tissue or cell. In the light irradiation, light is irradiated on the tumor tissue or cell directly or through a waveguide (optical fiber).
As a light source to be used, for example, a white fluorescent lamp, a semiconductor laser (670 nm), a YAG-OPO laser (a variable wavelength of 620 to 670 nm), a Nd / YAG laser, a halogen lamp, a diode array, and a xenon arc lamp ( Xenon arc lamp).
The compounds 1 and 2 of the present invention accumulated in the tumor are excited by this light irradiation to cause a photochemical reaction, whereby active oxygen is produced in the tumor tissue. Reactive oxygen causes necrosis in tumor cells, activates caspase 3 through the release of cytochrome c from mitochondria, induces apoptosis, and causes tumor necrosis. In a killing test of cancer cells using Compounds 1 and 2 of the present invention, it has been confirmed that light irradiation increases caspase activity in cancer cells and causes apoptosis.
[0011]
Hereinafter, the present invention will be described in more detail with reference to examples.
【Example】
Example 1 Preparation of bamboo leaf extract
Moso bamboo leaves collected in October were shaded for 20 days to obtain 500 g of dried leaves. This was immersed in about 10 liters of methanol, treated with a homogenizer, and left in a dark place for 10 days. The extract from which the leaves were removed by filtration was concentrated with a rotary evaporator to obtain 105 g of an oily residue. This 104 g was mixed with 200 ml of ethyl acetate in one-tenth portions and stirred for 30 minutes. After standing, the supernatant was obtained by decantation. All supernatants were combined and concentrated on a rotary evaporator to give 28 g of an oily residue.
[0012]
Example 2 Purification of Compound 1 by Chromatography
5 g of the ethyl acetate extract (oil residue) obtained in Example 1 was dissolved in a small amount of a mixture of hexane and ethyl acetate, and the mixture was dissolved in a small amount of a mixture of hexane and ethyl acetate. 3 ) And adsorbed. A mixture of hexane and ethyl acetate in a ratio of 5: 1, 3: 1, 2: 1, 1: 1 was passed through each 600 ml, and the eluate was fractionated by 60 ml. The fractions eluted with a mixture of hexane: ethyl acetate = 3: 1 were combined, and concentrated by a rotary evaporator. This operation was repeated for four columns to obtain a total of 6 g of concentrated residue.
A silica gel column (60 cm) in which 2 g of the above concentrated residue (6 g) was packed with benzene. 3 ) Is adsorbed on the top, and 240 ml of a solution obtained by mixing benzene and ethyl acetate at a ratio of 20: 1, 10: 1, 8: 1, 6: 1, 3: 1, and 1: 1 is passed, and the eluate is 30 ml. Fractionated one by one. Fractions eluted with a 10: 1 to 6: 1 benzene / ethyl acetate mixture were combined and concentrated on a rotary evaporator. This operation was repeated for three columns to obtain a total of 0.8 g of concentrated residue.
[0013]
A silica gel column (30 cm) in which 0.2 g of the concentrated residue 0.8 g was filled with benzene. 3 ) And adsorbed on the top of the mixture, and mixed with benzene and ethyl acetate at a ratio of 100: 1, 50: 1, 30: 1, 20: 1, 10: 1, 8: 1, 5: 1, 1: 1 in 120 ml portions. And the eluate was fractionated in 20 ml portions. Fractions eluted with a 30: 1 to 10: 1 benzene / ethyl acetate mixture were combined and concentrated on a rotary evaporator. This operation was repeated four times to obtain a total of 200 mg of concentrated residue.
A column of Wakogel LP-60C18 (15 cm) was prepared by dissolving 40 mg of the concentrated residue (200 mg) in a small amount of acetonitrile and packing with a mixture of water and acetonitrile (2: 1). 3 ), Then water and acetonitrile are 2: 1, 1: 1, 1: 2, 1: 2.5, 1: 3, 1: 4, 1: 5, 1: 6, 1: 8, 1 : 20, 1:40, 1:80, and 0: 100 were mixed in 30 ml portions, and the eluate was fractionated in 8 ml portions. Fractions eluted with a 1: 3 to 1: 5 water / acetonitrile mixture were combined and concentrated on a rotary evaporator. This operation was repeated five times to obtain 20 mg of a residue.
[0014]
A silica gel column (12 cm) in which half of the concentrated residue was packed with hexane 3 ) And hexane and ethyl acetate in a ratio of 4: 1, 3.5: 1, 3: 1, 2.5: 1, 2: 1, 1.5: 1, and 1: 1 The eluate was fractionated by 4 ml each by flowing 20 ml of the solution thus obtained. The fractions eluted with the 2.5: 1 to 1.5: 1 mixture were combined and concentrated on a rotary evaporator. The other half of the residue was treated in the same manner, and the combined concentrated residue was dried with a vacuum pump to obtain 4.0 mg of compound 1 as a gray-green gum. Compound 1 thus obtained was prepared by TLC (silica gel 60 F). 254 , 0.25 mm, developed with hexane / ethyl acetate = 1: 1). f A single compound of 0.30 was determined, indicating that the compound was a single compound.
This compound showed prominent peaks at m / z 653 and m / z 675 in FAB-MS, and [M + 1] respectively. + , [M + Na] + The peak was determined. Also, in ESI-MS, [M + 1] was found at m / z 653.4. + The peak determined to be The UV spectrum showed absorption maxima at 398, 496, 527, 611, and 668 nm in ethyl acetate. The molar extinction coefficient is 1.25 × 10 in this order. 5 , 1.11 x 10 4 , 7.91 x 10 3 5.54 x 10 3 4.51 x 10 4 Met. Based on this UV spectrum data, the compound was estimated to be related to chlorophyll. 1 H-NMR and Thirteen C-NMR spectra were measured and compared with literature data for known chlorophyll-related compounds. This comparison is shown in Tables 1 and 2.
[0015]
[Table 1]
Table 1 1 H-NMR (400/500 MHz, CDCl 3 ) Comparison of data (number is chemical shift, ppm)
Figure 2004217541
[0016]
[Table 2]
Table 2 Thirteen C-NMR (400 MHz, CDCl 3 ) Data comparison
(The figures are chemical shifts, ppm)
Figure 2004217541
Literature values are given by Takashima et al. , (Chem. Lett., 1995, 1015-1016).
* Not detected.
[0017]
As can be seen from the above table, the NMR spectrum of this compound is shown by Ma et al. (Ma L. and Dolphin D., J. Org. , Yoshida M., Abe J., and Murai A., Chem. Lett., 1015-1016, 1995), 18-carboxy-20- (1,1-dihydroxy-2-methoxy-2-oxoxy). ) -8-Ethenyl-13-ethyl-2,3-dihydro-3,7,12,17-tetramethyl-22H, 24H-porfine-2-propanoic acid δ-lactone methyl ester It was well agreed with the spectrum, and it was concluded that the difference was that it was an ethyl methyl ester rather than a dimethylester. Thus, the molecular formula of this compound is C 37 H 40 N 4 O 7 However, this formula quantity (652.736) agrees well with the above-mentioned mass spectrum data. further 1 When the H-NMR was analyzed in detail, it was found that the signal of the 2-position proton appeared separately at 4.095 ppm and 4.99 ppm (integration curve ratio 6.15: 1.01). This has already been pointed out by Ma et al. 1 The hydroxyl group at the position is epimerized due to the semiketal structure, 1 -(S) body (main component) and 20 1 This is because a diastereomer mixture of-(R) -form (subcomponent) is obtained. Therefore, the compound 1 of the present invention has a δ-lactone ethyl methyl ester of 20 1 -(S) body and 20 1 It is concluded that the mixture of (R) -forms is 6: 1. The present compound 1 is a novel compound not described in the literature, and the cell killing effect by photosensitization was first clarified, including the above-mentioned Ma et al. And Takashima et al.'S dimethyl ester and monomethyl ester20. 1 -Hydroxypurpurin-7 δ-lactone porphyrin derivative.
[0018]
Example 3 Purification of Compound 2 by Chromatography
2 g of the ethyl acetate extract (oil residue) obtained in Example 1 was dissolved in a small amount of a mixed solution of hexane and ethyl acetate, and a silica gel column (65 cm) filled with hexane was used. 3 ) And adsorbed. Hexane and ethyl acetate were combined at 80: 1, 60: 1, 40: 1, 20: 1, 10: 1, 8: 1, 6: 1, 4: 1, 2: 1, 1: 1, 1: 2,
150 ml of a solution mixed at 1: 5, 1: 6, 1:50 and 0: 1 was applied, and the eluate was fractionated in 20 ml. The fractions eluted with a mixture of hexane: ethyl acetate 4: 1 to 1:50 were combined and concentrated on a rotary evaporator. This operation was performed for four columns to obtain a total of 3 g of concentrated residue.
A silica gel column (30 cm) in which 0.5 g of the above concentrated residue (3 g) was filled again with hexane. 3 ), And hexane and ethyl acetate in a mixture of 3: 1, 2.5: 1, 2: 1, 1.5: 1, 1: 1, and 1: 1.5 in a mixture of 120 ml each. The eluate was fractionated in 15 ml portions. Fractions eluted with a 2.5: 1 to 1.5: 1 hexane / ethyl acetate mixture were combined and concentrated on a rotary evaporator. The above operation was repeated six times to obtain a total of 500 mg of a concentrated residue.
[0019]
The concentrated residue was applied to preparative TLC (silica gel, 1 mm thick, 20 × 20 cm), and mixed with hexane / ethyl acetate 3: 1 twice, 3: 2 3 times, and 1: 1. The mixed solution was developed once and a total of six times. Finally R f The silica gel in the 0.6 green zone was scraped off and extracted with ethyl acetate.
8 mg of an oily residue obtained by concentrating the extract was packed in a silica gel column (10 cm 3 ) And adsorbed. 30 ml of a solution of hexane and ethyl acetate mixed at 3: 1, 3: 1.5, 3: 2, and 0: 1 was flowed, and the eluate was fractionated by 5 ml. The fractions eluted with a mixture of hexane: ethyl acetate 3: 1.5 were combined, concentrated on a rotary evaporator and dried on a vacuum pump to give 2.0 mg of compound 2 as a gray-green gum. This compound is obtained by TLC (silica gel 60 F) 254 , 0.25 mm, developed with hexane / ethyl acetate = 3: 2). f A single compound was determined from the single spot of 0.53.
[0020]
This compound shows prominent peaks at m / z 903 and m / z 925 in FAB-MS, and each peak is [M + 1]. + , [M + Na] + The peak was determined. The UV spectrum showed absorption maxima at 398, 496, 527, 611, and 668 nm in ethyl acetate, much like compound 1 described above. The molar extinction coefficient was 1.19 × 10 in this order. 5 , 1.21 x 10 4 , 7.27 x 10 3 5.05 x 10 3 , 4.29 x 10 4 Met. From this UV spectrum data, the present compound was also estimated to be related to chlorophyll. 1 H-NMR and Thirteen C-NMR spectra were measured and compared with literature data of known chlorophyll-related compounds and the spectra of compound 1 described above. This comparison is shown in Table 1 above and Table 3 below.
[0021]
[Table 3]
Table 3 Thirteen C-NMR (270 MHz, acetone-d 6 ) Data comparison
(The figures are chemical shifts, ppm)
Figure 2004217541
18 2 -(R) -Chla data was obtained from Hyvaerinen et al. (Mag. Res. Chem.,
33, 646-656 (1995)). However, the numbering of the table is
According to the Chemical Abstract system.
* Not detected.
[0022]
According to this, it was found that Compound 2 had a structure in which the ethyl ester of Compound 1 was substituted with phytyl ester. Thus, the molecular formula of this compound is C 55 H 74 N 4 O 7 Where the formula quantity (902.5557) matches well with the mass spectrum data described above. further 1 When the H-NMR was analyzed in detail, it was recognized that the signal of the 2-position proton appeared separately at 4.06 ppm and 4.96 ppm (integration curve ratio: 8.7: 1.4). Therefore, compound 2 of the present invention is 18-carboxy-20- (1,1-dihydroxy-2-methoxy-2-oxoethyl) -8-ethynyl-13-ethyl-2,3-dihydro-3,7,12, 20 of 17-tetramethyl-22H, 24H-porphine-2-propanoic acid δ-lactone phytyl ester 1 -(S) body and 20 1 It is concluded that the (R) form is a 6: 1 mixture of diastereomers. In addition, Gandul-Rojas et al. (Gandul-Rojas B., Gallardo-Guerrero L., Minguez-Mosquera M., Journal of Food Protection, Compounds 62 (10) and 1172-1177 of Olives from 1921 to 1177) are the same as Olive (1919). Although it is described as having been obtained, it is determined based only on the UV and MS spectra. 1 H-NMR and Thirteen This is the first report in which a C-NMR is measured and the structure is strictly confirmed.
[0023]
Embodiment 4
Human leukemia cell line U-937 was cultured in RPMI-1640 medium containing 10% fetal calf serum at 1 × 10 6 6 The cells were suspended at a ratio of cells / ml and placed in two wells of a 12-well cell culture plate in an amount of 0.8 ml. The sample was dissolved in ethanol containing 20% acetone, diluted appropriately, and added to the above 0.8 ml cell culture solution in 8 μl portions. At this time, it was similarly added to both of the two plates. One plate was wrapped with aluminum foil after addition of the sample, and placed in a carbon dioxide gas incubator. The other plate was incubated for 5 hours, and then immediately under 10 cm (about 2000 lux, 0.24 mW / cm) of a fluorescent lamp (neutral white made by NEC, 20 type, 18 W, FL20SSN / 18). 2 ) For 10 minutes, and then returned to the incubator to continue the culture. Six hours later, the cells were observed with a phase-contrast microscope, and if necrosis was observed, it was confirmed by trypan blue staining.
[0024]
The results are shown in FIGS. In FIG. 1, A is a control, B and C are compounds 1 at a concentration of 1 μM, and D and E are a standard photosensitizer, PPBMe (pyropheophorbide methyl ester, Frontier Scientific Inc. (Utah). (U.S.A., USA) was added at a concentration of 1 μM. After the sample addition, B and D were irradiated with light as described above, and C and E were cultured without light. In FIG. 1, B shows an image of necrosis under a phase contrast microscope, and thus each of the wells A to E was stained with trypan blue. Only B (compound 1 added, light irradiation) shows that all the cells are stained blue and necrosis is occurring. On the other hand, PPBMe hardly causes necrosis even when irradiated with light (D in FIG. 1). FIG. 2 is a phase contrast micrograph. In this figure, A is a control, B and C were added with Compound 1 at a concentration of 0.3 μM, and D and E were added with PPBMe at a concentration of 0.3 μM. After the sample addition, B and D were irradiated with light as described above, and C and E were cultured without light. In FIG. 2B (addition of 0.3 μM compound 1, light irradiation), it can be seen that most of the cells are fragmented and apoptosis has occurred. On the other hand, in FIG. 2D (0.3 μM PPBMe, light irradiation), the number of fragmented cells is small. In all cases, apoptosis did not occur and necrosis hardly occurred without light irradiation (FIGS. 1C and E and FIGS. 2C and E). As described above, Compound 1 of the present invention induces necrosis by light irradiation at a concentration of about 1 μM, and induces apoptosis by light irradiation at a concentration of about 0.3 μM, and shows a stronger activity than the standard PPBMe in any case. .
[0025]
Embodiment 5
1 x 10 U-937 cells 6 The cells were suspended in the above medium at a ratio of cells / ml, and 0.8 ml was added to each well of a 12-well cell culture plate. Then, 8 μl of a 20% acetone / ethanol solution in which Compound 1, Compound 2 of the present invention, or PPBMe as a standard photosensitizer was dissolved at a concentration of 1, 0.1, 0.03 or 0.01 mM was added. And shaken the plate to mix well. As a control, 8 μl of the solvent containing no sample was added. Prepare two plates for each sample, incubate one without light irradiation, and place the other one under fluorescent light for 10 minutes after 5 hours of pre-incubation as in Example 1, and after light irradiation Return to the incubator and continue the culture. After 7 hours, cells were collected by centrifugation and washed with ice-cold PBS (phosphate buffered salt solution). Next, the activity of caspase-3, which is an indicator of apoptosis, was measured by a known method (Yamazaki Y. et al., Exp. Cell Res., 259, 64-78 (2000)). The results are shown in FIG. 3, where compound 1 activates caspase and induces apoptosis only when exposed to light, and its activity is remarkably stronger compared to the same concentration of PPBMe, especially at low concentrations (0.1 μM ) Indicates that it is more than 40 times stronger (compare by subtracting the background without light irradiation). Compound 2 is also weaker than compound 1, but also activates caspase when exposed to light. (The data in FIG. 3 is shown as the average value and standard deviation of three times.)
[0026]
Embodiment 6
The human colon cancer cell line Colo320DM was cultured in RPMI-1640 medium containing 10% FBS, and 3 × 10 5 The cells were suspended in the same medium at a ratio of cells / ml. Each 0.1 ml of the solution was placed in each well of a 96-well plate, cultured for 3 days, and adhered to the bottom of the well. Next, 1 μM (B, F), 0.1 μM (C, G), 1 μM of PPBMe (D, H), and only the solvent (A, E) were added in the same manner as in Example 4. At this time, two plates were prepared, samples (A, B, C, D) were added to one plate, and samples (E, F, G, H) were added to the other plate. Thereafter, after pre-incubation for 6 hours, one plate (samples A, B, C, and D) was irradiated with light for 15 minutes (A, B, C, and D), and the other plate (samples E, F, and D) was irradiated. G, H) were cultured for another 24 hours without light irradiation. Next, the medium was removed by suction with a pipette, and 0.1 ml each of a 4% formalin solution (10% solution was diluted with PBS) was added, and the mixture was left on ice for 15 minutes. After removing the formalin solution and washing once with ice-cold PBS, 0.1 ml of PBS containing 0.5% Tween 20 and 0.2% bovine serum albumin was added and left at room temperature for 10 minutes. The treatment solution was discarded, washed with SSC (X2) solution, and then washed three times with PBS. DNA fragmentation was detected by the TUNEL method using an in situ apoptosis detection kit from Promega. That is, a biotin-linked nucleotide is introduced into a DNA stump with a TdT enzyme, avidin bound with horseradish peroxidase (HRP) is bound to the biotin, and finally hydrogen peroxide and a dye precursor are caused to act on the HRP. A chromogenic reaction was performed, and the nuclei from which DNA had fragmented due to apoptosis were stained brown. The results are shown in FIG. 4, and it can be seen that almost all of the cells (B) treated with 1 μM of compound 1 and subjected to light treatment undergo apoptosis. Under the same conditions, 1 μM PPBMe did not completely advance DNA fragmentation (D). Furthermore, Compound 1 induced apoptosis by light irradiation even at a concentration of 0.1 μM (C). In all cases, brown cells were hardly detected without light irradiation (F, G, H). Thus, Compound 1 induces apoptosis of Colo320DM cells more strongly than PPBMe under light irradiation.
[0027]
Embodiment 7
Colo320DM cell suspension (3 x 10 5 Per ml) was placed in a well of a 12-well plate in an amount of 0.8 ml and cultured for 3 days. Next, compound 2 was added at a concentration of 10 and 0.1 μM, and PPBMe was added at a concentration of 0.1 μM to the cell suspension in each well in the same manner as in Example 5; After culturing for 18 hours, cells were scraped off with a scraper for each well and collected. After washing with ice-cold PBS, the activity of caspase-3 was measured as described above. The results are shown in FIG. 5, where 10 μM of Compound 2 activates caspase more strongly than 0.1 μM of PPBMe. (Data are shown as the mean and standard deviation of two experiments.)
[0028]
Embodiment 8
The human colon cancer cell line HT-29 was cultured in McCoy'5A medium containing 10% FBS, inoculated on a 12-well plate in the same manner as in Example 7, and compound 1 was added at a concentration of 1 μM and 0.1 μM. Addition, preculture and light irradiation were performed respectively. At this time, preculture and light irradiation were similarly performed using the compound without addition of compound 1 as a control. After 24 hours, the cells were collected with a scraper, washed with PBS, and then disrupted with a 0.1 M phosphate buffer containing 0.5% Triton X100 to extract DNA. The extract was treated with RNase and proteinase K, agar gel electrophoresis was performed, and DNA was detected with ethidium bromide. FIG. 6 shows the results.
In FIG. 6, lane 1 shows a molecular weight marker, lane 2 shows a control, lane 3 shows a result of adding compound 1 at a concentration of 1 μM, and lane 4 shows a result of adding compound 1 at a concentration of 0.1 μM.
According to this, it was confirmed that in cells irradiated with light after adding compound 1, small-sized DNA fragments increased and apoptosis was progressing.
[0029]
Embodiment 9
The human sarcoma cell line HT-1080 was cultured in DMEM medium containing 10% FBS, and 2 × 10 5 Each of the suspensions was dispersed in a 96-well plate at 0.1 ml / ml. As in Example 4, Compound 1 was added at a concentration of 1 μM, precultured, and irradiated with light. After culturing for 16 hours, the cells were fixed with 4% formalin, the cell nucleus was stained with Sytox (10 μM, Molecular Probes), and a fluorescence microscope was used. Was observed. FIG. 7 shows the results. In addition, A in the figure is a control (no compound 1 added). B shows the case where compound 1 (1 μM) was added and irradiated with light, and C shows the case where compound 1 (1 μM) was added and the cells were cultured in the light-shielded state. As shown in B, the nuclei aggregated and fragmented only when compound 1 was added and irradiated with light, confirming that apoptosis was induced.
[0030]
Embodiment 10
HT-1080 cells at 1 × 10 6 Each was inoculated in a 12-well plate together with 1 ml of the medium, and the methanol extract (crude extract) of the bamboo leaves obtained in Example 1 was added at a concentration of 1, 0.1 and 0.01 μg / ml. After irradiation treatment and culturing for 18 hours, the cells were collected in the same manner as in Example 7, and the activity of caspase-3 was measured. As shown in FIG. 8, the crude extract also activated caspases of HT-1080 cells by light irradiation. (Data are shown as the mean and standard deviation of three experiments.)
[0031]
【The invention's effect】
The UV spectrum of the porphyrin derivative of the present invention has an absorption maximum of the Q band at 668 nm, which is longer than that of the conventionally used porphyrin photosensitizers such as photofrin (625 nm) and chlorin e6 (654 nm). Has shifted to Further, in an actual tumor cytotoxicity test, when human leukemia cells and colorectal cancer cells were subjected to drug treatment and light irradiation under the same conditions, Compound 1 of the present invention was obtained from pyropheophorbide which had been conventionally used. It showed strong cytotoxicity. That is, the present invention provides a new naturally-derived porphyrin derivative which exhibits stronger cancer cytotoxicity than conventional photosensitizing porphyrin derivatives for photodynamic therapy.
[0032]
[Brief description of the drawings]
FIG. 1. U-937 cells to which compound 1 (B, C) or PPBMe (D, E) is added at a concentration of 1 μM are irradiated with light using a FL20SSN / 18 fluorescent lamp for 10 minutes (B, D) or not. (C, E) is a micrograph stained with trypan blue after incubation for 6 hours.
[FIG. 2] U-937 cells to which compound 1 (B, C) or PPBMe (D, E) is added at a concentration of 0.3 μM are irradiated with light (B, D) or not as in FIG. (C, E) Photographs observed with a phase contrast microscope after incubation.
FIG. 3: Compound 1, Compound 2 and PPBMe were added to U-937 cells at a concentration of 10, 1, 0.3 or 0.1 μM, and were irradiated without light (black bars) or with a FL20SSN / 18 fluorescent lamp. It is a graph which shows the activity of caspase-3 after irradiation (hatched bar) and incubation for 7 hours.
FIG. 4: Compound 1 [1 μM (B, F) and 0.1 μM (C, G)], PPBMe [1 μM (D, H)], or a solvent without these (A, E) alone was added to Colo320DM cells. After adding, irradiating with a fluorescent lamp (A, B, C, D) or without irradiating (E, F, G, H), the DNA stump is labeled by the TUNEL method, and the HRP reaction (brown) is performed. FIG. 9 is a micrograph detected by the following method.
FIG. 5 shows the activity of caspase-3 after adding compound 2 to Colo320DM cells at a concentration of 10 and 1 μM and PPBMe at a concentration of 0.1 μM, pre-cultivating for 6 hours, irradiating with fluorescent light, and further incubating for 18 hours. It is a graph.
FIG. 6 is an electrophoretic photograph of DNA of HT-29 cells irradiated with light while adding compound 1.
FIG. 7 is a fluorescence micrograph showing that addition of compound 1 to HT-1080 cells and irradiation with light cause condensation and fragmentation of cell nuclei, which are characteristic of apoptosis.
FIG. 8 is a graph showing activation of caspase-3 in HT-1080 cells by bamboo leaf crude extract and light irradiation.

Claims (12)

下記構造式I又は式IIで表される化合物を含有することを特徴とする生体用光増感剤。
Figure 2004217541
Figure 2004217541
Figure 2004217541
Figure 2004217541
A biological photosensitizer comprising a compound represented by the following structural formula I or II.
Figure 2004217541
Figure 2004217541
Figure 2004217541
Figure 2004217541
上記構造式I及び/又は式IIで表される化合物を含む植物の抽出物からなる生体用光増感剤。A biological photosensitizer comprising a plant extract containing the compound represented by the above structural formula I and / or formula II. 植物がイネ科植物である請求項2に記載の生体用光増感剤。The biological photosensitizer according to claim 2, wherein the plant is a gramineous plant. イネ科植物がPhyllostachys属に属する植物である請求項3の生体用光増感剤。4. The biological photosensitizer according to claim 3, wherein the grass is a plant belonging to the genus Phyllostachys. 上記構造式I又はIIで表される化合物を含有することを特徴とする腫瘍細胞殺傷剤。A tumor cell killing agent comprising a compound represented by the above structural formula I or II. 上記構造式I及び/又は式IIで表される化合物を含む植物の抽出物からなる腫瘍細胞殺傷剤。A tumor cell killing agent comprising a plant extract containing the compound represented by the above structural formula I and / or formula II. 植物がイネ科植物である請求項6に記載の腫瘍細胞殺傷剤。The tumor cell killing agent according to claim 6, wherein the plant is a gramineous plant. イネ科植物がPhyllostachys属に属する植物である請求項7に記載の腫瘍細胞殺傷剤。The tumor cell killing agent according to claim 7, wherein the gramineous plant is a plant belonging to the genus Phyllostachys. 上記構造式Iで表される化合物。A compound represented by the above structural formula I. 上記構造式I又はIIで表される化合物を含有する植物から溶媒を用いて抽出することを特徴とする上記構造式I又はIIで表される化合物の製造方法。A method for producing a compound represented by the above structural formula I or II, comprising extracting from a plant containing the compound represented by the above structural formula I or II with a solvent. 植物がイネ科植物である請求項10に記載の製造方法。The production method according to claim 10, wherein the plant is a gramineous plant. イネ科植物が、Phyllostachys属に属する植物である請求項11に記載の方法。The method according to claim 11, wherein the gramineous plant is a plant belonging to the genus Phyllostachys.
JP2003004662A 2003-01-10 2003-01-10 Tumor cytotoxic porphyrin Pending JP2004217541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004662A JP2004217541A (en) 2003-01-10 2003-01-10 Tumor cytotoxic porphyrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004662A JP2004217541A (en) 2003-01-10 2003-01-10 Tumor cytotoxic porphyrin

Publications (1)

Publication Number Publication Date
JP2004217541A true JP2004217541A (en) 2004-08-05

Family

ID=32895580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004662A Pending JP2004217541A (en) 2003-01-10 2003-01-10 Tumor cytotoxic porphyrin

Country Status (1)

Country Link
JP (1) JP2004217541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515007A (en) * 2003-03-27 2006-05-18 ユニジェン インク. Composition containing bamboo extract and compounds isolated therefrom, showing therapeutic and prophylactic activity for inflammatory and blood circulation diseases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515007A (en) * 2003-03-27 2006-05-18 ユニジェン インク. Composition containing bamboo extract and compounds isolated therefrom, showing therapeutic and prophylactic activity for inflammatory and blood circulation diseases
JP4684893B2 (en) * 2003-03-27 2011-05-18 ユニジェン インク. Bamboo extract showing a therapeutic and preventive activity for inflammatory and blood circulation diseases and a composition containing a compound isolated therefrom

Similar Documents

Publication Publication Date Title
Zhenjun et al. Hypocrellins and their use in photosensitization
Chen et al. Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT)
DK2346874T3 (en) Process for the preparation of chlorines and their pharmaceutical applications
RU2250905C2 (en) Transesterification method for production of synthetic chlorophyll or bacteriochlorophyll derivatives
JP5955559B2 (en) Application of asymmetric meso-substituted porphyrins and chlorins to PDT and a new method
Serra et al. New porphyrin amino acid conjugates: Synthesis and photodynamic effect in human epithelial cells
JP2010254696A (en) Molecular conjugate for use in treatment of cancer
US4861876A (en) Hematoporphyrin derivative and method of preparation and purification
CA2353554C (en) Palladium-substituted bacteriochlorophyll derivatives and use thereof
CZ304591B6 (en) Photosensitizer and process for preparing thereof
JP2019533635A (en) Novel dihydroporphine e6 derivative and pharmaceutically acceptable salt thereof, preparation method and use thereof
WO2003008430A2 (en) Porphyrin derivatives for photodynamic therapy
US20230075925A1 (en) Non-peripheral quaternary ammonium-modified zinc phthalocyanine and preparation method and use thereof
Pratavieira et al. Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies
JP5290142B2 (en) Novel sugar-linked chlorin derivatives
CN103435639B (en) Silicon phthalocyanine of the asymmetric modification of a kind of axial nucleosides and its preparation method and application
CN104844645B (en) A kind of silicon phthalocyanine of axial ALA modifications and its preparation method and application
RU2670087C1 (en) Photosensitizer for photodynamic therapy of prostate cancer and method fr manufacturing thereof
RU2007109602A (en) IMPROVED PHOTOSENSIBILIZER COMPOSITIONS AND THEIR APPLICATION
Tang et al. Cyclic tetrapyrrolic photosensitizers from Cladophora patentiramea (Cladophoraceae, Chlorophyta) and Turbinaria conoides (Sargassaceae, Phaeophyta) for photodynamic therapy
Zhang et al. Antitumor activity evaluation of meso-tetra (pyrrolidine substituted) pentylporphin-mediated photodynamic therapy in vitro and in vivo
Cañete et al. Necrotic cell death induced by photodynamic treatment of human lung adenocarcinoma A-549 cells with palladium (II)-tetraphenylporphycene
JP2004217541A (en) Tumor cytotoxic porphyrin
Fadda et al. Utility of dipyrromethane in the synthesis of some new A2B2 porphyrin and their related porphyrin like derivatives with their evaluation as antimicrobial and antioxidant agents
CN114045045A (en) Single-photon up-conversion pentamethine cyanine photosensitive dye, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120