JP2004217437A - Method for drawing out molten glass - Google Patents

Method for drawing out molten glass Download PDF

Info

Publication number
JP2004217437A
JP2004217437A JP2003003545A JP2003003545A JP2004217437A JP 2004217437 A JP2004217437 A JP 2004217437A JP 2003003545 A JP2003003545 A JP 2003003545A JP 2003003545 A JP2003003545 A JP 2003003545A JP 2004217437 A JP2004217437 A JP 2004217437A
Authority
JP
Japan
Prior art keywords
molten glass
glass
heat insulating
insulating material
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003545A
Other languages
Japanese (ja)
Inventor
Mitsuru Taniguchi
充 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Paramount Glass Manufacturing Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Nittobo Togan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Nittobo Togan Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2003003545A priority Critical patent/JP2004217437A/en
Publication of JP2004217437A publication Critical patent/JP2004217437A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost, simple work method for drawing out molten glass. <P>SOLUTION: In a glass melting furnace in which a flow down hole 13 for drawing out molten glass is formed at its bottom part, a heat insulating material 24 is applied to an opening part 23 where is located at the lower part of the flow down hole 13 and plugged with the solidified glass 28 formed by cooling and solidifying the molten glass 12, and the heat insulating material 24 is held so that it can be removed by the weight of molten glass 12 which is formed when the solidified glass 28 is melted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス溶融炉から溶融ガラスを引き出す溶融ガラス引き出し方法に関する。
【0002】
【従来の技術】
従来、溶融ガラスをガラス溶融炉から引き出す方法としては、昇降可能な棒状の攪拌弁が勘合されることにより閉塞したノズルの開口部において、攪拌弁を上昇させることにより開口部を開放し溶融ガラスを流下させる方法が知られている(例えば、特許文献1参照)。
【0003】
また、自然冷却により固化したガラスで閉塞された流下ノズルを加熱コイルで加熱することにより、固化ガラスを溶融させ溶融ガラスを流下させる方法が知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平6−166521号公報
【特許文献2】
特開平10−17329号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の方法では、攪拌弁を昇降させる必要があるため面倒である。また、開口部の開閉を繰り返すことによって攪拌弁などの部材に摩耗や変形が生じるため、修理や交換などの維持管理によるコストがかかってしまう。
【0006】
また、特許文献2に記載の方法では、流下ノズルの加熱を行わなければならないため面倒であると共に、加熱コイルや電源設備などの設備コストがかかってしまう。また、加熱コイルや電源設備などは、点検修理が必要となるため、維持管理のためのコストもかかってしまう。
【0007】
本発明の目的は、低コストかつ作業が簡単な溶融ガラス引き出し方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、底部に溶融ガラス引き出し用の流下孔が形成されたガラス溶融炉から溶融ガラスを引き出す溶融ガラス引き出し方法であって、溶融ガラスが冷却固化してなる固化ガラスによって閉塞された流下孔の下部に位置する開口部に断熱材をあてがい、断熱材を固化ガラスが溶融してなる溶融ガラスの重みによって離脱可能に支持することを特徴とするものである。
【0009】
本発明に係る溶融ガラス引き出し方法によれば、固化ガラスによって閉塞された流下孔の開口部に断熱材をあてがうことにより、断熱材の断熱効果で流下孔内の温度が上昇する。これにより、流下孔内の固化ガラスは徐々に溶融され、流動性を持った溶融ガラスとなる。
【0010】
この溶融ガラスは、ガラス溶融炉内の溶融ガラスと共に流下孔を流下し、開口部にあてがわれた断熱材を下方に押して断熱材を開口部から引き離す。これにより開口部が開放され、溶融ガラスが開口部から流出可能となり、ガラス溶融炉から溶融ガラスが引き出される。
【0011】
いったん流下し始めた溶融ガラスは、自然冷却力よりも熱容量が大きいため、冷却固化されることなく連続して流下する。やがて、溶融ガラスの引き出しが進み、ガラス溶融炉内の溶融ガラス量が少なくなると、溶融ガラスの熱容量よりも自然冷却力の方が大きくなり、流下孔内の溶融ガラスが冷却固化されて流下孔が再び閉塞される。
【0012】
以上のように、本発明に係る溶融ガラス引き出し方法は、流下孔に断熱材をあてがい、この断熱材を溶融ガラスの重みによって離脱可能に支持するだけでよいため、大がかりな設備や器材が不要となる。従って、低コストかつ簡単な作業でガラス溶融炉から溶融ガラスを引き出すことができる。
【0013】
【発明の実施の形態】
図1は、本実施形態に係る溶融ガラス引き出し方法に用いられるガラス溶融炉の一例を示す概略図である。同図において、ガラス溶融炉1は、ガラスウール製造工場などで発生したガラスウール廃材を加熱溶融してガラスを得るものである。
【0014】
ガラス溶融炉1は、第1加熱室2と、第1加熱室2に並設された第2加熱室3とを備えている。第1加熱室2での処理によって溶解されたガラスウール廃材4は、第1加熱室2から第2加熱室3に流入するようになっている。
【0015】
第1加熱室2は、発熱機能を有する加熱部5を側壁の上部付近に備えている。また、第1加熱室2の側壁には、ガラスウール廃材4が投入される開口部6が形成されている。この開口部6は、ガラス溶融炉1が稼働中のとき、ガラス溶融炉1の外壁に取り付けられた開閉扉7によって封止される。更に、第1加熱室2の上部には、第1加熱室2内に発生したガスを排出する排気口9が形成されている。
【0016】
第2加熱室3は、第1加熱室2と同様に、加熱部10と排気口11とを備えている。また、第2加熱室2の底部には、溶融状態のガラス(以下、溶融ガラスという。)12をガラス溶融炉1の外部に引き出すための流下孔13が形成されている。第2加熱室3の下方には、水槽14が設置されている。
【0017】
このようなガラス溶融炉1によってガラスウール廃材4からガラスを得る場合の概要は、第1加熱室2に投入したガラスウール廃材4を加熱して溶融状態とし、その後、第2加熱室3へと流入した溶融状態のガラスウール廃材4を更に加熱する。これにより、ガラスウール廃材4から有機物が除去された溶融ガラス12を得ることができる。
【0018】
その後、第2加熱室3で生成された溶融ガラス12を第2加熱室3の流下孔13から引き出して水槽14に投入する。水槽14に流下した溶融ガラス12は、急冷されて水砕ガラスとなり、ガラス原料として再利用することができる。
【0019】
図2は、図1に示す第2加熱室3の底部を示す部分断面図である。同図において、第2加熱室3の底部に位置する底壁20の外面には、凹部21が形成されている。そして、底壁20には、第2加熱室3の内壁面と凹部21の上面とで開口し、底壁20を貫通する流下孔13が形成されている。流下孔13は、溶融ガラス12が冷却されてなる固化ガラス28によって閉塞される。
【0020】
流下孔13の上部に位置する開口部22は、下部に位置する開口部23よりも開口面積が大きく形成され、溶融ガラスの流下する方向に向かうに従って流下孔13の開口面積が小さくなっているのが望ましい。これにより、第2加熱室3内の溶融ガラス12の重力圧力によって、流下孔13を閉塞する固化ガラス28が下方に抜け落ちるのを防止することができる。尚、開口部23の開口面積は、例えば、直径100mmの円の面積に相当する程度である。
【0021】
底壁20の外面における凹部21付近には、支持部材25が取り付けられている。支持部材25は、支持本体部材26とクランプ部材27とから構成されている。
【0022】
支持本体部材26は、複数のフレーム部材26a〜26bから構成された枠体構造を有している。フレーム部材26cは、ヒンジ30を介して底壁20の外面に取り付けられている。フレーム部材26cに対向して配されるフレーム部材26aは、クランプ部材27に着脱可能に係止される。また、支持本体部材26には、棒材31が取り付けられている。この棒材31を掴んで支持本体部材26を底壁20に対して略水平な状態まで移動させることができる。
【0023】
フレーム部材26aがクランプ部材27に係止されている場合、支持本体部材26は底壁20に対して略平行な状態となる。一方、フレーム部材26aがクランプ部材27に係止されていない場合、支持本体部材26は、図2に示すように、底壁20に対して略垂直な状態となる。
【0024】
次に、以上のようなガラス溶融炉1における第2加熱室3からの溶融ガラス12の引き出し方法について、図2〜図6を参照して具体的に説明する。
【0025】
まず、図2に示す状態において、開口部23に断熱材24をあてがう。そして、支持本体部材26を底壁20に対して略水平な状態とすることにより、断熱材24を凹部21の上面との間に挟み込む。そして、支持本体部材26をクランプ部材27で係止する。図3は、断熱材24が開口部23にあてがわれ、支持部材25によって支持された状態を示す図である。また、図4は、図3に示す第2加熱室3を示す底面図である。
【0026】
図4に示すように、断熱材24は、縁の一部分が支持部材25のフレーム部材26b,26dと凹部21の上面との間に挟み込まれ、開口部23に対応する部分が支持本体部材26の枠内に位置するように配されている。
【0027】
このように開口部23に断熱材24をあてがうことにより、断熱材24の断熱効果で流下孔13内の温度が上昇する。これにより、流下孔13内の固化ガラス28は徐々に溶融され、流動性を持った溶融ガラス12となる。すると、図5に示すように、溶融ガラス12は、第2加熱室3内の溶融ガラス12と共に流下孔13を流下し、開口部23にあてがわれた断熱材24を下方に押して断熱材24を開口部から引き離す。
【0028】
断熱材24は、流下する溶融ガラス12の重みで変形することにより、支持部材25から離脱して下方へと落下する。これにより、図6に示すように、溶融ガラス12が開口部23から流下し、ガラス溶融炉1から溶融ガラス12が引き出される。
【0029】
開口部23から流下し始めた溶融ガラス12は、自然冷却力よりも熱容量が大きいため、冷却固化されることなく連続して流下する。その後、第2加熱室3から溶融ガラス12の大部分が引き出され、第2加熱室3内の溶融ガラス12の量が少なくなると、溶融ガラス12の熱容量よりも自然冷却力の方が大きくなり、流下孔13内の溶融ガラス12が冷却固化される。これにより、流下孔13が再び閉塞され、溶融ガラス12の引き出しが完了する。
【0030】
上述したように、本実施形態に係る溶融ガラス引き出し方法は、大がかりな設備や器材が不要であるため、低コストかつ簡単な作業でガラス溶融炉1から溶融ガラス12を引き出すことができる。
【0031】
尚、断熱材24は、開口部23を完全に覆うほどの面積を有し、溶融ガラス12が流下し始めるまで形状と断熱性を維持できるものであればよい。また、断熱材24は、溶融ガラス12が流下し始める約1000℃程度の温度に対して耐熱性を持ち、且つ不燃性を有するものが望ましい。更に、断熱材24は、溶融ガラス12の流下を妨げるような剛性と強度を持たず、溶融ガラス12の流下に合わせて変形するものが望ましい。
【0032】
また、本実施形態のように、流下した溶融ガラス12を水槽14の中に落として水砕ガラスとし、この水砕ガラスをガラス原料として再利用する場合、断熱材24も溶融ガラス12と共に水槽14中へ落下する。従って、断熱材24もガラス原料として再利用されるため、断熱材24は、溶融ガラス12と同じか或いは近い成分組成のものが好ましく、例えば、グラスウール断熱材、ロックウール断熱材、セラミックウール断熱材などを用いるのが望ましい。
【0033】
以上、本発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、支持部材25は、断熱材24を溶融ガラス12の重みよって離脱可能に支持できるものであればその形態は問わない。
【0034】
【発明の効果】
本発明によれば、低コストかつ作業が簡単な溶融ガラス引き出し方法を提供することができる。
【図面の簡単な説明】
【図1】本実施形態に係る溶融ガラス引き出し方法に用いられるガラス溶融炉の一例を示す概略図である。
【図2】図1に示す第2加熱室の底部を示す部分断面図である。
【図3】断熱材が開口部を閉塞した状態を示す図である。
【図4】図3に示す第2加熱室を示す底面図である。
【図5】溶融ガラスが第2加熱室から引き出される過程を示す図である。
【図6】溶融ガラスが第2加熱室から引き出される過程を示す図である。
【符号の説明】
1…ガラス溶融炉、4…ガラスウール廃材、12…溶融ガラス、13…流下孔、14…水槽、20…底壁、21…凹部、22…開口部、23…開口部、24…断熱材、25…支持部材、26…支持本体部材、27…クランプ部材、28…固化ガラス、30…ヒンジ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for extracting molten glass from a glass melting furnace.
[0002]
[Prior art]
Conventionally, as a method of extracting molten glass from a glass melting furnace, at the opening of the nozzle closed by fitting a vertically movable rod-shaped stirring valve, the opening is opened by raising the stirring valve to release the molten glass. A method of flowing down is known (for example, see Patent Document 1).
[0003]
Further, a method is known in which a downflow nozzle closed with glass solidified by natural cooling is heated by a heating coil to melt the solidified glass and flow down the molten glass (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-6-166521 [Patent Document 2]
JP-A-10-17329
[Problems to be solved by the invention]
However, the method described in Patent Document 1 is troublesome because it is necessary to raise and lower the stirring valve. In addition, repeated opening and closing of the opening causes abrasion and deformation of members such as the stirring valve, and thus costs for maintenance and management such as repair and replacement are required.
[0006]
In addition, the method described in Patent Literature 2 is troublesome because the downflow nozzle must be heated, and requires equipment costs such as a heating coil and a power supply facility. In addition, since the heating coil and the power supply equipment need to be inspected and repaired, the cost for maintenance is also high.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for extracting molten glass which is low cost and simple in operation.
[0008]
[Means for Solving the Problems]
The present invention is a method for drawing molten glass to draw molten glass from a glass melting furnace in which a flow hole for drawing molten glass is formed at the bottom, wherein the flow hole is closed by solidified glass obtained by cooling and solidifying the molten glass. A heat insulating material is applied to an opening located at a lower portion, and the heat insulating material is detachably supported by the weight of the molten glass obtained by melting the solidified glass.
[0009]
According to the molten glass drawing method of the present invention, by applying a heat insulating material to the opening of the flow-down hole closed by the solidified glass, the temperature in the flow-down hole increases due to the heat insulating effect of the heat insulating material. As a result, the solidified glass in the downflow hole is gradually melted, and becomes a molten glass having fluidity.
[0010]
The molten glass flows down the downflow hole together with the molten glass in the glass melting furnace, and pushes down the heat insulating material applied to the opening to separate the heat insulating material from the opening. As a result, the opening is opened, the molten glass can flow out of the opening, and the molten glass is drawn out of the glass melting furnace.
[0011]
The molten glass that has once started to flow has a larger heat capacity than the natural cooling power, and thus flows continuously without being cooled and solidified. Eventually, withdrawal of the molten glass proceeds, and when the amount of molten glass in the glass melting furnace decreases, the natural cooling power becomes larger than the heat capacity of the molten glass, and the molten glass in the downflow hole is cooled and solidified, and the downflow hole is formed. It is closed again.
[0012]
As described above, the method for extracting molten glass according to the present invention requires that a heat insulating material be applied to the downflow hole, and that the heat insulating material be merely detachably supported by the weight of the molten glass, eliminating the need for large-scale facilities and equipment. Become. Therefore, the molten glass can be extracted from the glass melting furnace with low cost and simple operation.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing an example of a glass melting furnace used in the method for drawing molten glass according to the present embodiment. In the figure, a glass melting furnace 1 obtains glass by heating and melting glass wool waste generated at a glass wool manufacturing factory or the like.
[0014]
The glass melting furnace 1 includes a first heating chamber 2 and a second heating chamber 3 provided in parallel with the first heating chamber 2. The glass wool waste material 4 melted by the treatment in the first heating chamber 2 flows from the first heating chamber 2 to the second heating chamber 3.
[0015]
The first heating chamber 2 includes a heating unit 5 having a heating function near the upper part of the side wall. In the side wall of the first heating chamber 2, an opening 6 into which the glass wool waste material 4 is charged is formed. The opening 6 is sealed by an opening / closing door 7 attached to the outer wall of the glass melting furnace 1 when the glass melting furnace 1 is in operation. Further, an exhaust port 9 for discharging gas generated in the first heating chamber 2 is formed in an upper part of the first heating chamber 2.
[0016]
The second heating chamber 3 includes a heating unit 10 and an exhaust port 11 as in the first heating chamber 2. Further, at the bottom of the second heating chamber 2, a flow-down hole 13 for drawing the glass 12 in a molten state (hereinafter, referred to as molten glass) to the outside of the glass melting furnace 1 is formed. A water tank 14 is provided below the second heating chamber 3.
[0017]
An outline of obtaining glass from the glass wool waste material 4 by such a glass melting furnace 1 is as follows. The glass wool waste material 4 charged into the first heating chamber 2 is heated to be in a molten state, and thereafter, is transferred to the second heating chamber 3. The inflowing molten glass wool waste material 4 is further heated. Thereby, the molten glass 12 from which the organic matter has been removed from the glass wool waste material 4 can be obtained.
[0018]
After that, the molten glass 12 generated in the second heating chamber 3 is drawn out from the downflow hole 13 of the second heating chamber 3 and thrown into the water tank 14. The molten glass 12 that has flowed down to the water tank 14 is rapidly cooled to be granulated glass, and can be reused as a glass raw material.
[0019]
FIG. 2 is a partial cross-sectional view showing the bottom of the second heating chamber 3 shown in FIG. In the figure, a recess 21 is formed on the outer surface of the bottom wall 20 located at the bottom of the second heating chamber 3. The bottom wall 20 has a flow-down hole 13 which is open at the inner wall surface of the second heating chamber 3 and the upper surface of the concave portion 21 and penetrates the bottom wall 20. The downflow holes 13 are closed by solidified glass 28 obtained by cooling the molten glass 12.
[0020]
The opening 22 located at the upper part of the flow-down hole 13 is formed to have a larger opening area than the opening 23 located at the lower part, and the opening area of the flow-down hole 13 becomes smaller toward the flowing direction of the molten glass. Is desirable. Thereby, it is possible to prevent the solidified glass 28 that closes the downflow hole 13 from falling down due to the gravitational pressure of the molten glass 12 in the second heating chamber 3. The opening area of the opening 23 is, for example, approximately equivalent to the area of a circle having a diameter of 100 mm.
[0021]
A support member 25 is attached near the recess 21 on the outer surface of the bottom wall 20. The support member 25 includes a support body member 26 and a clamp member 27.
[0022]
The support body member 26 has a frame structure composed of a plurality of frame members 26a to 26b. The frame member 26c is attached to an outer surface of the bottom wall 20 via a hinge 30. The frame member 26a disposed to face the frame member 26c is detachably locked to the clamp member 27. Further, a bar 31 is attached to the support body member 26. The support body member 26 can be moved to a state substantially horizontal to the bottom wall 20 by grasping the bar 31.
[0023]
When the frame member 26 a is locked by the clamp member 27, the support main body member 26 is in a state substantially parallel to the bottom wall 20. On the other hand, when the frame member 26a is not locked by the clamp member 27, the support main body member 26 is substantially perpendicular to the bottom wall 20, as shown in FIG.
[0024]
Next, a method for extracting the molten glass 12 from the second heating chamber 3 in the glass melting furnace 1 as described above will be specifically described with reference to FIGS.
[0025]
First, a heat insulating material 24 is applied to the opening 23 in the state shown in FIG. Then, the heat insulating material 24 is sandwiched between the support main body member 26 and the upper surface of the concave portion 21 by setting the support main body member 26 to be substantially horizontal with respect to the bottom wall 20. Then, the support main body member 26 is locked by the clamp member 27. FIG. 3 is a view showing a state where the heat insulating material 24 is applied to the opening 23 and is supported by the support member 25. FIG. 4 is a bottom view showing the second heating chamber 3 shown in FIG.
[0026]
As shown in FIG. 4, the heat insulating material 24 has a portion of the edge sandwiched between the frame members 26 b and 26 d of the support member 25 and the upper surface of the concave portion 21, and a portion corresponding to the opening 23 of the support body member 26. It is arranged to be located in the frame.
[0027]
By applying the heat insulating material 24 to the opening 23 in this manner, the temperature in the downflow hole 13 increases due to the heat insulating effect of the heat insulating material 24. Thereby, the solidified glass 28 in the downflow hole 13 is gradually melted, and becomes the molten glass 12 having fluidity. Then, as shown in FIG. 5, the molten glass 12 flows down the downflow hole 13 together with the molten glass 12 in the second heating chamber 3, and pushes down the heat insulating material 24 applied to the opening 23 to thereby lower the heat insulating material 24. From the opening.
[0028]
The heat insulating material 24 is detached from the support member 25 and falls downward by being deformed by the weight of the molten glass 12 flowing down. Thereby, as shown in FIG. 6, the molten glass 12 flows down from the opening 23, and the molten glass 12 is drawn out of the glass melting furnace 1.
[0029]
The molten glass 12 that has begun to flow down from the opening 23 has a heat capacity larger than the natural cooling power, and thus flows down continuously without being cooled and solidified. Thereafter, most of the molten glass 12 is withdrawn from the second heating chamber 3, and when the amount of the molten glass 12 in the second heating chamber 3 decreases, the natural cooling power becomes larger than the heat capacity of the molten glass 12, The molten glass 12 in the flow hole 13 is cooled and solidified. Thereby, the downflow hole 13 is closed again, and the drawing of the molten glass 12 is completed.
[0030]
As described above, the molten glass extracting method according to the present embodiment does not require large-scale facilities and equipment, and thus can extract the molten glass 12 from the glass melting furnace 1 with low cost and simple operation.
[0031]
Note that the heat insulating material 24 may have an area enough to completely cover the opening 23 and maintain the shape and heat insulating properties until the molten glass 12 starts flowing down. The heat insulating material 24 preferably has heat resistance to a temperature of about 1000 ° C. at which the molten glass 12 starts flowing down and has nonflammability. Further, it is desirable that the heat insulating material 24 does not have rigidity and strength to prevent the molten glass 12 from flowing down and is deformed according to the flowing down of the molten glass 12.
[0032]
Further, as in the present embodiment, when the molten glass 12 that has flowed down is dropped into a water tank 14 to be granulated glass, and when this granulated glass is reused as a glass raw material, the heat insulating material 24 is also formed together with the molten glass 12 in the water tank 14. Fall inside. Therefore, since the heat insulating material 24 is also reused as a glass raw material, the heat insulating material 24 preferably has a component composition that is the same as or close to that of the molten glass 12, such as glass wool heat insulating material, rock wool heat insulating material, and ceramic wool heat insulating material. It is desirable to use such as.
[0033]
As described above, the present invention has been specifically described based on the embodiments. However, the present invention is not limited to the above embodiments. For example, the form of the support member 25 is not limited as long as the support member 25 can removably support the heat insulating material 24 by the weight of the molten glass 12.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the low-cost and easy operation | work of a molten glass extraction method can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an example of a glass melting furnace used in a method for drawing molten glass according to an embodiment.
FIG. 2 is a partial sectional view showing a bottom of a second heating chamber shown in FIG.
FIG. 3 is a diagram showing a state in which a heat insulating material closes an opening.
FIG. 4 is a bottom view showing a second heating chamber shown in FIG. 3;
FIG. 5 is a diagram showing a process in which molten glass is drawn from a second heating chamber.
FIG. 6 is a diagram showing a process in which molten glass is drawn from a second heating chamber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Glass melting furnace, 4 ... Glass wool waste material, 12 ... Molten glass, 13 ... Downflow hole, 14 ... Water tank, 20 ... Bottom wall, 21 ... Concave part, 22 ... Opening part, 23 ... Opening part, 24 ... Heat insulating material, 25 ... Support member, 26 ... Support body member, 27 ... Clamp member, 28 ... Hardened glass, 30 ... Hinge.

Claims (1)

底部に溶融ガラス引き出し用の流下孔が形成されたガラス溶融炉から溶融ガラスを引き出す溶融ガラス引き出し方法であって、
前記溶融ガラスが冷却固化してなる固化ガラスによって閉塞された前記流下孔の下部に位置する開口部に断熱材をあてがい、
前記断熱材を前記固化ガラスが溶融してなる溶融ガラスの重みによって離脱可能に支持することを特徴とする溶融ガラス引き出し方法。
A molten glass withdrawal method for extracting molten glass from a glass melting furnace in which a downhole for molten glass withdrawal is formed at the bottom,
Applying a heat insulating material to an opening located below the flow-down hole closed by solidified glass obtained by cooling and solidifying the molten glass,
A method for drawing molten glass, wherein the heat insulating material is detachably supported by the weight of the molten glass obtained by melting the solidified glass.
JP2003003545A 2003-01-09 2003-01-09 Method for drawing out molten glass Pending JP2004217437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003545A JP2004217437A (en) 2003-01-09 2003-01-09 Method for drawing out molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003545A JP2004217437A (en) 2003-01-09 2003-01-09 Method for drawing out molten glass

Publications (1)

Publication Number Publication Date
JP2004217437A true JP2004217437A (en) 2004-08-05

Family

ID=32894777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003545A Pending JP2004217437A (en) 2003-01-09 2003-01-09 Method for drawing out molten glass

Country Status (1)

Country Link
JP (1) JP2004217437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104311B2 (en) 2006-05-09 2012-01-31 Johns Manville Rotary fiberization process for making glass fibers, an insulation mat, and pipe insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104311B2 (en) 2006-05-09 2012-01-31 Johns Manville Rotary fiberization process for making glass fibers, an insulation mat, and pipe insulation

Similar Documents

Publication Publication Date Title
CN104475693B (en) The Reduction casting complex method of a kind of large-scale steel ingot and device thereof
JP4190581B2 (en) Improved method and apparatus for dissolving particulate material
MX2008002992A (en) Method and apparatus for removing a fugitive pattern from a mold.
KR100622266B1 (en) Apparatus and Method for The Quantitative Solidification of A Molten Salt by Using A Vacuum Transfer and Dual Vessel
US10914523B2 (en) Plasma furnace having lateral discharge gates
CN101519797B (en) Method for pulling silicon core by crystal crushed material and device for applying same
CN202297866U (en) Argon gas cooling device of polysilicon ingot furnace
JP2004217437A (en) Method for drawing out molten glass
CN106555224A (en) A kind of production method and production equipment of monocrystal silicon
ATE283746T1 (en) METHOD AND DEVICE FOR PRODUCING DIRECTIONALLY SOLIDIZED CASTINGS
KR101913405B1 (en) Former for constructing refractory of melting furnace and method for drying refractory of melting furnace using the same
CN206047012U (en) The device of dewaxing of ceramic shell
CN108213394A (en) A kind of fuel element tube socket casting method
CN211758321U (en) Wax mould dewaxing device
CN106119675A (en) A kind of molybdenum-iron smelting furnace slag-draining device and Slagoff method
CN208223186U (en) A kind of improved tube furnace
CN109175240A (en) A kind of investment casting formwork dewaxing device and investment casting formwork process for dewaxing
CN106542722B (en) Form the method for cleaning of furnace body material
JP4214340B2 (en) Aluminum separation and recovery melting equipment
JPH0619539Y2 (en) Glass melting furnace
CN104478194B (en) The method of core bar is changed in the not blowing out of a kind of continuous induction melting furnace
EP3336855B1 (en) Plasma melting furnace
JP2006275426A (en) Manufacturing method for crucible and semiconductor ingot
CN209227097U (en) The vacuum oriented consolidation furnace of bottom filling
TW313540B (en) Self-blocked bottom casting system