JP2004215758A - Container for warming liquid and warmer thereof - Google Patents

Container for warming liquid and warmer thereof Download PDF

Info

Publication number
JP2004215758A
JP2004215758A JP2003004494A JP2003004494A JP2004215758A JP 2004215758 A JP2004215758 A JP 2004215758A JP 2003004494 A JP2003004494 A JP 2003004494A JP 2003004494 A JP2003004494 A JP 2003004494A JP 2004215758 A JP2004215758 A JP 2004215758A
Authority
JP
Japan
Prior art keywords
cartridge
resin film
heater
flow path
spacer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004494A
Other languages
Japanese (ja)
Inventor
Hiroaki Kawasaki
博明 川崎
Tadao Suzuki
忠雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2003004494A priority Critical patent/JP2004215758A/en
Publication of JP2004215758A publication Critical patent/JP2004215758A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a thermal conductivity from a heater to a parenteral fluid such as an instillation liquid or blood, in a warmer for the blood and the like. <P>SOLUTION: A cartridge for a warmer, in which a resin film is bonded on the surface of a frame-like spacer member, has a space for allowing a liquid to flow in its inside. In this cartridge, the plate-like spacer member has flow passage partitions for forming a passage of the fluid, and the resin film overhanging from the cartridge in a convex shape at flow passage parts between the flow passage partitions. Since the convex shape is elastically deformed when the cartridge is attached on the warmer to generate contact pressure, the thermal conductivity from the heater to the instillation liquid and the like can be improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は点滴液、血液のような非経口性液体の加温器において加温器のヒータから点滴液、血液への熱伝導性を改善した加温器に関する。
【0002】
【従来の技術】
血液、及びその他の非経口的液体は、鮮度及び活性を保つため、一般に約4℃の低温で貯蔵される。かかる液体を患者に注入する前には患者の苦痛、肉体的負担を軽減するために流入する液体の温度を患者の体温に近い36℃乃至38℃に上げることが一般に行なわれる。
【0003】
患者に注入する血液を加温するためのシステムを図5の接続ブロック図に示す。血液は当初、樹脂製の貯蔵バッグ(a)に保存されている。そして貯蔵バッグ(a)、加温器(b)、輸血針(c)の順に配列され、それぞれの機器の間は輸液チューブ(f)で接続される。
貯蔵バッグ(a)は静脈点滴用バッグを吊るすためのフックを備えた枢動型の静脈点滴用ポールに吊るされる。そして貯蔵バッグ(a)内の血液はその位置エネルギーにより加温器(b)に送られ、ここで36℃乃至38℃に加温されて輸血針(c)を介して患者に輸血される。尚、輸血量が多い場合には貯蔵バッグ(a)と加温器(b)の間に加圧ポンプ(e)を接続して用いることもある。
【0004】
加温器は2枚の温度調節板を適当な間隔を隔ててほぼ平行に配し、その間に血液の流路となる加温容器を接触圧が生じる状態で挟み込んだものである(例えば技術文献1参照)。ここで2枚の温度調節板はそれぞれ電気的制御手段を有するヒータにより加熱制御される。従って熱はヒータから温度調節板、加温容器を介して輸血液に伝達される。
【0005】
加温器における熱交換用容器は軟質プラスチック材料、例えば軟質の塩化ビニール等のシートを少なくとも2枚重ねて、液体の流路の輪郭となる部分をシールすることにより形成されるバックが用いられて来た(例えば技術文献1参照)。
近年これに代わり、板状のスペーサ部材にその板厚を貫通するよう流路のパターンを形成し、スペーサ部材の両面に樹脂製のフィルムを貼り付けたカートリッジタイプの加温容器が用いられるに至った。例えばAMT社より市販されているMAXONE I.V. WARMERの如き加温器である(技術文献2参照)。これらの加温器では図6に示すようにポリカーボネート等の樹脂で形成した板状のスペーサ部材11の両面にポリカーボネート等の樹脂フィルム12を貼り付けた構造のカートリッジを採用している。
【0006】
【特許文献1】
実開昭61−001183号公報 (第1項、第6項、第2図)
【特許文献2】
米国特許第6336003号明細書 (第12項、第8図)
【0007】
【発明が解決しようとする課題】
加温器のヒータから輸血液への熱伝導量はヒータと輸血液の温度差、温度調節板と熱交換用容器の接触面積及び伝熱効率に依存する。ここでヒータの熱源温度は輸血液の変質等を防止するため一般に最高温度43℃に制限されている。また両者の接触面積は加温器の外形寸法である程度決まってしまう。従って加温器のエネルギー効率の向上、小型化等の性能向上には伝熱効率の向上が重要である。
【0008】
ここで従来用いられていたビニールシートの加温バッグはフレーム無しでも強度が確保できるよう0.2mm程度の比較的厚いビニールシートを使用するため熱伝導が悪かった。また、シートを厚くしても加温バッグの剛性は低く加温器への装着が行いずらい等の問題があった。
【0009】
これに対しスペーサ部材の両面に樹脂フィルムを貼り付けるカートリッジタイプではスペーサ部材が剛性を有しているのでスペーサ部材の両面に貼り付けるフィルムを薄くしてもカートリッジ全体の剛性が得られる。例えば前記のMAX ONEI.V. WARMERでは厚さ0.1mmのフィルムを用いておりビニールシートの加温バッグと比較し、フィルム部での伝熱効率を改善できる。また形状が安定し、加温器へのカートリッジの装着を容易に行なうこともできる。
【0010】
しかしながら、従来のカートリッジタイプにおいてはカートリッジの製造方法、構造に起因する次のような問題があった。
カートリッジは一般に図6の樹脂製のスペーサ部材11に樹脂フィルム12を熱溶着して形成されることが多い。具体的には200℃程度に加熱された一対の加圧ローラーの間にスペーサ部材11と樹脂フィルム12を重ね合わせた状態で通す等の方法で熱溶着を行なう。この際、樹脂フィルム12がスペーサ部材11の全面に均一に接触するように加圧ローラーの表面は弾性を有するフッ素樹脂等でコートされている。加圧ローラーのフッ素樹脂コーティングはフィルム12を介してスペーサ部材11に当接する部分では弾性変形して窪み、、反面スペーサ部材の流路部13では樹脂フィルム12をスペーサ部材11間に押し込むことになる。そのためカートリッジのフィルム面は図7に強調して示すように輸血液が通る流路部13でスペーサ部材11の部分よりも若干窪んでしまう。
【0011】
この結果、カートリッジを加温器に取付けた際に温度調節板21と流路部13のフィルム表面121の間に断熱性が高い空気層500が形成され、薄い樹脂フィルムを使用してもヒータから輸血液への全体的な熱伝導率はビニールシートの加温バッグよりも悪くなり得るという問題があった。
【0012】
カートリッジの製造を樹脂製のスペーサ部材11と樹脂フィルム12を接着して行なう場合はカートリッジの製造上で樹脂フィルム12が窪むことは無い。従って樹脂フィルム12はカートリッジを加温器に取り付けた際に温度調節板21と接触する。しかしカートリッジと温度調節板21を押し付ける荷重はスペーサ部材11が支えるので温度調節板21と樹脂フィルム12の間には両者を積極的に押し付ける接触圧は生じない。そのため微視的に見ると図8に示すように両者の一部分がポイント的に接触し、大部分は空気層500を介して対面する状態となる。従ってこの場合もヒータから輸血液への全体的な熱伝導率はそれ程向上しないという問題があった。
【0013】
本発明は上記問題点を解決するために、血液等の加温器においてヒータから血液等への熱伝導特性を改善した加温器用カートリッジ及び加温器を提供することを目的とする。
【0014】
【課題を解決するための手段】
本願発明の加温器用カートリッジは血液等の液体を流入させる流入口、液体を流出させる流出口を有する枠状のスペーサ部材の表面に樹脂フィルムを接合し、前記液体を流通させる空間を内部に有し、前記枠状のスペーサ部材は流体の流路を構成する流路仕切りを有し、前記樹脂フィルムが当該流路仕切り間の流路部分で凸形状にカートリッジの外方向に張り出した形状を有することを特徴とする。
【0015】
本願発明の加温器用カートリッジは、前記の加温器用カートリッジにおいて前記樹脂フィルムがポリカーボネート、アクリル、ABS、ポリスチレン、ポリアセタール、ポリエチレン、塩化ビニールのいずれかであることを特徴とする。
【0016】
本願発明の加温器は表面が平板状の一対の温度調節部を有し前記1番目の加温器用カートリッジを使用することを特徴とする。
【0017】
本願発明の加温器用カートリッジの製造方法は平坦な樹脂フィルムを枠状のスペーサ部材の外形に対し位置合せして接着、熱溶着、振動溶着等の方法で貼付けてカートリッジを形成し、当該カートリッジの流路仕切り間の流路部分に対応した凹形状の窪みを有する金型にカートリッジを挟み込み金型と樹脂フィルムを密着し、カートリッジと金型を組合わせた状態で200℃に加温し、その状態で金型の窪みに設けた吸引穴より吸引し、真空成形の要領で樹脂フィルムを凸形状に成形することを特徴とする。
【0018】
【発明の実施の形態】
本発明の加温器用カートリッジ及び加温器について、その好ましい態様を示す図面を参照しながら、以下、説明する。本発明の実施の形態に係る加温器の外形図を図9に示す。図9において加温器本体2はコーナー部に丸みを付けた略直方体状であり、開閉可能に連結されたケース体3と蓋体4より構成される。加温器本体2は高さ250mm、幅110mmで、ケース体3の厚さ40mm、蓋体4の厚さ30mm程度である。蓋体4を閉じた際にケース体3と蓋体4が対面する内表面は端部を除いてそれぞれ平板状の温度調節板21で覆われる。ここでケース体3、蓋体4は一般的にはそれぞれ樹脂の射出成形により形成される。
【0019】
図9ではカートリッジ1がケース体3に対し使用時の位置関係、具体的にはガイドピン22にカートリッジ1のフック部17が係合し、ケース体3の温度調節板21にカートリッジ1が密着した位置に組合わせた状態で示してある。実際の使用時には蓋体4が閉じられ、蓋体4の温度調節板21にもカートリッジ1が密着して使用される。図9に示すように蓋体4を開くのはクリーニング等のメンテナンス時のみである。
【0020】
温度調節板21の背後にはマイカヒータが金属系接着材(DEVCON CORPORATION製HR−300等)で温度調節板に固定されている。マイカヒータは3ブロックに分割されカートリッジ1の血液流入部、中央部、流出部それぞれ独立にパワーが制御できる構成としている。
【0021】
ケース体3に設けた温度調節板21はケース体3内部に設けた平行移動機構によりレバー25の動作に連動して移動する。移動機構は公知の機構を用いることができる。例えば温度調節板21をケース体3内部に設けた複数本のガイドポストで支持して平行移動可能とし、レバー25に接続したカムにより温度調節板21の裏面を押すような構造でも良い。
また、ここでは図示しないが温度調節板21の所定の位置には温度センサが配置され、ケース体3には電源回路、制御部が納められている。更にケース体3裏面側には電源コードが接続される。
尚、以下では加温器本体2とカートリッジ1を組合わせたものを加温器100とする。
【0022】
本発明に係る加温器100のカートリッジの装着はカートリッジ1のフック部17をケース体3のガイドピン22に係合させ、加温器本体2のケース体3と蓋体4の隙間にカートリッジ1を旋回させながら挿入して行なう。そしてレバー25を垂直位置から水平位置に旋回させると、それに連動して、ケース体3に設けた温度調節板21が平行移動してカートリッジ1に密着する。
【0023】
本発明の実施の形態に係る加温器用カートリッジ1の外形図を図1に示す。カートリッジ1は長さ230mm、幅80mm、厚さ2mm程度の板状であり、ポリカーボネート等の樹脂で形成した板状のスペーサ部材11の両面にポリカーボネート等の樹脂フィルム12を貼り付けた構造である。スペーサ部材11は厚さ1.8mmの長方形状の枠体で、その一対の短辺にはそれぞれ血液の流入と流出のための開口を有し、当該開口は長方形状の枠体の外側に設けられたカテーテルとの流入側接続部14、流出側接続部15に連通する。
【0024】
また、一対の長辺には枠と同じ厚さの流路仕切り16が櫛歯状に一方の長辺の内壁から他方の長辺の内壁近くまで交互に伸長して、流路部13を分離し且つ効果的に長さを延長させる。ポリカーボネート等の樹脂フィルム12はスペーサ部材11の流路全面を覆う外形を有し、スペーサ部材11の両面に接合される。そして図1(d)の部分断面図に示すようにスペーサ部材11と樹脂フィルム12で囲まれた血液の流路が形成される。
【0025】
尚、カートリッジの流入側接続部14の側方には半円状の頂点からカートリッジの長手方向に対し垂直方向若しくは垂直方向からやや流出側方向に楔形に開口した切欠を有するフック部17が設けられる。またカートリッジの流出側接続部14の側方には貫通穴18が設けられる。
【0026】
本カートリッジ1の断面形状の詳細を図2に示す。樹脂フィルム12とスペーサ部材11の流路仕切り16は両者が接触する接合部122で表側、裏側とも接合される。そして接合部122から流路13方向に離れるに従い樹脂フィルム12は流路仕切り16の表面よりも外側に張り出して行き、表側と裏側の樹脂フィルム12の間隔が所定量まで広がった後に両者は平坦な伝熱面123を形成する。従って各流路仕切り16間の樹脂フィルム12の断面は表側と裏側の樹脂フィルム12の間隔が広がる途中のテーパー部124と、両者が平坦となった伝熱面123より構成され、全体としてスペーサ部材11の外側に凸形状を成している。ここで伝熱面123は平行面とすることが望ましい。
【0027】
本実施例では各流路仕切り16の間隔を3mm、ポリカーボネート製の樹脂フィルム12の厚さを0.1mmとした。そして、接合部122のフィルム表面から凸形状の伝熱面123までの高さは0.3mmとした。
従って、接合部122のカートリッジの厚さ(A−A’)は流路仕切り16の厚さ1.8mmと、その両面に溶着したポリカーボネート製の樹脂フィルム12の厚さ0.2mmの合計2.0mmとなる。また樹脂フィルム12の伝熱面123での厚さ(B−B’)では樹脂フィルムが両面に0.3mmずつ張り出しているため2.6mmとなる。
【0028】
次にカートリッジ1を加温器2に装着した状態のカートリッジの断面図を図3に示す。ここでポリカーボネート製の樹脂フィルム12の伝熱面123はカートリッジ1単独の状態では接合部122の表面より外側に0.3mm張り出しているが、温度調節板21がカートリッジ1に密着した状態では図3に示すように伝熱面123は温度調節板21に密着して張り出しが無くなる。
【0029】
これは樹脂フィルム12のテーパー部124が弾性変形したためで、この変形を復元する方向、即ち伝熱面123を温度調節板21に密着させる方向に荷重を生じる。その結果、図4に示すように温度調節板21とカートリッジのフィルム表面121間の空気層500が減少して両者の実質的な接触面積が拡大するので温度調節板21とポリカーボネート製の樹脂フィルム12の間の伝熱効率の向上を図ることができる。
尚、凸形状の伝熱面123及びテーパー部124の形状は後述するカートリッジの製造方法により変化し、必ずしも一様な傾斜を有する形状とはならない。例えば伝熱面123が円弧状で、伝熱面123とテーパー部124が断面において連続した円弧状となる場合も考えられる。その場合でも伝熱面123は弾性変形して温度調節板123に密着し、テーパー部124も弾性変形し伝熱面123を温度調節板21に密着させる方向に荷重を生じる。伝熱面123が平坦な場合より接触面積が狭くなる分幾分効率は低下するが同様の効果が得られる。
【0030】
次に本発明に係るカートリッジと従来のカートリッジを用いた加温器の伝熱効率の比較結果を示す。ここではスペーサ部材に貼付けるフィルムは共にポリカーボネート製の樹脂フィルムを用い、加圧ポンプを用いて輸血液の流量を70ml/minの条件で比較した。伝熱効率はヒータ温度の平均値から求めた投入パワーと、カートリッジ入口と出口の血液温度差から求めた血液への伝達パワーの割合から算出した。従来のカートリッジを用いた加温器の伝熱効率が8.5%であるのに対し、本発明に係るカートリッジを用いた加温器の伝熱効率は34%となり4倍近くの伝熱効率の改善が確認できた。
【0031】
従って本発明による伝熱効率の向上により従来よりも小型で従来と同様の性能を発揮する加温器、又は従来と同様の大きさで従来よりも流量が多い使用条件にも対応可能な加温器の開発が可能となる。
【0032】
尚、カートリッジ1と温度調節板21の接触圧を発生させるには温度調節板21をカートリッジ1のフィルム面の窪みに合せた凸部を有する形状とすることも考えられるが、カートリッジ1の窪み形状の再現性が保証されないこと、温度調節板21に凸部を設ける加工が複雑になること等から本発明のようにカートリッジ1を凸形状とし、平坦な温度調節板21を組合わせる方が性能が安定し、製造コストの低減も容易である。
【0033】
次に輸血時のポンプの使用について検討する。前記のように輸血量が多い場合にはポンプが必要となるが、それ以外にもポンプは輸血液を加圧する目的でも用いられて来た。従来の加温バッグを用いるタイプの加温器では輸血液を加圧して加温バッグと温度調節板との接触圧を確保し、ヒータから輸血液に熱伝導させていた。
【0034】
カートリッジタイプの加温器でも従来構造でスペーサ部材11に樹脂フィルム12を接着して形成した場合はカートリッジの流路部のフィルム面121と温度調節板21が接触圧がほとんどかからない状態で接触しており、ポンプにより輸血液を加圧することで若干の伝熱効率の改善を図ることも考えられる。
しかしこの場合は輸血時にポンプの使用が必須となり、また輸血液の加圧に対し樹脂フィルム12の張力が抗力として働くのでそれ程の効果は見込めないと推定される。
【0035】
本発明に係るカートリッジ1を用いた加温器100は上記のように樹脂フィルム12の弾性変形により温度調節板21とフィルム表面121の伝熱効率の向上を図っていることからカートリッジ1内を通過する輸血液の加圧状態によらず高い伝熱効率が得られる。従ってポンプ無しで輸血液の加温が可能であり輸血液加温システムのコスト削減を可能とする。
【0036】
次に本発明に係るカートリッジの製造方法を説明する。
第1の製造方法では、まずポリカーボネート製の平坦な樹脂フィルム12をスペーサ部材11の外形に対し位置合せして接着、熱溶着、振動溶着等の公知の方法で貼付けてカートリッジ1を形成する。次に樹脂フィルム12の凸形状部に対応した凹形状の窪みを有する金型にカートリッジ1を挟み込み、金型と樹脂フィルム12を密着させる。
【0037】
そしてカートリッジ1と金型を組合わせた状態で樹脂フィルムが軟化する温度(ポリカーボネート製樹脂フィルムの場合145℃〜200℃)に加温し、その状態で金型の窪みに設けた吸引穴より吸引し、真空成形の要領で樹脂フィルム12を凸形状に成形する。
【0038】
第2の製造方法では、まずポリカーボネート製の平坦な樹脂フィルム12をスペーサ部材11の外形に対し位置合せして接着、熱溶着、振動溶着等の公知の方法で貼付けてカートリッジ1を形成する。次にカートリッジ1の流入側接続部14又は流出側接続部15のいずれか一方に栓をし、他方をエアー源に接続する。
【0039】
次に、カートリッジ1を金属製の冶具に固定する。この冶具はカートリッジ1より一回り大きく、金属板を2.6mm間隔で平行に固定した物である。この際カートリッジをそれぞれの金属板から0.3mmの間隔を設け、金属板に平行に固定する。
【0040】
次に、金属板とカートリッジ1を組合わせた状態でオーブンに投入する。そしてエアー源よりエアーを流入させカートリッジ1の内部を加圧する。加圧圧力を100kPa、オーブンを200℃とし、1時間保持した。エアー圧により流路仕切り間の樹脂フィルム12が伸ばされ外側に膨らみ、また表面は冶具に接触して平面となるので凸形状部が形成される。
尚、本方法において金属製の冶具を用いない場合、凸形状は伝熱板123とテーパー部124が断面において連続した円弧状となる。
【0041】
第3の製造方法は、まずポリカーボネート製の樹脂フィルム12を凸形状部に対応した凹形状の窪みを有する金型を用いて真空成形により所定の形状に成形する。加熱温度はポリカーボネート製の樹脂フィルムの場合200℃とした。
【0042】
次にスペーサの流路仕切り16の間に凸形状部が対応するようにスペーサ部材11とポリカーボネート製の樹脂フィルム12の位置合せを行い、接着等の公知の方法で貼付けてカートリッジ1を形成する。この場合、上記のスペーサ部材11に樹脂フィルム12を貼付けた後に樹脂フィルム12を凸形状に加工する方法と比較し、スペーサ部材11と樹脂フィルム12の接合部分に負担がかからないので液漏れ等の問題発生を回避し易い。
【0043】
以上の説明では樹脂フィルム、スペーサ部材ともポリカーボネート製としたが材料はこれに限られない。アクリル、ABS、ポリスチレン、ポリアセタール、ポリエチレン、塩化ビニール等の樹脂も使用可能である。これらの材料はフィルム状にした場合に剛性が高く、加温器の使用温度でポリカーボネートと同様に弾性変形による曲げ応力を生じるため同様の効果が得られるものである。
【0044】
【発明の効果】
本発明に係る加温器はカートリッジの流路部のフィルムを凸形状とし、カートリッジを加温器に取付けた際に凸形状が弾性変形し、接触圧を生じるようにしたのでヒータから輸血液等への熱伝導を改善できる。
その結果、従来よりも小型で従来と同様の性能を発揮する加温器、又は従来と同様の大きさで従来よりも流量が多い使用条件にも対応可能な加温器の開発が可能となる。
更に、本発明に係る加温器は加圧ポンプを用いない安価なシステムにおいても高い伝熱効率を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る加温器用カートリッジの正面図(a)、および上面図(b)、および側面図(c)、流路部部分断面図(d)である。
【図2】本発明に係る加温器用カートリッジの流路部断面詳細図である。
【図3】本発明に係る加温器用カートリッジと温度調節板を組合わせた状態の断面図である。
【図4】本発明に係る加温器用カートリッジと温度調節板の接触状態を示す詳細図である。
【図5】血液等を加温して輸血する際の機器接続順を示すブロック図である。
【図6】カートリッジ型加温容器の分解図である。
【図7】従来構造の加温器用カートリッジと温度調節板を組合わせた状態の断面図である。
【図8】従来構造の加温器用カートリッジと温度調節板の接触状態を示す詳細図である。
【図9】本発明に係る加温器用とカートリッジを組合わせた状態の外形図である。
【符号の説明】
1 加温器用カートリッジ
2 加温器本体
3 ケース体
4 蓋体
11 スペーサ部材
12 樹脂フィルム
13 流路部
14 流入側接続部
15 流出側接続部
16 流路仕切り
17 フック部
18 貫通穴
21 温度調節板
22 ガイドピン
23 プランジャ
24 クランプ
25 レバー
121 樹脂フィルム表面
122 接合部
123 伝熱面
124 テーパー部
500 空気層
600 ポール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heater for a parenteral liquid such as an infusion liquid or blood, which has improved heat conductivity from a heater of the heater to the infusion liquid or blood.
[0002]
[Prior art]
Blood and other parenteral liquids are typically stored at a low temperature of about 4 ° C. to maintain freshness and activity. Before injecting such a liquid into a patient, it is common practice to raise the temperature of the incoming liquid to 36 ° C. to 38 ° C., which is close to the patient's body temperature, in order to reduce the pain and physical burden on the patient.
[0003]
A system for warming blood to be injected into a patient is shown in the connection block diagram of FIG. Blood is initially stored in a resin storage bag (a). Then, the storage bag (a), the heater (b), and the blood transfusion needle (c) are arranged in this order, and the respective devices are connected by an infusion tube (f).
The storage bag (a) is hung on a pivotable intravenous drip pole with hooks for hanging the intravenous drip bag. The blood in the storage bag (a) is sent to the heater (b) by the potential energy, where it is heated to 36 to 38 ° C. and is transfused into the patient via the blood transfusion needle (c). When the transfusion volume is large, a pressurizing pump (e) may be connected between the storage bag (a) and the heater (b).
[0004]
The heater has two temperature control plates arranged substantially in parallel at an appropriate interval, and a heating vessel serving as a blood flow path is sandwiched between the two in a state in which a contact pressure is generated (for example, in the technical literature). 1). Here, the heating of the two temperature adjusting plates is controlled by heaters each having an electric control means. Therefore, heat is transmitted from the heater to the blood transfusion via the temperature control plate and the heating vessel.
[0005]
The heat exchange container in the heater uses a bag formed by laminating at least two sheets of a soft plastic material, for example, a soft vinyl chloride sheet, and sealing a portion defining a contour of a liquid flow path. (For example, see Technical Document 1).
In recent years, instead of this, a cartridge type heating vessel in which a flow path pattern is formed in a plate-like spacer member so as to penetrate the plate thickness and resin films are stuck on both surfaces of the spacer member has been used. Was. For example, MAXONE I.M. V. A warmer such as WARMER (see Technical Document 2). In these heaters, as shown in FIG. 6, a cartridge having a structure in which a resin film 12 of polycarbonate or the like is adhered to both sides of a plate-like spacer member 11 formed of a resin of polycarbonate or the like is used.
[0006]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 61-001183 (Sections 1, 6, and 2)
[Patent Document 2]
US Pat. No. 6,336,003 (Section 12, FIG. 8)
[0007]
[Problems to be solved by the invention]
The amount of heat conduction from the heater of the heater to the blood transfusion depends on the temperature difference between the heater and the blood transfusion, the contact area between the temperature control plate and the heat exchange container, and the heat transfer efficiency. Here, the heat source temperature of the heater is generally limited to a maximum temperature of 43 ° C. in order to prevent deterioration of blood transfusion. Further, the contact area between the two is determined to some extent by the outer dimensions of the heater. Therefore, it is important to improve the heat transfer efficiency in order to improve the energy efficiency and the miniaturization of the heater.
[0008]
Here, the conventionally used vinyl sheet heating bag uses a relatively thick vinyl sheet of about 0.2 mm so that the strength can be ensured even without a frame, so that heat conduction is poor. Further, even if the sheet is thickened, the rigidity of the heating bag is low, and there is a problem that it is difficult to mount the heating bag on the heating device.
[0009]
On the other hand, in the cartridge type in which the resin film is attached to both surfaces of the spacer member, the rigidity of the spacer member allows the rigidity of the entire cartridge to be obtained even if the film attached to both surfaces of the spacer member is made thin. For example, the above-mentioned MAX ONEI. V. WARMER uses a 0.1 mm thick film and can improve the heat transfer efficiency in the film portion as compared to a vinyl sheet heating bag. In addition, the shape is stable, and the cartridge can be easily mounted on the heater.
[0010]
However, the conventional cartridge type has the following problems due to the manufacturing method and structure of the cartridge.
In general, the cartridge is often formed by thermally welding a resin film 12 to a resin spacer member 11 shown in FIG. Specifically, heat welding is performed by, for example, passing the spacer member 11 and the resin film 12 in a state of being overlapped between a pair of pressure rollers heated to about 200 ° C. At this time, the surface of the pressure roller is coated with an elastic fluororesin or the like so that the resin film 12 uniformly contacts the entire surface of the spacer member 11. The fluororesin coating of the pressure roller is elastically deformed and depressed in a portion where it abuts on the spacer member 11 via the film 12, and the resin film 12 is pushed between the spacer members 11 in the channel portion 13 of the spacer member. . Therefore, the film surface of the cartridge is slightly depressed in the flow path portion 13 through which the blood transfusion passes, as shown in FIG.
[0011]
As a result, when the cartridge is mounted on the heater, an air layer 500 having high heat insulating property is formed between the temperature control plate 21 and the film surface 121 of the flow path portion 13, and even if a thin resin film is used, the air layer 500 is not heated. There was the problem that the overall thermal conductivity to blood transfusion could be worse than a vinyl sheet warming bag.
[0012]
When the cartridge is manufactured by bonding the resin spacer member 11 and the resin film 12, the resin film 12 is not depressed in manufacturing the cartridge. Therefore, the resin film 12 comes into contact with the temperature control plate 21 when the cartridge is mounted on the heater. However, since the load for pressing the cartridge and the temperature control plate 21 is supported by the spacer member 11, there is no contact pressure between the temperature control plate 21 and the resin film 12 for positively pressing both. Therefore, when viewed microscopically, as shown in FIG. 8, a part of the two is in point contact with each other, and most of them are in a state of facing each other via the air layer 500. Therefore, also in this case, there is a problem that the overall thermal conductivity from the heater to the blood transfusion does not increase so much.
[0013]
An object of the present invention is to provide a cartridge for a heater and a heater in which a heat transfer characteristic from a heater to a blood or the like is improved in a heater for blood or the like in order to solve the above problems.
[0014]
[Means for Solving the Problems]
The heater cartridge of the present invention has a resin film bonded to the surface of a frame-shaped spacer member having an inflow port through which a liquid such as blood flows in and an outflow port through which the liquid flows out, and has a space in which the liquid flows inside. The frame-shaped spacer member has a flow path partition constituting a flow path of the fluid, and the resin film has a shape in which the resin film protrudes outward in the cartridge in a convex shape at a flow path portion between the flow path partitions. It is characterized by the following.
[0015]
The cartridge for a heater of the present invention is characterized in that the resin film in the cartridge for a heater is any of polycarbonate, acrylic, ABS, polystyrene, polyacetal, polyethylene, and vinyl chloride.
[0016]
The heater of the present invention is characterized in that the heater has a pair of flat plate-shaped temperature control sections and uses the first heater cartridge.
[0017]
The method for manufacturing a cartridge for a heater according to the present invention is such that a flat resin film is aligned with the outer shape of a frame-shaped spacer member, and is adhered by a method such as adhesion, heat welding, or vibration welding to form a cartridge. The cartridge is sandwiched in a mold having a concave depression corresponding to the flow path portion between the flow path partitions, the mold and the resin film are closely adhered to each other, and the cartridge and the mold are heated to 200 ° C. in a combined state. In this state, the resin film is sucked through a suction hole provided in a depression of the mold, and the resin film is formed into a convex shape by vacuum molding.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The heater cartridge and the heater of the present invention will be described below with reference to the drawings showing preferred embodiments. FIG. 9 shows an outline view of the heater according to the embodiment of the present invention. In FIG. 9, the heater body 2 has a substantially rectangular parallelepiped shape with rounded corners, and includes a case body 3 and a lid body 4 that are connected to be openable and closable. The heater body 2 has a height of 250 mm and a width of 110 mm, the thickness of the case body 3 is about 40 mm, and the thickness of the lid body 4 is about 30 mm. When the lid 4 is closed, the inner surfaces of the case 3 and the lid 4 facing each other are covered with a flat temperature control plate 21 except for the ends. Here, the case body 3 and the lid body 4 are generally formed by injection molding of resin, respectively.
[0019]
In FIG. 9, the positional relationship between the cartridge 1 and the case body 3 during use, specifically, the hook 17 of the cartridge 1 is engaged with the guide pin 22, and the cartridge 1 is in close contact with the temperature control plate 21 of the case body 3. It is shown in a state combined with the position. In actual use, the lid 4 is closed, and the cartridge 1 is used in close contact with the temperature control plate 21 of the lid 4. As shown in FIG. 9, the lid 4 is opened only during maintenance such as cleaning.
[0020]
Behind the temperature control plate 21, a mica heater is fixed to the temperature control plate with a metal-based adhesive (eg, HR-300 manufactured by DEVCON CORPORATION). The mica heater is divided into three blocks so that the power can be independently controlled for each of the blood inflow portion, the central portion, and the outflow portion of the cartridge 1.
[0021]
The temperature adjusting plate 21 provided in the case body 3 is moved in conjunction with the operation of the lever 25 by a parallel moving mechanism provided inside the case body 3. A known mechanism can be used as the moving mechanism. For example, a structure may be employed in which the temperature control plate 21 is supported by a plurality of guide posts provided inside the case body 3 so as to be able to move in parallel, and the back surface of the temperature control plate 21 is pushed by a cam connected to the lever 25.
Although not shown here, a temperature sensor is disposed at a predetermined position of the temperature control plate 21, and the case body 3 houses a power supply circuit and a control unit. Further, a power cord is connected to the back side of the case body 3.
Hereinafter, a combination of the heater main body 2 and the cartridge 1 is referred to as a heater 100.
[0022]
In mounting the cartridge of the heater 100 according to the present invention, the hook 17 of the cartridge 1 is engaged with the guide pin 22 of the case body 3, and the cartridge 1 is inserted into the gap between the case body 3 and the lid body 4 of the heater body 2. Insert while rotating. Then, when the lever 25 is turned from the vertical position to the horizontal position, the temperature adjusting plate 21 provided on the case body 3 moves in parallel with the lever 25 and comes into close contact with the cartridge 1.
[0023]
FIG. 1 is an external view of a heater cartridge 1 according to an embodiment of the present invention. The cartridge 1 is a plate having a length of about 230 mm, a width of about 80 mm, and a thickness of about 2 mm, and has a structure in which a resin film 12 of polycarbonate or the like is attached to both surfaces of a plate-like spacer member 11 formed of a resin of polycarbonate or the like. The spacer member 11 is a rectangular frame having a thickness of 1.8 mm, and has a pair of short sides each having an opening for inflow and outflow of blood, and the opening is provided outside the rectangular frame. It communicates with the inflow side connection part 14 and the outflow side connection part 15 with the catheter.
[0024]
In addition, the flow path partitions 16 having the same thickness as the frame are alternately extended from the inner wall of one long side to the vicinity of the inner wall of the other long side in a comb shape on the pair of long sides to separate the flow path portion 13. And effectively extend the length. A resin film 12 made of polycarbonate or the like has an outer shape that covers the entire flow path of the spacer member 11 and is joined to both surfaces of the spacer member 11. Then, as shown in the partial sectional view of FIG. 1D, a blood flow path surrounded by the spacer member 11 and the resin film 12 is formed.
[0025]
Note that a hook portion 17 having a cutout opened in a wedge shape in a direction perpendicular to the longitudinal direction of the cartridge or slightly in the direction perpendicular to the longitudinal direction of the cartridge from the semicircular apex is provided on the side of the inflow side connection portion 14 of the cartridge. . Further, a through hole 18 is provided on the side of the outflow-side connection portion 14 of the cartridge.
[0026]
FIG. 2 shows details of the cross-sectional shape of the cartridge 1. The resin film 12 and the flow path partition 16 of the spacer member 11 are joined to both the front side and the back side at a joining portion 122 where they contact each other. As the distance from the joining portion 122 in the direction of the flow path 13 increases, the resin film 12 projects outward from the surface of the flow path partition 16, and after the distance between the resin films 12 on the front side and the back side increases to a predetermined amount, both become flat. The heat transfer surface 123 is formed. Accordingly, the cross section of the resin film 12 between the flow path partitions 16 is constituted by the tapered portion 124 in the middle of the interval between the resin film 12 on the front side and the back side being widened and the heat transfer surface 123 in which both are flattened. 11 has a convex shape outside. Here, it is desirable that the heat transfer surface 123 be a parallel surface.
[0027]
In this embodiment, the distance between the flow path partitions 16 is 3 mm, and the thickness of the polycarbonate resin film 12 is 0.1 mm. The height from the film surface of the joint 122 to the convex heat transfer surface 123 was 0.3 mm.
Therefore, the thickness (AA ′) of the cartridge at the joint 122 is 1.8 mm in thickness of the flow path partition 16 and 0.2 mm in thickness of the resin film 12 made of polycarbonate welded to both surfaces thereof. 0 mm. The thickness (B-B ') of the resin film 12 on the heat transfer surface 123 is 2.6 mm because the resin film protrudes by 0.3 mm on both sides.
[0028]
Next, a sectional view of the cartridge in a state where the cartridge 1 is mounted on the heater 2 is shown in FIG. Here, the heat transfer surface 123 of the resin film 12 made of polycarbonate protrudes outside the surface of the joining portion 122 by 0.3 mm when the cartridge 1 is alone, but when the temperature control plate 21 is in close contact with the cartridge 1, FIG. As shown in (2), the heat transfer surface 123 is in close contact with the temperature control plate 21 so that the overhang is eliminated.
[0029]
This is because the tapered portion 124 of the resin film 12 is elastically deformed, and a load is generated in a direction in which the deformation is restored, that is, a direction in which the heat transfer surface 123 is brought into close contact with the temperature control plate 21. As a result, as shown in FIG. 4, the air layer 500 between the temperature control plate 21 and the film surface 121 of the cartridge is reduced, and the substantial contact area between the two is increased. During this time, the heat transfer efficiency can be improved.
Note that the shapes of the convex heat transfer surface 123 and the tapered portion 124 change depending on the manufacturing method of the cartridge described later, and do not always have a uniform inclination. For example, the heat transfer surface 123 may have an arc shape, and the heat transfer surface 123 and the tapered portion 124 may have a continuous arc shape in cross section. Even in this case, the heat transfer surface 123 is elastically deformed and closely adheres to the temperature control plate 123, and the tapered portion 124 is also elastically deformed to generate a load in a direction in which the heat transfer surface 123 closely adheres to the temperature control plate 21. Although the contact area is smaller than when the heat transfer surface 123 is flat, the efficiency is somewhat reduced, but the same effect is obtained.
[0030]
Next, a comparison result of the heat transfer efficiency of the heater using the cartridge according to the present invention and the conventional cartridge will be described. Here, a polycarbonate resin film was used as the film to be attached to the spacer member, and the blood transfusion flow rate was compared using a pressure pump at a flow rate of 70 ml / min. The heat transfer efficiency was calculated from the input power calculated from the average value of the heater temperature and the ratio of the power transmitted to the blood calculated from the blood temperature difference between the cartridge inlet and outlet. While the heat transfer efficiency of the heater using the conventional cartridge is 8.5%, the heat transfer efficiency of the heater using the cartridge according to the present invention is 34%, and the improvement of the heat transfer efficiency is almost four times. It could be confirmed.
[0031]
Therefore, a heater that is smaller than the conventional one and exhibits the same performance as the conventional one due to the improvement of the heat transfer efficiency according to the present invention, or a heater that is the same size as the conventional one and can cope with the use condition with a larger flow rate than the conventional one Can be developed.
[0032]
In order to generate the contact pressure between the cartridge 1 and the temperature control plate 21, the temperature control plate 21 may be formed to have a convex portion corresponding to the depression on the film surface of the cartridge 1. Since the reproducibility of the cartridge is not guaranteed and the process of providing the convex portion on the temperature control plate 21 becomes complicated, it is more preferable to form the cartridge 1 in a convex shape and combine the flat temperature control plate 21 as in the present invention. Stable and easy to reduce manufacturing costs.
[0033]
Next, the use of a pump during blood transfusion will be discussed. As described above, a pump is required when the amount of blood transfusion is large, but the pump has also been used for the purpose of pressurizing blood transfusion. In a conventional type of heater using a heating bag, the blood transfusion is pressurized to secure a contact pressure between the heating bag and the temperature control plate, and heat is transferred from the heater to the blood transfusion.
[0034]
Even in the case of the cartridge type heater, when the resin film 12 is bonded to the spacer member 11 in the conventional structure and formed, the film surface 121 of the flow path portion of the cartridge and the temperature control plate 21 come into contact with almost no contact pressure. Therefore, it is conceivable to slightly improve the heat transfer efficiency by pressurizing the blood transfusion with a pump.
However, in this case, it is presumed that the use of a pump is essential at the time of blood transfusion, and the effect is not so large because the tension of the resin film 12 acts as a drag against the pressure of the blood transfusion.
[0035]
The heater 100 using the cartridge 1 according to the present invention passes through the cartridge 1 because the heat transfer efficiency of the temperature control plate 21 and the film surface 121 is improved by the elastic deformation of the resin film 12 as described above. High heat transfer efficiency can be obtained regardless of the pressure of blood transfusion. Therefore, the blood transfusion can be heated without a pump, and the cost of the blood transfusion heating system can be reduced.
[0036]
Next, a method for manufacturing a cartridge according to the present invention will be described.
In the first manufacturing method, first, a flat resin film 12 made of polycarbonate is aligned with the outer shape of the spacer member 11 and attached by a known method such as adhesion, heat welding, or vibration welding to form the cartridge 1. Next, the cartridge 1 is sandwiched in a mold having a concave portion corresponding to the convex portion of the resin film 12, and the resin film 12 is brought into close contact with the mold.
[0037]
Then, the cartridge 1 is heated to a temperature at which the resin film is softened (145 ° C. to 200 ° C. in the case of a polycarbonate resin film) in a state in which the cartridge 1 and the mold are combined, and in this state, suction is performed through a suction hole provided in a depression of the mold. Then, the resin film 12 is formed into a convex shape by vacuum forming.
[0038]
In the second manufacturing method, first, a flat resin film 12 made of polycarbonate is aligned with the outer shape of the spacer member 11 and attached by a known method such as adhesion, heat welding, or vibration welding to form the cartridge 1. Next, one of the inflow-side connection portion 14 and the outflow-side connection portion 15 of the cartridge 1 is plugged, and the other is connected to an air source.
[0039]
Next, the cartridge 1 is fixed to a metal jig. This jig is one size larger than the cartridge 1 and has metal plates fixed in parallel at 2.6 mm intervals. At this time, the cartridge is fixed at a distance of 0.3 mm from each metal plate and is fixed in parallel with the metal plate.
[0040]
Next, the combination of the metal plate and the cartridge 1 is put into an oven. Then, air flows from an air source to pressurize the inside of the cartridge 1. The pressurizing pressure was set to 100 kPa, the oven was set to 200 ° C., and held for 1 hour. The resin film 12 between the flow path partitions is stretched and bulged outward by the air pressure, and the surface thereof comes into contact with the jig and becomes flat, so that a convex portion is formed.
When a metal jig is not used in the present method, the convex shape is an arc shape in which the heat transfer plate 123 and the tapered portion 124 are continuous in cross section.
[0041]
In the third manufacturing method, first, the polycarbonate resin film 12 is formed into a predetermined shape by vacuum forming using a mold having a concave depression corresponding to the convex portion. The heating temperature was 200 ° C. for a polycarbonate resin film.
[0042]
Next, the positioning of the spacer member 11 and the resin film 12 made of polycarbonate is performed so that the convex portions correspond to the flow path partitions 16 of the spacer, and the cartridge 1 is formed by sticking by a known method such as adhesion. In this case, compared with the method in which the resin film 12 is processed into a convex shape after the resin film 12 is attached to the spacer member 11, there is no burden on the joint portion between the spacer member 11 and the resin film 12. It is easy to avoid occurrence.
[0043]
In the above description, both the resin film and the spacer member are made of polycarbonate, but the material is not limited to this. Resins such as acrylic, ABS, polystyrene, polyacetal, polyethylene, and vinyl chloride can also be used. These materials have a high rigidity when formed into a film and generate a bending stress due to elastic deformation at the operating temperature of the heater, similarly to polycarbonate, so that the same effect can be obtained.
[0044]
【The invention's effect】
In the heater according to the present invention, the film in the channel portion of the cartridge has a convex shape, and when the cartridge is attached to the heater, the convex shape is elastically deformed to generate a contact pressure. Can improve heat conduction.
As a result, it becomes possible to develop a heater that is smaller than the conventional one and exhibits the same performance as the conventional one, or a heater that is the same size as the conventional one and that can cope with the use condition where the flow rate is larger than the conventional one. .
Further, the heater according to the present invention can achieve high heat transfer efficiency even in an inexpensive system that does not use a pressure pump.
[Brief description of the drawings]
FIG. 1 is a front view (a), a top view (b), a side view (c), and a partial cross-sectional view (d) of a flow path portion of a heater cartridge according to the present invention.
FIG. 2 is a detailed cross-sectional view of a flow path section of the heater cartridge according to the present invention.
FIG. 3 is a cross-sectional view showing a state where the heater cartridge and the temperature control plate according to the present invention are combined.
FIG. 4 is a detailed view showing a contact state between the heater cartridge and the temperature control plate according to the present invention.
FIG. 5 is a block diagram showing a device connection order when blood and the like are heated and transfused.
FIG. 6 is an exploded view of a cartridge type heating container.
FIG. 7 is a cross-sectional view of a state where a heater cartridge of a conventional structure and a temperature control plate are combined.
FIG. 8 is a detailed view showing a contact state between a heater cartridge of a conventional structure and a temperature control plate.
FIG. 9 is an external view of a state where a heater and a cartridge according to the present invention are combined.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heater cartridge 2 Heater main body 3 Case body 4 Lid 11 Spacer member 12 Resin film 13 Flow path part 14 Inflow side connection part 15 Outflow side connection part 16 Flow path partition 17 Hook part 18 Through hole 21 Temperature control plate 22 Guide pin 23 Plunger 24 Clamp 25 Lever 121 Resin film surface 122 Joining part 123 Heat transfer surface 124 Tapered part 500 Air layer 600 Pole

Claims (4)

血液等の液体を流入させる流入口、液体を流出させる流出口を有する枠状のスペーサ部材の表面に樹脂フィルムを接合し、前記液体を流通させる空間を内部に有する加温器用カートリッジにおいて、
前記枠状のスペーサ部材は流体の流路を構成する流路仕切りを有し、
前記樹脂フィルムが当該流路仕切り間の流路部分で凸形状にカートリッジの外方向に張り出した形状を有することを特徴とする加温器用カートリッジ。
An inlet for flowing in a liquid such as blood, a resin film is joined to a surface of a frame-shaped spacer member having an outlet for flowing out a liquid, and a heater cartridge having a space for flowing the liquid therein,
The frame-shaped spacer member has a flow path partition constituting a flow path of the fluid,
A cartridge for a heater, wherein the resin film has a shape protruding outward in the cartridge in a convex shape at a flow path portion between the flow path partitions.
前記樹脂フィルムがポリカーボネート、アクリル、ABS、ポリスチレン、ポリアセタール、ポリエチレン、塩化ビニールのいずれかであることを特徴とする請求項1の加温器用カートリッジ。The cartridge for a heater according to claim 1, wherein the resin film is any one of polycarbonate, acrylic, ABS, polystyrene, polyacetal, polyethylene, and vinyl chloride. 表面が平板状の一対の温度調節部を有し請求項1の加温器用カートリッジを使用することを特徴とする加温器。A heating device comprising a pair of temperature control portions each having a flat plate surface, and using the heating device cartridge according to claim 1. 以下のステップよりなる請求項1の加温器用カートリッジの製造方法。
平坦な樹脂フィルムを枠状のスペーサ部材の外形に対し位置合せして接着、熱溶着、振動溶着等の方法で貼付けてカートリッジを形成するステップ。
当該カートリッジの流路仕切り間の流路部分に対応した凹形状の窪みを有する金型と樹脂フィルムを密着させるステップ。
カートリッジと金型を組合わせた状態で樹脂フィルムの軟化温度に加温し、その状態で金型の窪みに設けた吸引穴より吸引し、真空成形の要領で樹脂フィルムを凸形状に成形するステップ。
The method for manufacturing a cartridge for a heater according to claim 1, comprising the following steps.
A step of positioning a flat resin film with respect to the outer shape of the frame-shaped spacer member and affixing it by a method such as adhesion, heat welding, or vibration welding to form a cartridge.
Bringing the resin film into close contact with a mold having a concave depression corresponding to the flow path portion between the flow path partitions of the cartridge.
Heating the resin film to the softening temperature in a state in which the cartridge and the mold are combined, suctioning through the suction hole provided in the recess of the mold in that state, and forming the resin film into a convex shape by vacuum molding .
JP2003004494A 2003-01-10 2003-01-10 Container for warming liquid and warmer thereof Pending JP2004215758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004494A JP2004215758A (en) 2003-01-10 2003-01-10 Container for warming liquid and warmer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004494A JP2004215758A (en) 2003-01-10 2003-01-10 Container for warming liquid and warmer thereof

Publications (1)

Publication Number Publication Date
JP2004215758A true JP2004215758A (en) 2004-08-05

Family

ID=32895457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004494A Pending JP2004215758A (en) 2003-01-10 2003-01-10 Container for warming liquid and warmer thereof

Country Status (1)

Country Link
JP (1) JP2004215758A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522066A (en) * 2007-03-23 2010-07-01 サーマル セラピューティク システムズ、インク. Mobile thermotherapy device
WO2014129687A1 (en) * 2013-02-22 2014-08-28 Cho Yong Il Heater module for heating device of fluid infusion apparatus and method for manufacturing same
WO2014178512A1 (en) * 2013-05-03 2014-11-06 Cho Yong Il Medical heating device having means for blocking flow of fluid
CN113993557A (en) * 2019-07-05 2022-01-28 金镕玄 Housing for a drug delivery tube device and drug delivery tube device assembly comprising the housing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522066A (en) * 2007-03-23 2010-07-01 サーマル セラピューティク システムズ、インク. Mobile thermotherapy device
WO2014129687A1 (en) * 2013-02-22 2014-08-28 Cho Yong Il Heater module for heating device of fluid infusion apparatus and method for manufacturing same
US9730273B2 (en) 2013-02-22 2017-08-08 Yong Il Cho Heater module for heater of fluid infusion apparatus and manufacturing method thereof
WO2014178512A1 (en) * 2013-05-03 2014-11-06 Cho Yong Il Medical heating device having means for blocking flow of fluid
CN104994895A (en) * 2013-05-03 2015-10-21 赵庸一 Medical heating device having means for blocking flow of fluid
JP2016505340A (en) * 2013-05-03 2016-02-25 チョー ヨン イルCHO, Yong Il Medical heating device with means for blocking fluid flow
US9833580B2 (en) 2013-05-03 2017-12-05 Yong Il Cho Medical heating device having means for blocking flow of fluid
CN113993557A (en) * 2019-07-05 2022-01-28 金镕玄 Housing for a drug delivery tube device and drug delivery tube device assembly comprising the housing

Similar Documents

Publication Publication Date Title
US7010221B2 (en) Intravenous fluid warming cassette with stiffening member, fluid container and key mechanism
JP7005103B2 (en) Fluid cassette with polymer membrane and integrated inlet and outlet tubes for patient heat exchange system
US6539172B2 (en) Fluid heating device and cartridge for the same
JP4643815B2 (en) Peritoneal dialysis machine
US7289724B2 (en) Bag for heating liquids and means for heating the bag
US7316666B1 (en) Fluid warming cassette with rails and a stiffening member
JP2020096980A (en) Fluid cassette with tensioned polymeric membranes for patient heat exchange system
JPH0660781U (en) Disposable one-piece manifold pump cassette
JPH09500481A (en) Row type fluid heating device
JP2017505671A (en) Patient heat exchange system with two and only two fluid loops
US20140135697A1 (en) Disposable heat exchange cassette and an assembly for heating intravenous fluid
JP2004215758A (en) Container for warming liquid and warmer thereof
JP2007198165A (en) Diaphragm pump
JP2004209103A (en) Peritoneal dialysis apparatus
JP5996128B2 (en) Medical heating device with means for blocking fluid flow
JP4354625B2 (en) Peritoneal dialysis machine
KR20160133516A (en) Blood treatment cassette having a film valve and an elastic spacer, and blood treatment device
US11400237B2 (en) Medicine infusion apparatus including thermoelectric module
JPH02290227A (en) Gasket for electrodialyzing tank
JP2004105599A (en) Warmer
JPH0115402Y2 (en)
JPH0143080Y2 (en)
JPH025798Y2 (en)
JP3096817U (en) Liquid distribution parts and blood circuits
JP2015084799A (en) Heating container and medical fluid heating device