JP2004215506A - Sea weed extract - Google Patents

Sea weed extract Download PDF

Info

Publication number
JP2004215506A
JP2004215506A JP2003003302A JP2003003302A JP2004215506A JP 2004215506 A JP2004215506 A JP 2004215506A JP 2003003302 A JP2003003302 A JP 2003003302A JP 2003003302 A JP2003003302 A JP 2003003302A JP 2004215506 A JP2004215506 A JP 2004215506A
Authority
JP
Japan
Prior art keywords
extract
acid
tumor
water
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003302A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurihara
秀幸 栗原
Kazunari Kuramata
一成 倉又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HABOMAI GYOGYO KYODO KUMIAI
Original Assignee
HABOMAI GYOGYO KYODO KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HABOMAI GYOGYO KYODO KUMIAI filed Critical HABOMAI GYOGYO KYODO KUMIAI
Priority to JP2003003302A priority Critical patent/JP2004215506A/en
Publication of JP2004215506A publication Critical patent/JP2004215506A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a composition containing a sea weed extract having an immunopotentiating action and a tumor-inhibiting effect. <P>SOLUTION: An anti-tumor agent contains the aqueous medium extract of Costaria costata (C. Agardh) Saunders as an active ingredient. An immunopotentiating agent contains the extract of Costaria costata (C. Agardh) Saunders as an active ingredient. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、免疫賦活作用及び又は抗腫瘍細胞効果を有する、褐藻類であるスジメからの抽出物に関する。
【0002】
【従来の技術】
北海道東部では、アイヌワカメ、スジメ、カレキグサ、ヒバマタ等の海藻が天然に生育し、大量に採取可能であるが、食用に適さないこと等から、資源としては活用されていなかった。
【0003】
さらに、歯舞漁業協同組合では、コンブ等の有用資源保護の観点から、根室近海に生育するスジメやアイヌワカメなどの未利用海藻を年間600トン駆除しており、アイヌワカメ、スジメ等の雑海藻の処分が深刻な問題となっている。
【0004】
一方、近年、海藻類に含まれる生理活性物質についての研究が進み、海藻類中には、アルギン酸、フコイダン、カラギナン等の高分子多糖体が含まれていることが分かってきた。この高分子多糖体は生体においてマクロファージやナチュラルキラー細胞などの免疫細胞を活性化することでガン細胞への攻撃を高め、抗腫瘍効果を示すと考えられている(特許文献1〜3)。海藻類のほかにも、担子菌類より抽出された高分子多糖体成分、シイタケのレンチナン、カワラタケのクレスチン、スエヒロタケのシゾフィラン糖はすでに医薬品の免疫療法剤としてガン治療に20年以上用いられてきている(特許文献4及び5)。
【0005】
しかし、海藻成分に由来する抗腫瘍物質や免疫賦活物質等の生理活性物質については、まだ研究が少なく、今後の研究対象としての必要性は高い。
【0006】
そこで、本発明者は、鋭意研究を重ねた結果、スジメの抽出物が抗腫瘍物活性や免疫賦活活性を有することを発見し、本発明を完成させた。
【0007】
【特許文献1】
特開平10−158156号公報
【特許文献2】
特開平5−139988号公報
【特許文献3】
特開平6−256208号公報
【特許文献4】
特開平7−215990号公報
【特許文献5】
特開平10−195106号公報
【0008】
【発明が解決しようとする課題】
本発明は、スジメの抽出物を含む、食料品又は飲料を提供する。
【0009】
【課題を解決するための手段】
本発明で用いる海藻としては、スジメやアイヌワカメ等を挙げることができ、特にスジメが好ましい。これらの海藻は、そのままでも用いられるが、水洗し汚れを除き、乾燥した後、スライス状に裁断したもの又は粉砕した乾燥粉末として用いるのが好ましい。
【0010】
洗浄した乾燥海藻に水性溶媒を加えて抽出操作を行う。水性溶媒としては水が好ましいが、水に塩酸等の酸又は水酸化ナトリウム等のアルカリ性水溶液を用いることもできる。
【0011】
抽出温度は、室温〜沸点であり、好ましくは50〜90℃であり、より好ましくは80〜95℃である。抽出時間は、5分〜72時間であり、好ましくは30分〜20時間、より好ましくは1〜3時間である。また、抽出操作は1回でもよいが、2回以上繰り返して行うこともできる。
【0012】
得られた抽出液から、ろ過、遠心分離、デカンテーション等によって固形分を除去する。
【0013】
得られた抽出液は、そのままか、又は必要に応じ、中和、脱塩、濃縮して使用することができるが、通常は、さらに一般的な精製処理を行うことが好ましい。精製処理としては、有機溶媒による沈殿、硫安、食塩、塩化カリウム等を用いる塩析、透析、限外ろ過、逆浸透処理、デキストラン、ポリアクリルアミドゲル等を充填したカラムを用いるゲルろ過等を用いることができる。また、これらの処理を2つ以上組み合わせて行うこともできる。
【0014】
以上の操作で得られた活性成分を含む抽出物は、そのまま免疫賦活剤又は抗腫瘍剤として用いることができるが、通常は、さらに、噴霧乾燥、凍結乾燥、真空乾燥、熱風乾燥等によって乾燥することができる。
【0015】
本発明の抽出物は、大量に接種しても生体に悪影響を及ぼさないという利点を有することから、抽出物それ自体又は種々の栄養分を加えて、又は飲食品中に含有させた免疫賦活作用又は抗腫瘍作用を有する機能性食品又は健康食品として提供することができる。具体的には、各種のビタミン類、ミネラル類等の栄養分を加えて、例えば、栄養ドリンク、豆乳、スープ等の液状の食品や各種形状の固形食品、さらには、粉末状としてそのままか、又は各種食品へ添加して用いることもできる。かかる機能性食品、健康食品としての本発明の抽出物の有効成分の含有量は、成人1日体重1kg当たり10〜1000mg、好ましくは30〜360mgであり、単回又は2〜3回に分けて摂取することができる。
【0016】
【実施例】
実験方法 海藻由来高分子多糖体の抽出と分画
図1に操作の流れを示す。乾燥スジメ100gをスライス状に裁断し、水2000g中に入れ、80〜95℃にて2時間抽出を行った。ろ紙による吸引ろ過を行ない、ろ液1,265gを得た。このろ液はエキス抽出量として29.2gに相当した。先のろ液から600gをミリポア製ペリコンXLモジュールBiomax−10の限外ろ過装置(分画分子量10,000)にて透析処理を行った。濃縮液が150mlになったところで3倍量の水を加えて600mlとし、2度目の透析を行った。この操作を繰り返し、合計4回の透析処理にて高分子多糖体の精製を行った。
【0017】
4回目の濃縮液150mlは減圧濃縮にて約50mlとし、無水エタノールにより沈殿を析出させた。
残りのろ液665gについても同様の操作で沈殿を析出し、先の析出沈殿と合わせ、ろ過および減圧乾燥後にスジメ高分子多糖体水抽出物2.3gを最終的に得た。乾燥スジメからの高分子多糖体回収率は2.3%であった。
【0018】
他に0.1M NaOHおよび0.1M HClの溶媒を用いてエキス抽出を行い、同様の分画処理にて、スジメ高分子多糖体アルカリ抽出物、スジメ高分子多糖体酸抽出物を調製した。さらに乾燥アイヌワカメよりアイヌワカメ高分子多糖体水抽出物、アイヌワカメ高分子多糖体アルカリ抽出物、アイヌワカメ高分子多糖体酸抽出物を調製した。一般にアルギン酸はうすいアルカリ溶液で、フコイダンはうすい塩酸溶液で抽出されるといわれている(山田信夫、海藻利用の科学(2000))。
【0019】
免疫賦活作用、抗腫瘍作用等に係る科学的評価
インビトロでのスクリーニング「WST−1アッセイ[新本洋士ら、日本食品科学工学会誌、64−68,43(1996)]」
1)細胞
WST−1アッセイはマイクロカルチャープレートを用いる細胞増殖測定法である。生細胞によって生成される水溶性ホルマザンをプレートリーダーで測定することにより、細胞増殖を迅速に測定することができる。
今回ヒューマンサイエンス研究資源バンクより分譲を受けたヒト由来接着性細胞株3株(肺ガン細胞株A549、胃ガン細胞株MKN28、類表皮ガンA−431)を用いた。細胞はそれぞれRPMI1640(旭テクノグラス)、EMEM(Giboo)DMEM(Giboo)に10%牛胎児血清を添加した培地で培養した。細胞をトリプシン処理により回収し、2〜4日毎に1:10から1:5の希釈倍率で継代培養した。培養は37℃、5%炭酸ガス95%空気、湿度90%以上の条件下で行った。
【0020】
2)海藻抽出物および対照物
調製した海藻由来高分子多糖体はスジメ水抽出物、スジメアルカリ抽出物、スジメ酸抽出物、アイヌワカメ水抽出物、アイヌワカメアルカリ抽出物、アイヌワカメ酸抽出物の6種類であった。コントロールとして抗悪性腫瘍剤クレスチン(PSK、三共)、アルギン酸ナトリウム(和光純薬)、フコイダン(シグマ)を用いた。
【0021】
3)培養細胞の海藻抽出物存在下での培養
1〜2.5×10/mlの密度の細胞懸濁液100μlをマイクロカルチャープレートに分注し、37℃で24時間培養後、培地を除き、培地に溶解した海藻抽出物をろ過滅菌後、100μl添加し、3日間培養後、細胞増殖をWST−1アッセイで測定した。また、対照として細胞無添加区、抽出物無添加区(培地のみ)も測定した。
【0022】
4)WST−1アッセイ
細胞を培養したマイクロカルチャープレートにセルカウンティングキット(同仁)で調製したWST−1溶液10μユを添加し、37℃で2時間インキュベート後、マイクロプレートリーダー(バイオラッド550)で主波長450nm、参照波長630nmで吸光度を測定し、細胞無添加区の吸光度を差し引き、抽出物無添加区(培地のみ)の吸光度を100%ととして生存率を求めた。
【0023】
インビボでの抗腫瘍作用および免疫賦活作用(マウス経口投与)
抗腫瘍物質のスクリーニングは、1948年、マウスリンパ性白血病L−1210が見出されたことに始まり、米国国立ガン研究所(NCI)のスクリーニング組織では、L−1210に加え、Sarcoma180及びCa755の3種類の腫瘍株を用いた術式が1959年頃より採用されるようになった。その後、多くの腫瘍株が使用されるようになったが、スクリーニング系において最も重要なことは、臨床上有用な薬剤の効果を予言しうるような系を用いることである(R.I.Geran et al., Cancer Chem. Rep. Part 2, 3(1972)、塚越茂著、ガンの薬物療法開発と効果判定、リアライズ社、東京、21−27頁、1985年)。
【0024】
現在臨床で使用されているほとんど全ての制ガン剤は、Ca755に対して有効性が確かめられていることから、Ca755を使用した抗腫瘍作用の検討は有用であると考える(塚越茂(1985):癌の薬物療法開発と効果判定、リアライズ社、東京、21〜27頁)。
【0025】
1)被験物質
インビトロでのスクリーニング(WST−1アッセイ)で効果の高かったスジメアルカリ抽出物を中心とし、スジメ水抽出物と、対象とてクレスチンを選んで行った。
【0026】
2)使用動物
5〜6週齢のSlc:BDF雄性マウスを日本工スエルシー株式会社より購入し、1週間の検疫期間を含む予備飼育の後、一般状態に異常が認められなかった動物を選択して試験に使用した。実験開始時の体重は、20.1〜26.1gであった。動物は耳パンチ及び尾へのフェルトペンによる動物番号の記載により個体識別を行った。また、収容したケージには、実験中、群及び動物番号を記入したカードを付した。
【0027】
3)飼育条件
予備飼育及び実験期問を通じ、温度22±3℃、湿度50±20%、照明12時間(8:00〜20:00)、換気回数13〜17回/時間の環境下で、ステンレス製可動ラック(1790W×470D×1650H(mm))に装着したポリザルフォン製ケージ(外径265W×427D×204H(mm))に5〜6匹の集団で収容した。飼料はステンレス製固型飼料給餌器により固型飼料、ラボ服ストック(日本農産工業(株))を、水はポリザルフォン製給水器(先管ステンレス製)により水道水を、各々自由に与えた。
【0028】
4)試験方法
6〜7週齢のBDFマウスを、体重を指標として層別連続無作為化法によって群分けし、表1の群構成に基づき使用した。G群を除いた全ての群においては、マウスに被験物質を1目1回7日間経口投与した。投与7日目に、C57BL/6マウスで継代維持した14目目の腫瘍細胞アデノカルシノーマ755(以下、Ca755と略)を、試験用マウスの腹側部皮下に1×10細胞/0.05ml/マウスの割合で移植した。腫瘍移植後、同様に14日間連続で合計21日間被験物質を経口投与した。G群については腫瘍移植翌目より1日1回14日間連続で経口投与した。被験物質投与終了翌目、エーテル麻酔下で抗凝固剤にヘパリンナトリウムを用いて後大静脈から採血し、血漿を分画した。採血終了後、腫瘍を摘出して湿重量を測定した。群A,C,F,I及びKの血漿からIL−2,IFN−γ、IL−4及びIL−10濃度をELISA法(ENDOGEN,Inc.)により定量した。
【0029】
【表1】

Figure 2004215506
【0030】
インビトロでの免疫賦活作用(リンパ球混合培養による増殖反応、mixed lymphocyte reaction、MLR[藤原大美ら、免疫研究法ハンドブック、113−117(1996)])
1)ヒトMLR
実験に用いたヒト末梢血リンパ球(PBL)は、健常人ボランティア末梢血より分離した。一人のドナーのPBLは、マイトマイシンCを20分間処理した後、10細胞/mlに調整し、刺激細胞として用いた。
もう一人のドナーから得たPBLはナイロンウールカラムにアプライし、37℃で1時間インキュベーションした。ナイロンウールに吸着しないT細胞を回収し、10画細胞/mlに調整した(以下、レスポンダーT細胞(responder T cellsという)。上記のAPCとレスポンダーT細胞を1:1の比率で混合し、96ウェル丸底プレートに分注した。その後各スルフォリピッドを添加した。
3−4日間培養後、H−チミジンを各ウェルに添加し、さらに24時間培養した。SKATRON harvesterで細胞を採取し、シンチレーションカウンターでレスポンダーT細胞の放射線活性を測定した。
【0031】
2)抽出物の調製
10mg/mlの濃度になるように超純水で溶解後、5分間の煮沸で滅菌した。MLRにおける抽出物の最終濃度は10〜500μg/mlとした。
【0032】
活性成分である高分子多溶体の物理化学的性状の解明
インビトロでのスクリーニング(WST−1アッセイ)で効果の高かったスジメアルカリ抽出物を中心とし、スジメ水抽出物、アイヌワカメ水抽出物、参考として食用のナガコンブ水抽出物を供試試料として用いた。
【0033】
各エキスの酸川水分解による構成糖の分析
エキス1mgを水4mlに溶解して、そのうち0.8mlをアンプル管に移し、エバポレーターで乾固させた。2.5Mトリフルオロ酢酸0.8mlを加え、ドライアイス−エタノール冷媒で凍結させた。アンプル管を真空下で冷媒から出し、内容物がゆっくり融けるのを待ち、液中の気泡を除いた。封管後、アルミブロックヒーターで100℃、24時間加熱した。アンプル管を開封後、内容物をエッペンドルフチューブに移し、エバポレーターで乾固させ、20μlの水で溶解した。これを1500rpm,3分間遠心分離して、上清を薄層クロマトグラフィー(TLC)分析に供した。TLCにはシリカゲルを用いて、展開溶媒にはn−ブタノール:酢酸:水=2:1:1(v/v/v)、呈色試薬にはオルシノール硫酸を用いた。TLC標品として、D−グルコース(和光純薬工業)および同条件で加水分解した試薬のアルギン酸(和光純薬工業)加水分解物を用いた。
【0034】
各エキスのウロン酸含量の定量
各エキスは褐藻抽出物であるので、アルギン酸に特徴的なD−マンニュロン酸やL−グルロン酸などのウロン酸を大量に含むことが予想される。よって、各エキスのウロン酸含量を測定した。あらかじめ試薬A(ホウ酸ナトリウム0.95gを濃硫酸100mlに溶解した)および試薬B(カルバゾール0.125gを無水メタノール100mlに溶解した)を調製しておいた。10μg/mlの各エキス溶液1mlを氷冷しながら、氷冷した試薬A5mlを加え、100℃、10分間加熱したあと氷冷した。試薬B0.2mlを加え、100℃、15分間加熱したあと室温まで冷却し、530nmで吸光値を測定した。検量線はD−グルクロン酸を用いて求めた。ウロン酸量は、D−グルクロン酸当量として求めた。
【0035】
各エキスの多糖類の分別
1)アルギン酸
アルギン酸はナトリウム塩として得られるアルカリ抽出法を用いた。各エキスを適当量秤取した。0.2N硫酸5mlを加え、室温で1夜振盪した。ろ紙(東洋濾紙No.1)を用いてろ過し、ろ液を除いた。残渣を水1mlで洗浄後に、1%炭酸ナトリウム水溶液を5ml加えて、1夜振盪した。水20mlを加えたあとにろ過した。ろ液に2倍容のエタノールを加えてアルギン酸を析出させた。ガラス棒で粗アルギン酸ナトリウムを集めた。得られた粗アルギン酸ナトリウムを水に溶解後、3倍容のエタノールを加えてアルギン酸ナトリウムを析出させた。さらに2回同じ操作を繰り返した。得られたアルギン酸ナトリウムを乾燥して重量を測定した。
【0036】
2)不溶性ラミナラン
不溶性ラミナランは塩酸抽出法を用いた。各エキスを適当量秤敢した。0.125N塩酸2.5mlと37%ホルマリン1μlを加え、70℃で攪拌した。ろ紙(東洋濾紙 No.1)を用いでろ過した。残渣をさらに70℃の水0.2mlで2回洗浄した。ろ液と洗浄液をあわせた。室温で3時間撹枠後に2目闇静置した。沈殿した粗不溶性ラミナランを遠心分離(3000rpmm、5分間)で集めた。乾燥後にエタノールおよびジエチルエーテルそれぞれ0.2mlで洗浄後、減圧下で乾燥させて重量を測定した。
【0037】
3)可溶性ラミナラン
粗可溶性ラミナランは塩酸糊出法を用いた。各エキスを適当量秤取した。0.09N 塩酸2.5mlを加え、室温で2時間撹拝した。遠心分離(3000rpm,5分間)して上清を別の容器に移した包。沈殿をさらに0.05N塩酸0.5mlで2回洗浄した。上清液と洗浄液をあわせた。エタノールを85%になるまで加えて沈殿を生成させた。沈殿を遠心分離(3000rpm,5分間)で集め、エタノールおよびジエチルエーテルそれぞれ0.5mlで洗浄後、減圧下で乾燥させて重量を測定した。
【0038】
4)フコイダン
フコイダンは塩酸抽出法を用いた。各エキスを適当量秤取した。0.17N塩酸1.3mlを加え、65〜70℃で1時間抽出した。抽出液を水酸化ナトリウムで中和した後、減圧濃縮した。残渣を水0.5mlに溶解した。エタノールを1ml加えて、遠心分離で粗フコイダンを沈殿させた。乾燥後に水2.5mlに溶解後に、さらに4M塩化カルシウム1mlを加えて、アルギン酸カルシウムの沈殿を遠心分離で除いた。この上清に5%セチルピリジニウムクロリド(CPC)水溶液3mlを加えた。続いて塩化カルシウムの終濃度が0.5Mになるように水を加えて、一晩静置した。遠心分離(3000rpm、5分間)によってCPC複合体を沈殿させ、3M塩化カルシウム1.5mlに溶解して、エタノール7mlを加えた。生成した沈殿を遠心分離(3000rpm、5分間)で集め、減圧下で乾燥させて重量を測定した。
【0039】
実験結果
海藻由来高分子多糖体の抽出と分画
乾燥原料100gより実験室レベルで得られた高分子多糖体の粉末は1〜8gであった。結果を図2に示す。アルカリ抽出では水抽出よりもエキス抽出量はあまり多くはないが、これはろ過によるロスが増えているためで、実際のアルカリエキス抽出量はさらに多いと思われる。アルカリ抽出では粘性の高い溶液となる。酸抽出ではアルカリ抽出や水抽出よりもエキス抽出量は増えているが、高分子多糖体粉末としての収量は少なかった。この理由は加水分解により、低分子へと変化するものが多いと考えられる。
【0040】
免疫賦活作用、抗腫瘍作用等に係る科学的評価
インビトロでのスクリーニング(WST−1アッセイ)
1)A549の増殖に対するスジメ、アイヌワカメの抽出物の影響
いずれの試料も濃度が高くなると細胞の生存率は減少した。対照のフコイダン、クレスチンは、増殖を強く抑制した。フコイダンは、0.5mg/mlで生存率30%であり、クレスチンは1mg/mlで10%以下であった。また、褐藻類に含まれるアルギン酸は5mg/mlで50%程度であったが、海藻抽出物ではスジメは酸、アルカリ抽出物ともに5mg/mlで50%以下を示した。(図3)
【0041】
MKN28の増殖に対するスジメ、アイヌワカメの抽出物の影響
フコイダン、クレスチンは1mg/mlで40%の生存率であったが、アルギン酸は濃度を高くしてもあまり効果がみられなかった。スジメ抽出物はいずれも濃度が高くなると生存率は減少し、5mg/mlで50%以下であった。アイヌワカメは酸、アルカリ抽出物5mg/mlで50%以下の生存率であった。(図4)
【0042】
A−431の増殖に対するスジメ、アイヌワカメの抽出物の影響
クレスチシは1mg/mlで50%の生存率であったが、スジメのアルカリ抽出物では0.5mg/mlで50%以下の生存率を示し、海藻抽出物の中では最も高い増殖抑制効果を示した。(図5)
【0043】
インビボでの抗腫瘍作用および免疫賦活作用(マウス経口投与)
各被験物質投与終了目の翌日に、全ての動物から腫瘍を摘出し湿重量を測定した。その結果を図6−1に示す。対照群の摘出腫瘍重量は3224mgであった。クレスチン100及び300mg/kg/day投与群の腫瘍重量は、それぞれ2479mg及び1717mgを示し、対照群と比較していずれも有意な増殖抑制が認められた。腫瘍増殖抑制率は、それぞれ23.1及び46.7%と算出された。
スジメアルカリ抽出物30,100及び300mg/kg/day、21日間投与群の腫瘍重量は、それぞれ3043、2684及び2178mgを示し、対照群と比較して100mg/kg/day以上の投与で有意な増殖抑制が認められた。腫瘍増殖抑制率は、それぞれ5.6、16.8及び32.5%と算出された。
スジメアルカリ抽出物300mg/kg/day、14日間投与群の腫瘍重量は2846mgを示し、対照群と比較して有意な抑制が認められたものの、腫瘍増殖抑制率は11.8%と低かった。スジメ水抽出物100及び300mg/kg/day投与群の腫瘍重量は、それぞれ2729及び2298mgを示し、対照群と比較していずれも有意な抑制が認められた。腫瘍抑制率は、それぞれ15.4及び28.7%と算出された。
【0044】
インビトロでの免疫賦活作用(MLR)
スジメ水抽出物は低濃度で増殖促進傾向がみられたが、高濃度(>200μg/ml)での培養は不可能であった。スジメアルカリ抽出物では、効果がみとめられなかった。スジメ酸抽出物は濃度依存的に増殖促進傾向(10〜500μg/ml)を示した。アイヌワカメ水抽出物では、増殖促進傾向は認められたが、バラツキが大きかった。アイヌワカメアルカリ抽出物では、効果が認められなかった。アイヌワカメ酸抽出物は低濃度(10〜100μg/ml)で増殖促進傾向を示した(図7)。
【0045】
活性成分である高分子多糖体の物理化学的性状の解明
各エキスの酸加水分解による構成糖の分析
それぞれのエキス酸加水分解のTLC分析(図8)を行った。スジメアルカリ抽出物はアルギン酸加水分解物と一致したので、アルギン酸が主成分と決定できた。スジメ水抽出物は1個のスポットのみが検出されたが、同定には至らなかった。アイヌワカメ水抽出物はアルギン酸加水分解物に対応するスポットのほか、未同定のスポットが検出された。ナガコンブ水抽出物はアルギン酸加水分解物の他にD−グルコースに対応するスポットが検出されることから、アルギン酸の他に、ラミナランなどのグルカンが含まれていると予想される。
【0046】
各エキスのウロン酸含量の定量
ウロン酸量はD−グルクロン酸量で求め、エキス中の重量%で示した(表2)。スジメアルカリ抽出物およびアイヌワカメ水抽出物でウロン酸の割合が高かった。これらのエキスはアルギン酸が多いと予想される。
【0047】
表2 各エキス中のウロン酸の含有率
【0048】
【表2】
Figure 2004215506
【0049】
各エキスの多糖類の分別
スジメアルカリ抽出物は各多糖の含有率の合計は73%程度であるが、その他のエキスは各多糖の含有率の合計が100%を大きく超えた(表7)。これらの原因として、アルギン酸はNa塩で、可溶性ラミナランは粗収量で求めたこと、また本分画で得られたものをすべて当該多糖とみなしているため等の理由が考えられるが、おおまかな傾向は読み取れる。
スジメアルカリ抽出物はアルギン酸が主成分であった。スジメ水抽出物ではラミナランやフコイダンが比較的多かった。アイヌワカメ水抽出物ではアルギン酸が主成分であった。ナガコンブ水抽出物ではラミナランが多かった。
【0050】
表3 各エキス中の多糖の含有率(%)
【0051】
【表3】
Figure 2004215506
【0052】
考察
海藻由来高分子多糖体の抽出と分画において、未利用資源であるスジメ、アイヌワカメを原料とし、乾燥物100gより実験室レベルで得られた高分子多糖体の粉末は1〜8gであった。
【0053】
アルカリ抽出では水抽出よりもエキス抽出量は多いと思われるが、粘性の高い溶液となる。
【0054】
酸抽出ではアルカリ抽出や水抽出よりもエキス抽出量は増えているが、高分子多糖体粉末としての収量は少なくなっている。この理由は加水分解により、高分子多糖体が低分子へと変化するものが多いと考えられる。
【0055】
今回、海藻抽出物(高分子多糖体粉末)各濃度につき、WST−1アッセイを用い、ヒト由来ガン細胞に対する生存率を求めた。対照としてクレスチン、アルギン酸ナトリウム、フコイダンを用い、比較検討を行った。
【0056】
低濃度で効果が見られたのは対照試料のフコイダンやクレスチンである。海藻抽出物試料でも濃度依存的に生存率が低く(細胞増殖抑制が高い)なったが、低濃度で効果が見られた海藻抽出物試料はスジメのアルカリ抽出物のA−431(類表皮ガン細胞株)に対する効果であった。
【0057】
試験結果
試験結果を図6−2に示した。スジメアルカリ抽出物では、投与量30mg/kgでは効果は認められなかったものの、投与量100mg/kgで17%、投与量300mg/kgで32%の有意な腫瘍増殖抑制効果が得られた(p<0.01)。スジメ水抽出物でもスジメアルカリ抽出物と同様の効果が得られた。
【0058】
移植後に投与した群(合計14日間投与)は、移植7日前より投与した群(合計21日間投与)よりも効果は低かった。これはスジメアルカリ抽出物を経口摂取することによって非特異的な免疫賦活活性が高められるものの、その効果が発揮されるには数日を要するものと考えられる。
【0059】
なおクレスチンでは投与量300mg/kgで47%の腫瘍増殖抑制効果が得られている。抗悪性腫瘍剤クレスチンの用法用量は3g/日のため、60kgのヒトが1日3g摂取すると、マウス投与量換算で約50mg/kg/日となる。これは今回試験した腫瘍細胞Adenocarcinoma755の腫瘍増殖抑制率から限って類推すると、スジメアルカリ抽出物投与量100mg/kgにほぼ相当するものと予測される。換言すればスジメアルカリ抽出物を1日6g摂取すると、抗悪性腫瘍剤クレスチンを1日3g服用したことと同等の効果に匹敵する。
【0060】
インビトロによる免疫賦活作用では、レスポンダーT細胞がスジメ酸抽出物により濃度依存的に明らかな増殖促進傾向(10〜500μg/ml)を示した。アイヌワカメ酸抽出物も低濃度(10〜100μg/ml)で増殖促進傾向を示した。
【0061】
特にスジメ酸抽出物には樹状細胞等の抗原提示細胞を刺激し、不細胞増殖を促進させる物質が含まれていることが示唆される。32%の有意な腫瘍増殖抑制効果が得られたスジメアルカリ抽出物以上に、スジメ酸抽出物が抗腫瘍効果有することが期待できる。
【0062】
スジメの抽出物(酸、アルカリ、水抽出物)についてインビボでの抗腫瘍作用および免疫賦活作用(マウス経口投与)
【0063】
使用動物
5週齢のSlc:BDF雄性マウスを日本エスエルシー株式会社より購入し、1週間の検疫期間を含む予備飼育の後、一般状態に異常が認められなかった動物を選択し試験に使用した。実験開始時の体重は、25.0〜29.8gであった。動物は、耳パンチ及び尾へのフェルトペンによる動物番号の記載により個体を識別した。また、収容したゲージには、実験中、処理群及び動物番号を記入したカードを付した。
【0064】
飼育条件
予備飼育及び実験期間を通じ、温度22±3℃、湿度50±20%、照明12時間(8:00〜20:00)、換気回数13〜17回/時間の環境下で、ステンレス製可動ラック(1790W×470D×1650Hmm)に装着したポリサルフォン製ケージ(265W×427D×204Hmm)に5〜6匹の集団で収容した。飼料は、ステンレス製固形飼料給餌器により固形飼料、ラボMRストック(日本農産工業株式会社)を、水は、ポリサルフォン製給水器(先管ステンレス製)により水道水を、各々自由に与えた。
【0065】
試験方法
6週齢のBDFマウスを、表4の群構成に基づき使用した。投与7日目に、C57BL/6マウスで継代維持した10〜14日目の腫瘍細胞を試験用マウスの腹側部皮下に1×10細胞/0.05ml/マウスの量で移植した。被験物質を1日1回経口投与した。被験物質投与最終日の翌日に、エーテル麻酔下にマウスの腹部大動脈より採血し、その後腫瘍を摘出しその重量を測定した。体重測定は、2回/週の割合で行った。得られた血液は、血漿を分画し、−80℃で保存した。
【0066】
【表4】
Figure 2004215506
【0067】
統計処理
各群で得られた数値の平均値及び標準誤差を算出した。各群間の統計分析は、Bartlett法(有意水準5%)による等分散性の検定、等分散の場合は、さらに一元配置分散分析を行い、有意な場合には、Turkey法により平均値の比較を行った。不等分散の場合は、Kruskal−WallisのH検定を行い、有意な場合はTurkey法により平均順位の比較を行った。有意水準は、危険率5%及び1%とした。
【0068】
また、平均摘出腫瘍重量について、対照群に対する被験物質投与群の割合(T/C)から、米国国立癌研究所(NCI)の評価基準(Gcran, R.I. et al. Cancer Chem. Rep. Part3, vol3 (1972))に従い、以下のように腫瘍抑制率(%)を算出し、抗腫瘍効果の判定を行った。
T/C(%)=(被験物質投与群の平均摘出腫瘍重量(mg)/対照群の平均摘出
腫瘍重量(mg))×100
腫瘍抑制率(%)=100−T/C≧30%を抗腫瘍効果ありとした。
【0069】
試験結果
試験結果を図6−2に示した。
1.スジメ酸抽出物
対照群の摘出腫瘍重量は、2390mgであった。
スジメ酸抽出物30、100及び300mg/kg/dayの21日間投与群では、腫瘍重量は、それぞれ608、498及び392mgを示し、100mg/kg/day以上の投与で対照群と比較して有意な抑制が認められた。300mg/kg/dayの14日間投与群では、腫瘍重量は、834mg/kg/dayを示し、対照群と比較して抑制傾向が認められた。腫瘍抑制率は、30、100及び300mg/kg/dayの21日投与群では、それぞれ74.6、79.2及び83.6%、300mg/kg/dayの14日間投与群では、65.1%と算出され、いずれも抗腫瘍効果ありと判定された。
【0070】
2.スジメアルカリ抽出物
スジメアルカリ抽出物300mg/kg/dayの21日間投与群では、腫瘍重量は、569mgを示し、対照群と比較して有意な抑制が認められた。腫瘍抑制率は、76.2%と算出され、抗腫瘍効果ありと判定された。
【0071】
3.スジメ水抽出物
スジメ水抽出物300mg/kg/dayの21日間投与群では、腫瘍重量は、418mgを示し、対照群と比較して有意な抑制が認められた。腫瘍抑制率は、82.5%と算出され、抗腫瘍効果ありと判定された。
【0072】
4.スジメ乾燥粉末
スジメ乾燥粉末300mg/kg/dayの21日間投与群では、腫瘍重量は、685mgを示し、対照群と比較して有意な抑制が認められた。腫瘍抑制率は、71.4%と算出され、抗腫瘍効果ありと判定された。
【0073】
高分子多糖体の構造の解析
褐藻類にはアルギン酸、フコイダン、フコイダンなどの高分子多糖体が含まれる。一般にアルギン酸はうすいアルカリで、フコイダンはうすい塩酸で抽出されるといわれる。よってTLC分析、ウロン酸含量、多糖類の分別により高分子多糖体の構造の解析を行った。
【0074】
スジメアルカリ抽出物はアルギン酸が主成分であり、スジメ水抽出物ではラミナランやフコイダンが比較的多かった。アイヌワカメ水抽出物ではアルギン酸が主成分であり、アイヌワカメアルカリ抽出物ではアルギン酸が主成分と考えられる。
【0075】
インビトロによる免疫賦活作用で、レスポンダーT細胞が濃度依存的に明らかな増殖促進傾向を示した試料は、スジメアルカリ抽出物でなくスジメ酸抽出物であった。よって樹状細胞等の抗原提示細胞を刺激し、T細胞増殖を促進させる物質はラミナランもしくはフコイダンに関係するものと推測される。
【0076】
本抽出物は、安全かつ廉価であり、その免疫賦活性及び腫瘍抑制効果を利用した機能性食品の原料として利用することができる。
【図面の簡単な説明】
【図1】海藻由来高分子多糖体製造フローである。
【図2】海藻由来高分子多糖体の抽出・分析結果である。
【図3】各種抽出物添加時のA549の生存率である。
【図4】各種抽出物添加時のMKN28の生存率である。
【図5】各種抽出物添加時のA431の生存率である。
【図6】インビボでの抗腫瘍作用である。
【図7】インビボでの抗腫瘍作用である。
【図8】レスポンダーT細胞の増殖である。
【図9】海藻エキスの酸加水分解物の分析TLCである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an extract from brown algae, linen, which has an immunostimulating effect and / or an antitumor cell effect.
[0002]
[Prior art]
In eastern Hokkaido, seaweeds such as Ainu-Wakame, Sujime, Kalexa, and Hibamata grow naturally and can be collected in large quantities, but are not used as resources because they are not suitable for food.
[0003]
In addition, from the viewpoint of protecting useful resources such as kelp, the Habomai Fisheries Cooperative removes 600 tons of unused seaweeds such as Azalea and Ainu-Wakame, which grow near the sea near Nemuro. Disposal has become a serious problem.
[0004]
On the other hand, in recent years, research on physiologically active substances contained in seaweeds has been advanced, and it has been found that seaweeds contain high molecular polysaccharides such as alginic acid, fucoidan, and carrageenan. It is considered that this high molecular polysaccharide enhances the attack on cancer cells by activating immune cells such as macrophages and natural killer cells in a living body, and exhibits an antitumor effect (Patent Documents 1 to 3). In addition to seaweeds, high-molecular-weight polysaccharide components extracted from basidiomycetes, lentin of shiitake mushroom, krestin of kawatake mushroom, and schizophyllan sugar of shirohirotake mushroom have been used for cancer therapy for more than 20 years. (Patent Documents 4 and 5).
[0005]
However, studies on physiologically active substances derived from seaweed components, such as antitumor substances and immunostimulatory substances, are still few, and the necessity for future research is high.
[0006]
Thus, the present inventors have conducted intensive studies and, as a result, have found that an extract of linen has antitumor activity and immunostimulatory activity, and have completed the present invention.
[0007]
[Patent Document 1]
JP-A-10-158156
[Patent Document 2]
JP-A-5-139988
[Patent Document 3]
JP-A-6-256208
[Patent Document 4]
JP-A-7-215990
[Patent Document 5]
JP-A-10-195106
[0008]
[Problems to be solved by the invention]
The present invention provides a food or beverage comprising an extract of linen.
[0009]
[Means for Solving the Problems]
Examples of the seaweed used in the present invention include stripes and Ainu-Wakame, and stripes are particularly preferable. Although these seaweeds can be used as they are, they are preferably used as those that have been washed with water to remove dirt, dried, cut into slices, or crushed dry powders.
[0010]
An aqueous solvent is added to the washed dried seaweed to perform an extraction operation. Water is preferred as the aqueous solvent, but an acid such as hydrochloric acid or an alkaline aqueous solution such as sodium hydroxide can also be used for the water.
[0011]
The extraction temperature is from room temperature to the boiling point, preferably from 50 to 90 ° C, more preferably from 80 to 95 ° C. The extraction time is 5 minutes to 72 hours, preferably 30 minutes to 20 hours, more preferably 1 to 3 hours. In addition, the extraction operation may be performed once, but may be performed twice or more.
[0012]
The solid content is removed from the obtained extract by filtration, centrifugation, decantation or the like.
[0013]
The obtained extract can be used as it is or, if necessary, after neutralization, desalting and concentration, but it is usually preferable to carry out a more general purification treatment. As the purification treatment, precipitation using an organic solvent, salting out using ammonium sulfate, sodium chloride, potassium chloride, etc., dialysis, ultrafiltration, reverse osmosis treatment, gel filtration using a column filled with dextran, polyacrylamide gel, or the like should be used. Can be. Further, two or more of these processes can be performed in combination.
[0014]
The extract containing the active ingredient obtained by the above operation can be used as it is as an immunostimulant or an antitumor agent, but is usually further dried by spray drying, freeze drying, vacuum drying, hot air drying, or the like. be able to.
[0015]
Since the extract of the present invention has an advantage that it does not adversely affect the living body even when inoculated in large amounts, the extract itself or various nutrients are added thereto, or the immunostimulatory action or It can be provided as a functional food or health food having an antitumor effect. Specifically, by adding nutrients such as various vitamins and minerals, for example, nutritional drinks, soy milk, liquid foods such as soups and solid foods of various shapes, and further, as it is as a powder, or various It can also be used by adding to food. The content of the active ingredient in the extract of the present invention as such a functional food or health food is 10 to 1000 mg, preferably 30 to 360 mg per 1 kg of adult daily weight, and is divided into single doses or two to three times. Can be taken.
[0016]
【Example】
Experimental method Extraction and fractionation of seaweed-derived polysaccharide
FIG. 1 shows a flow of the operation. 100 g of the dried stripes were cut into slices, placed in 2000 g of water, and extracted at 80 to 95 ° C. for 2 hours. Suction filtration was performed using filter paper to obtain 1,265 g of a filtrate. This filtrate corresponded to 29.2 g as an extract extraction amount. 600 g of the above filtrate was dialyzed with an ultrafiltration device (fraction molecular weight 10,000) of Pellicon XL module Biomax-10 manufactured by Millipore. When the concentration of the concentrated solution reached 150 ml, a third volume of water was added to make the concentration 600 ml, and the second dialysis was performed. This operation was repeated to purify the high-molecular-weight polysaccharide by a total of four dialysis treatments.
[0017]
The fourth concentrated solution (150 ml) was concentrated under reduced pressure to about 50 ml, and a precipitate was precipitated with anhydrous ethanol.
A precipitate was precipitated in the same manner from the remaining 665 g of the filtrate, and the precipitate was combined with the previous precipitate, filtered, and dried under reduced pressure to finally obtain 2.3 g of an aqueous extract of polysaccharide polysaccharide. The recovery rate of the high molecular weight polysaccharide from the dried line was 2.3%.
[0018]
In addition, extract extraction was performed using a solvent of 0.1 M NaOH and 0.1 M HCl, and by the same fractionation treatment, an alkaline extract of polysaccharide polysaccharide and an acid extract of polysaccharide polysaccharide were prepared. Further, from the dried Ainu-Wakame, an Ainu-Wakame high-molecular-weight polysaccharide aqueous extract, an Ainu-Wakame high-molecular-weight polysaccharide alkaline extract, and an Ainu-Wakame high-molecular-weight polysaccharide acid extract were prepared. It is generally said that alginic acid is extracted with a thin alkaline solution and fucoidan is extracted with a thin hydrochloric acid solution (Nobuo Yamada, Science of Utilization of Seaweed (2000)).
[0019]
Scientific evaluation of immunostimulatory effects, antitumor effects, etc.
In vitro screening "WST-1 assay [Yoshi Shinmoto et al., Japan Society for Food Science and Technology, 64-68, 43 (1996)]"
1) Cells
The WST-1 assay is a cell proliferation assay using a microculture plate. By measuring the water-soluble formazan produced by living cells with a plate reader, cell proliferation can be rapidly measured.
This time, three human-derived adhesive cell lines (lung cancer cell line A549, stomach cancer cell line MKN28, epidermoid cancer A-431) obtained from the Human Science Research Resource Bank were used. The cells were cultured in a medium in which 10% fetal bovine serum was added to RPMI1640 (Asahi Techno Glass), EMEM (Giboo), DMEM (Giboo), respectively. Cells were harvested by trypsinization and subcultured every 2-4 days at a dilution of 1:10 to 1: 5. The cultivation was performed at 37 ° C., 5% carbon dioxide gas 95% air, and humidity 90% or more.
[0020]
2) Seaweed extract and control
The prepared seaweed-derived high-molecular-weight polysaccharides consisted of six types: a linen water extract, a linen alkali extract, a linen acid extract, an Ainu-Wakame water extract, an Ainu-Wakame alkali extract, and an Ainu-Wakame acid extract. As controls, antineoplastic agent krestin (PSK, Sankyo), sodium alginate (Wako Pure Chemical Industries), and fucoidan (Sigma) were used.
[0021]
3) Culture of cultured cells in the presence of seaweed extract
1 to 2.5 × 10 4 / Ml of the cell suspension at a density of / ml was dispensed into a microculture plate, cultured at 37 ° C for 24 hours, the medium was removed, the seaweed extract dissolved in the medium was sterilized by filtration, and then 100 µl was added. Later, cell proliferation was measured in the WST-1 assay. As a control, a cell-free group and an extract-free group (medium only) were also measured.
[0022]
4) WST-1 assay
To a microculture plate in which cells have been cultured, 10 μ ユ of a WST-1 solution prepared with a cell counting kit (Dojin) is added, and the mixture is incubated at 37 ° C. for 2 hours. Then, the main wavelength is 450 nm and the reference wavelength is 450 nm using a microplate reader (Bio-Rad 550). The absorbance was measured at 630 nm, the absorbance of the cell-free group was subtracted, and the viability was determined with the absorbance of the extract-free group (medium only) as 100%.
[0023]
In vivo anti-tumor and immunostimulatory effects (oral administration to mice)
Screening for antineoplastic substances began in 1948 with the discovery of mouse lymphocytic leukemia L-1210. In the US National Cancer Institute (NCI) screening organization, in addition to L-1210, Sarcoma 180 and Ca755 were added. Surgical procedures using various types of tumor strains have been adopted since about 1959. Since then, many tumor lines have been used, but the most important in screening systems is to use systems that can predict the effects of clinically useful drugs (RI Geran). et al., Cancer Chem. Rep. Part 2, 3 (1972), Shigeru Tsukagoshi, Development and Evaluation of Cancer Drug Therapy, Realize, Tokyo, 21-27, 1985).
[0024]
Since almost all anticancer drugs currently used in clinical practice have been confirmed to be effective against Ca755, it is considered that studying the antitumor effect using Ca755 is useful (Shigeru Tsukakoshi (1985): Cancer Pharmaceutical Therapy Development and Effect Judgment, Realize, Tokyo, 21-27).
[0025]
1) Test substance
The analysis was carried out by selecting a lineme water extract and krestin as a subject, centering on a lineme alkali extract that was highly effective in in vitro screening (WST-1 assay).
[0026]
2) Animals used
Slc at 5-6 weeks of age: BDF 1 Male mice were purchased from Nippon Kogyo SLC Co., Ltd., and after preliminary breeding including a quarantine period of one week, animals in which no abnormality was observed in the general condition were selected and used for the test. The body weight at the start of the experiment was 20.1-26.1 g. The animals were identified by ear punches and the animal numbers described with a felt pen on the tail. In addition, the housed cage was provided with a card in which the group and animal number were written during the experiment.
[0027]
3) Rearing conditions
Through the preliminary breeding and the experimental period, the stainless steel movable rack under the environment of temperature 22 ± 3 ° C, humidity 50 ± 20%, lighting 12 hours (8:00 to 20:00), ventilation rate 13 to 17 times / hour (1790 W x 470 D x 1650 H (mm)) and a group of 5 to 6 animals were housed in a cage made of polysalphon (outside diameter: 265 W x 427 D x 204 H (mm)). As a feed, a solid feed and a lab clothing stock (Nippon Agricultural Industry Co., Ltd.) were freely given by a stainless solid feed feeder, and tap water was freely given by a polysalphon waterer (a stainless steel tube).
[0028]
4) Test method
6-7 week old BDF 1 The mice were grouped by stratified continuous randomization using body weight as an index and used based on the group composition in Table 1. In all groups except group G, mice were orally administered the test substance once a day for 7 days. On the 7th day after the administration, a 14th tumor cell adenocarcinoma 755 (hereinafter, abbreviated as Ca755) subcultured and maintained in C57BL / 6 mice was subcutaneously injected into the abdominal part of a test mouse at 1 × 10 5. 5 Cells were implanted at a rate of cells / 0.05 ml / mouse. After the tumor transplantation, the test substance was similarly orally administered for a total of 21 days for 14 consecutive days. Group G was orally administered once daily for 14 consecutive days from the day after tumor implantation. The day after the end of the administration of the test substance, blood was collected from the posterior vena cava using ether heparin as an anticoagulant under ether anesthesia, and the plasma was fractionated. After the blood collection, the tumor was excised and the wet weight was measured. IL-2, IFN-γ, IL-4 and IL-10 concentrations were quantified from the plasma of Groups A, C, F, I and K by ELISA (ENDOGEN, Inc.).
[0029]
[Table 1]
Figure 2004215506
[0030]
In vitro immunostimulatory action (proliferation reaction by mixed lymphocyte culture, mixed lymphocyte reaction, MLR [Daimi Fujiwara et al., Handbook of Immunological Research, 113-117 (1996)])
1) Human MLR
Human peripheral blood lymphocytes (PBL) used in the experiment were separated from peripheral blood of healthy volunteers. One donor's PBL was treated with mitomycin C for 20 minutes, followed by 10 minutes. 6 Adjusted to cells / ml and used as stimulator cells.
PBL from another donor was applied to a nylon wool column and incubated at 37 ° C. for 1 hour. Collect T cells that do not adsorb to nylon wool and 6 (Responder T cells) The APC and the responder T cells were mixed at a ratio of 1: 1 and dispensed into a 96-well round bottom plate. The pid was added.
After culturing for 3-4 days, 3 H-thymidine was added to each well, and the cells were further cultured for 24 hours. The cells were collected with a SKATRON harvester, and the radioactivity of responder T cells was measured with a scintillation counter.
[0031]
2) Preparation of extract
After dissolving in ultrapure water to a concentration of 10 mg / ml, the mixture was sterilized by boiling for 5 minutes. The final concentration of the extract in the MLR was 10-500 μg / ml.
[0032]
Elucidation of physicochemical properties of polymer polysolution as active ingredient
As a test sample, a water lineage extract, a water extract of Ainu-Wakame seaweed, and an edible water extract of Nagakombu as a reference were used as test samples centering on a lineage alkali extract which was highly effective in in vitro screening (WST-1 assay).
[0033]
Analysis of constituent sugars by acid river water decomposition of each extract
1 mg of the extract was dissolved in 4 ml of water, of which 0.8 ml was transferred to an ampoule tube and dried by an evaporator. 0.8 ml of 2.5 M trifluoroacetic acid was added and frozen with a dry ice-ethanol refrigerant. The ampoule was removed from the refrigerant under vacuum and the contents were allowed to slowly melt, removing bubbles in the liquid. After sealing, the tube was heated at 100 ° C. for 24 hours using an aluminum block heater. After opening the ampoule, the contents were transferred to an Eppendorf tube, dried to dryness by an evaporator, and dissolved in 20 μl of water. This was centrifuged at 1500 rpm for 3 minutes, and the supernatant was subjected to thin layer chromatography (TLC) analysis. Silica gel was used for TLC, n-butanol: acetic acid: water = 2: 1: 1 (v / v / v) as a developing solvent, and orcinol sulfuric acid was used as a color reagent. D-glucose (Wako Pure Chemical Industries) and a hydrolyzate of alginic acid (Wako Pure Chemical Industries), a reagent hydrolyzed under the same conditions, were used as TLC samples.
[0034]
Determination of uronic acid content of each extract
Since each extract is a brown algae extract, it is expected that it contains a large amount of uronic acids such as D-mannuronic acid and L-guluronic acid, which are characteristic of alginic acid. Therefore, the uronic acid content of each extract was measured. Reagent A (0.95 g of sodium borate dissolved in 100 ml of concentrated sulfuric acid) and reagent B (0.125 g of carbazole dissolved in 100 ml of anhydrous methanol) were prepared in advance. While ice-cooling 1 ml of each 10 μg / ml extract solution, 5 ml of ice-cooled reagent A was added, heated at 100 ° C. for 10 minutes, and then ice-cooled. 0.2 ml of Reagent B was added, heated at 100 ° C. for 15 minutes, cooled to room temperature, and the absorbance was measured at 530 nm. The calibration curve was determined using D-glucuronic acid. The uronic acid amount was determined as D-glucuronic acid equivalent.
[0035]
Separation of polysaccharide of each extract
1) Alginic acid
Alginic acid used the alkali extraction method obtained as a sodium salt. An appropriate amount of each extract was weighed. 5 ml of 0.2N sulfuric acid was added, and the mixture was shaken at room temperature overnight. Filtration was performed using filter paper (Toyo Filter Paper No. 1), and the filtrate was removed. After the residue was washed with 1 ml of water, 5 ml of a 1% aqueous sodium carbonate solution was added, and the mixture was shaken overnight. After adding 20 ml of water, the mixture was filtered. Alginic acid was precipitated by adding twice the volume of ethanol to the filtrate. The crude sodium alginate was collected with a glass rod. After dissolving the obtained crude sodium alginate in water, 3 volumes of ethanol was added to precipitate sodium alginate. The same operation was repeated twice more. The obtained sodium alginate was dried and weighed.
[0036]
2) Insoluble laminaran
For the insoluble laminaran, a hydrochloric acid extraction method was used. An appropriate amount of each extract was weighed. 2.5 ml of 0.125N hydrochloric acid and 1 μl of 37% formalin were added and stirred at 70 ° C. It filtered using filter paper (Toyo filter paper No. 1). The residue was further washed twice with 0.2 ml of water at 70 ° C. The filtrate and the washing solution were combined. After stirring at room temperature for 3 hours, the mixture was allowed to stand still for the second time. The precipitated crude insoluble laminaran was collected by centrifugation (3000 rpm, 5 minutes). After drying, each was washed with 0.2 ml of ethanol and diethyl ether, dried under reduced pressure and weighed.
[0037]
3) Soluble laminaran
Crude soluble laminaran was used by hydrochloric acid sizing method. An appropriate amount of each extract was weighed. 2.5 ml of 0.09N hydrochloric acid was added, and the mixture was stirred at room temperature for 2 hours. A packet in which the supernatant was transferred to another container after centrifugation (3000 rpm, 5 minutes). The precipitate was further washed twice with 0.5 ml of 0.05N hydrochloric acid. The supernatant and the washing solution were combined. Ethanol was added to 85% to form a precipitate. The precipitate was collected by centrifugation (3000 rpm, 5 minutes), washed with 0.5 ml each of ethanol and diethyl ether, dried under reduced pressure and weighed.
[0038]
4) Fucoidan
Fucoidan used a hydrochloric acid extraction method. An appropriate amount of each extract was weighed. 1.3 ml of 0.17N hydrochloric acid was added, and the mixture was extracted at 65 to 70 ° C. for 1 hour. The extract was neutralized with sodium hydroxide and concentrated under reduced pressure. The residue was dissolved in 0.5 ml of water. 1 ml of ethanol was added, and crude fucoidan was precipitated by centrifugation. After drying and dissolving in 2.5 ml of water, 1 ml of 4M calcium chloride was further added, and the precipitate of calcium alginate was removed by centrifugation. To this supernatant, 3 ml of a 5% cetylpyridinium chloride (CPC) aqueous solution was added. Subsequently, water was added so that the final concentration of calcium chloride became 0.5 M, and the mixture was allowed to stand overnight. The CPC complex was precipitated by centrifugation (3000 rpm, 5 minutes), dissolved in 1.5 ml of 3M calcium chloride, and 7 ml of ethanol was added. The resulting precipitate was collected by centrifugation (3000 rpm, 5 minutes), dried under reduced pressure, and weighed.
[0039]
Experimental result
Extraction and fractionation of polysaccharides derived from seaweed
The amount of the powder of the high molecular weight polysaccharide obtained at the laboratory level from 100 g of the dry raw material was 1 to 8 g. FIG. 2 shows the results. The amount of extract extracted by alkali extraction is not much larger than that of water extraction, but this is because the loss due to filtration is increased, and it is considered that the actual amount of extracted alkali extract is even larger. Alkali extraction results in a viscous solution. In the acid extraction, the amount of extract extraction was larger than that of alkali extraction or water extraction, but the yield as a high molecular weight polysaccharide powder was small. It is considered that the reason for this is that many molecules are converted into low molecules by hydrolysis.
[0040]
Scientific evaluation of immunostimulatory effects, antitumor effects, etc.
In vitro screening (WST-1 assay)
1) Influence of extracts of linen and Ainu-Wakame on the growth of A549
Cell viability decreased at higher concentrations in all samples. The control fucoidan, krestin, strongly inhibited growth. Fucoidan had a 30% viability at 0.5 mg / ml and krestin had less than 10% at 1 mg / ml. Also, alginic acid contained in brown algae was about 50% at 5 mg / ml, but in seaweed extract, linen showed 50% or less at 5 mg / ml for both acid and alkali extracts. (Fig. 3)
[0041]
Influence of the extract of Sujime and Ainu-Wakame on the growth of MKN28
Fucoidan and krestin had a survival rate of 40% at 1 mg / ml, but alginic acid had little effect even at higher concentrations. The viability of all the linen extracts decreased with increasing concentration, and was less than 50% at 5 mg / ml. Ainu-Wakame had a survival rate of 50% or less at an acid / alkali extract of 5 mg / ml. (FIG. 4)
[0042]
Influence of the extract of the linen, Ainu-Wakame on the growth of A-431
Krestishi had a survival rate of 50% at 1 mg / ml, but an alkali extract of linen showed a survival rate of 50% or less at 0.5 mg / ml, and showed the highest growth inhibitory effect among seaweed extracts. Was. (FIG. 5)
[0043]
In vivo anti-tumor and immunostimulatory effects (oral administration to mice)
On the day after the end of each test substance administration, tumors were excised from all animals and the wet weight was measured. The results are shown in FIG. The weight of the removed tumor in the control group was 3,224 mg. The tumor weights of the krestin 100 and 300 mg / kg / day administration groups were 2479 mg and 1717 mg, respectively, and significant growth inhibition was observed in all cases as compared with the control group. The tumor growth inhibition rates were calculated to be 23.1 and 46.7%, respectively.
Tumor weights of the group treated with the alkaline extract 30, 100 and 300 mg / kg / day for 21 days were 3043, 2684 and 2178 mg, respectively, and were significantly increased by administration of 100 mg / kg / day or more compared to the control group. Suppression was observed. The tumor growth inhibition rates were calculated to be 5.6, 16.8 and 32.5%, respectively.
The tumor weight of the group treated with 300 mg / kg / day of the bamboo shoot alkali extract for 14 days was 2846 mg, and although a significant suppression was observed as compared with the control group, the tumor growth suppression rate was as low as 11.8%. The weight of the tumors in the administration groups of the linen water extract 100 and 300 mg / kg / day were 2729 and 2298 mg, respectively, and significant suppression was observed in both cases as compared with the control group. Tumor suppression rates were calculated to be 15.4 and 28.7%, respectively.
[0044]
In vitro immunostimulatory action (MLR)
The linen water extract tended to promote growth at low concentrations, but culture at high concentrations (> 200 μg / ml) was not possible. No effect was observed with the bark alkali extract. The slimeic acid extract showed a growth-promoting tendency (10-500 μg / ml) in a concentration-dependent manner. The Ainu-Wakame water extract showed a tendency to promote growth, but showed large variations. No effect was observed in the Ainu-Wakame alkaline extract. The Ainu-wakame acid extract showed a growth promoting tendency at a low concentration (10 to 100 μg / ml) (FIG. 7).
[0045]
Elucidation of physicochemical properties of high molecular weight polysaccharide as active ingredient
Analysis of constituent sugars by acid hydrolysis of each extract
TLC analysis (FIG. 8) of each extract acid hydrolysis was performed. Algae acid was determined to be the main component, since the slime alkali extract was consistent with the alginic acid hydrolyzate. Only one spot was detected in the line extract, but identification was not completed. In the Ainu-Wakame water extract, unidentified spots were detected in addition to spots corresponding to the alginic acid hydrolyzate. Since a spot corresponding to D-glucose is detected in the Nagakumbu water extract in addition to the alginic acid hydrolyzate, it is expected that glucans such as laminaran are contained in addition to alginic acid.
[0046]
Determination of uronic acid content of each extract
The amount of uronic acid was determined by the amount of D-glucuronic acid, and was shown as a percentage by weight in the extract (Table 2). The ratio of uronic acid was higher in the striped alkaline extract and the Ainu-wakame water extract. These extracts are expected to be high in alginic acid.
[0047]
Table 2 Content of uronic acid in each extract
[0048]
[Table 2]
Figure 2004215506
[0049]
Separation of polysaccharide of each extract
The sum of the contents of polysaccharides of the slime alkali extract was about 73%, whereas the sum of the contents of polysaccharides of other extracts greatly exceeded 100% (Table 7). The possible causes are as follows: alginic acid is a Na salt, soluble laminaran was determined in a crude yield, and all of the fractions obtained in this fraction are regarded as the polysaccharide. Can be read.
Algaeic acid was the main component of the slime alkali extract. Laminaran and fucoidan were relatively abundant in the linen water extract. Alginic acid was the main component in the Ainu-Wakame water extract. The extract of Nagakombu was rich in laminaran.
[0050]
Table 3 Polysaccharide content in each extract (%)
[0051]
[Table 3]
Figure 2004215506
[0052]
Consideration
In the extraction and fractionation of the seaweed-derived high molecular polysaccharide, the powder of the high molecular polysaccharide obtained at the laboratory level from 100 g of dried material was used as a raw material, which was used as an unused resource, such as line fish and Ainu-Wakame. .
[0053]
Although the amount of extract extraction seems to be larger in the alkaline extraction than in the water extraction, the solution becomes a viscous solution.
[0054]
Although the amount of extract extracted by acid extraction is larger than that of alkali extraction or water extraction, the yield as a high molecular weight polysaccharide powder is reduced. It is considered that the reason for this is that the high molecular weight polysaccharide often changes to a low molecular weight by hydrolysis.
[0055]
This time, the survival rate against human-derived cancer cells was determined using the WST-1 assay for each concentration of the seaweed extract (polymer polysaccharide powder). Krestin, sodium alginate and fucoidan were used as controls for comparison.
[0056]
The lower concentrations were effective for the control samples fucoidan and krestin. Although the survival rate of the seaweed extract sample was low (high cell growth inhibition) in a concentration-dependent manner, the seaweed extract sample which showed an effect at a low concentration was A-431 (an epidermoid carcinoma) of an alkali extract of linen. Cell line).
[0057]
Test results
The test results are shown in FIG. 6-2. Although no effect was observed at a dose of 30 mg / kg, a significant amount of tumor growth inhibitory effect of 17% at a dose of 100 mg / kg and 32% at a dose of 300 mg / kg was obtained with the alkaline extract of pomacedium (p. <0.01). The same effect as that of the alkaline extract of stripes was obtained with the aqueous extract of stripes.
[0058]
The group administered after transplantation (administration for a total of 14 days) was less effective than the group administered 7 days before transplantation (administration for a total of 21 days). This is thought to be due to the fact that the oral administration of the striped alkaline extract enhances the nonspecific immunostimulatory activity, but it takes several days for the effect to be exerted.
[0059]
In the case of krestin, a tumor growth inhibitory effect of 47% was obtained at a dose of 300 mg / kg. Since the dosage of the antineoplastic agent krestin is 3 g / day, if a 60 kg human takes 3 g / day, the dose will be about 50 mg / kg / day in terms of mouse dose. By analogy only with the tumor growth inhibitory rate of the tumor cell Adenocarcinoma 755 tested this time, it is expected that this will be substantially equivalent to the administration amount of 100 mg / kg of the slime alkali extract. In other words, taking 6 g of the alkaline slime extract daily is comparable to taking 3 g of the antineoplastic agent krestin daily.
[0060]
In the immunostimulatory effect in vitro, responder T cells showed a clear growth-promoting tendency (10 to 500 μg / ml) in a concentration-dependent manner by the stream acid extract. The Ainu-wakame acid extract also showed a tendency to promote growth at a low concentration (10 to 100 μg / ml).
[0061]
In particular, it is suggested that the smime acid extract contains a substance that stimulates antigen-presenting cells such as dendritic cells and promotes acellular proliferation. It can be expected that the slime acid extract has an antitumor effect more than the slime alkali extract from which a significant tumor growth inhibitory effect of 32% was obtained.
[0062]
In vivo anti-tumor and immunostimulatory activities of extracts (acid, alkali, water extracts) of linen (oral administration to mice)
[0063]
Animal used
5-week-old Slc: BDF 1 Male mice were purchased from Japan SLC Co., Ltd., and after preliminary breeding including a quarantine period of one week, animals in which no abnormality was observed in the general condition were selected and used for the test. The body weight at the start of the experiment was 25.0-29.8 g. The animals were identified by ear punch and the animal number on the tail with a felt tip pen. The housed gauge was provided with a card indicating the treatment group and animal number during the experiment.
[0064]
Rearing conditions
Throughout the pre-breeding and experimental period, the stainless steel movable rack (22 ± 3 ° C., humidity 50 ± 20%, lighting 12 hours (8:00 to 20:00), ventilation frequency 13 to 17 times / hour, Groups of 5 to 6 were housed in polysulfone cages (265 W x 427 D x 204 Hmm) mounted on 1790 W x 470 D x 1650 Hmm). As a feed, a solid feed and a laboratory MR stock (Nippon Nosan Kogyo Co., Ltd.) were freely given by a stainless steel solid feed feeder, and tap water was freely given by a polysulfone waterer (a stainless steel pipe).
[0065]
Test method
6 week old BDF 1 Mice were used based on the group composition in Table 4. On day 7 of administration, tumor cells from day 10 to 14 maintained in passage in C57BL / 6 mice were subcutaneously injected into the test mice at 1 × 10 5 subcutaneously on the ventral side. 5 Cells were transplanted in an amount of 0.05 ml / mouse. The test substance was orally administered once a day. On the day after the last day of administration of the test substance, blood was collected from the abdominal aorta of the mouse under ether anesthesia, and then the tumor was excised and weighed. Body weight measurements were taken twice a week. The obtained blood was fractionated from plasma and stored at -80 ° C.
[0066]
[Table 4]
Figure 2004215506
[0067]
Statistical processing
The average value and standard error of the numerical values obtained in each group were calculated. Statistical analysis between each group was performed by testing for equal variance by the Bartlett method (significance level 5%). In the case of equal variance, one-way analysis of variance was performed, and when significant, comparison of mean values by the Turkey method was performed. Was done. In the case of unequal variance, a Kruskal-Wallis H test was performed, and in the case of significant variance, the average rank was compared by the Turkey method. The significance levels were 5% and 1%.
[0068]
The average excised tumor weight was evaluated based on the ratio of the test substance administration group to the control group (T / C) by the US National Cancer Institute (NCI) evaluation criteria (Gtran, RI et al. Cancer Chem. Rep. According to Part 3, vol3 (1972)), the tumor suppression rate (%) was calculated as follows, and the antitumor effect was determined.
T / C (%) = (average excised tumor weight (mg) of test substance administration group / average exclusion of control group)
Tumor weight (mg) x 100
Tumor suppression rate (%) = 100-T / C ≧ 30% was regarded as having an antitumor effect.
[0069]
Test results
The test results are shown in FIG. 6-2.
1. Slime acid extract
The weight of the removed tumor in the control group was 2390 mg.
In the 21-day administration group of 30, 100, and 300 mg / kg / day of the dimeic acid extract, the tumor weights were 608, 498, and 392 mg, respectively, and were significantly higher than the control group at the administration of 100 mg / kg / day or more. Suppression was observed. In the 14-day administration group of 300 mg / kg / day, the tumor weight was 834 mg / kg / day, indicating a suppression tendency as compared with the control group. The tumor suppression rates were 74.6, 79.2 and 83.6% in the 21-day administration group at 30, 100 and 300 mg / kg / day, and 65.1 in the 14-day administration group at 300 mg / kg / day, respectively. %, And all were determined to have an antitumor effect.
[0070]
2. Reed alkaline extract
In the 21-day administration group of 300 mg / kg / day of the bamboo alkali extract, the tumor weight was 569 mg, which was significantly suppressed as compared with the control group. The tumor suppression rate was calculated to be 76.2%, and it was determined that there was an antitumor effect.
[0071]
3. Striped water extract
In the group administered with 300 mg / kg / day of the water line extract for 21 days, the tumor weight was 418 mg, which was significantly suppressed as compared with the control group. The tumor suppression rate was calculated to be 82.5%, and it was determined that there was an antitumor effect.
[0072]
4. Line dry powder
In the 21-day administration group of 300 mg / kg / day of the dry powder of the stripe, the tumor weight was 685 mg, which was significantly suppressed as compared with the control group. The tumor suppression rate was calculated to be 71.4%, and it was determined that there was an antitumor effect.
[0073]
Analysis of structure of high molecular polysaccharide
Brown algae include high molecular polysaccharides such as alginic acid, fucoidan and fucoidan. It is generally said that alginic acid is extracted with a thin alkali and fucoidan is extracted with a thin hydrochloric acid. Therefore, the structure of the high molecular polysaccharide was analyzed by TLC analysis, uronic acid content, and fractionation of the polysaccharide.
[0074]
Alganic acid was the main component in the slimefish alkaline extract, and laminaran and fucoidan were relatively high in the slimewater extract. Alginic acid is considered to be the main component in the Ainu-Wakame water extract, and alginic acid is considered to be the main component in the Ainu-Wakame alkaline extract.
[0075]
The sample in which responder T cells showed a clear tendency to promote proliferation in a concentration-dependent manner due to in vitro immunostimulatory action was not a slime alkaline extract but a slime acid extract. Therefore, it is assumed that substances that stimulate antigen-presenting cells such as dendritic cells and promote T cell proliferation are related to laminaran or fucoidan.
[0076]
This extract is safe and inexpensive, and can be used as a raw material for functional foods utilizing its immunostimulatory and tumor-suppressing effects.
[Brief description of the drawings]
FIG. 1 is a flow chart for producing a seaweed-derived polymer polysaccharide.
FIG. 2 shows the results of extraction and analysis of a high molecular weight polysaccharide derived from seaweed.
FIG. 3 shows the survival rate of A549 when various extracts were added.
FIG. 4 shows the survival rate of MKN28 when various extracts were added.
FIG. 5 shows the survival rate of A431 when various extracts were added.
FIG. 6 shows the antitumor effect in vivo.
FIG. 7 shows in vivo antitumor effects.
FIG. 8 shows expansion of responder T cells.
FIG. 9 is an analytical TLC of an acid hydrolyzate of seaweed extract.

Claims (4)

スジメの抽出物を含む、食料品又は飲料。A food or beverage comprising an extract of linen. スジメの抽出物が、酸抽出物である、請求項1記載の食料品又は飲料。The food or beverage according to claim 1, wherein the extract of linen is an acid extract. スジメの抽出物が、水抽出物である、請求項1記載の食料品又は飲料。The food or beverage according to claim 1, wherein the extract of linen is a water extract. スジメの抽出物が、アルカリ抽出物である、請求項1記載の食料品又は飲料。2. The food or beverage according to claim 1, wherein the extract of linen is an alkaline extract.
JP2003003302A 2003-01-09 2003-01-09 Sea weed extract Pending JP2004215506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003302A JP2004215506A (en) 2003-01-09 2003-01-09 Sea weed extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003302A JP2004215506A (en) 2003-01-09 2003-01-09 Sea weed extract

Publications (1)

Publication Number Publication Date
JP2004215506A true JP2004215506A (en) 2004-08-05

Family

ID=32894607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003302A Pending JP2004215506A (en) 2003-01-09 2003-01-09 Sea weed extract

Country Status (1)

Country Link
JP (1) JP2004215506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508941A (en) * 2005-09-23 2009-03-05 プキョン ナショナル ユニヴァーシティ インダストリー−アカデミック コーオペレーション ファンデーション Capsochiffon-Fluvesson sugar hot water extract and anticancer agent based on this
JP2013103927A (en) * 2011-11-16 2013-05-30 Nippon Menaade Keshohin Kk Melanocyte differentiation induction inhibitor and method for using the same
JP2013170157A (en) * 2012-02-22 2013-09-02 Nippon Menaade Keshohin Kk Melanocyte differentiation induction inhibitor
JP2015030711A (en) * 2013-08-06 2015-02-16 日本メナード化粧品株式会社 External preparation for skin, whitening agent, and melanocyte differentiation inducing inhibitor
RU2789311C1 (en) * 2022-03-14 2023-02-01 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Method for obtaining xanthophylls from marine brown algae

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508941A (en) * 2005-09-23 2009-03-05 プキョン ナショナル ユニヴァーシティ インダストリー−アカデミック コーオペレーション ファンデーション Capsochiffon-Fluvesson sugar hot water extract and anticancer agent based on this
JP2013103927A (en) * 2011-11-16 2013-05-30 Nippon Menaade Keshohin Kk Melanocyte differentiation induction inhibitor and method for using the same
JP2013170157A (en) * 2012-02-22 2013-09-02 Nippon Menaade Keshohin Kk Melanocyte differentiation induction inhibitor
JP2015030711A (en) * 2013-08-06 2015-02-16 日本メナード化粧品株式会社 External preparation for skin, whitening agent, and melanocyte differentiation inducing inhibitor
RU2789311C1 (en) * 2022-03-14 2023-02-01 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Method for obtaining xanthophylls from marine brown algae
RU2789358C1 (en) * 2022-03-14 2023-02-02 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Method for obtaining xanthophylls from costaria costata

Similar Documents

Publication Publication Date Title
RU2124361C1 (en) Method of isolation of resin tragacanth polysaccharide fraction from plant of genus astragal, composition based on polysaccharide fraction, method of inhibition of cancer tumor growth, method of inhibition of viral infections
Mizuno Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murrill (Agaricomycetideae)
Zhou et al. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus
CN105001352B (en) Beta-1,3/1,6-glucan, preparation method therefor, and application thereof in preparing immune enhancement and anti-tumor medicine and functional food
US20110046085A1 (en) Oral Immunostimulation of Fish from (1-4) Linked Beta-D-Mannuronic Acid
Shen et al. Hypoglycemic effect of the degraded polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (Agaricomycetes)
Afiati et al. The effectiveness β-glucan of shiitake mushrooms and Saccharomyces cerevisiae as antidiabetic and antioxidant in mice Sprague Dawley induced alloxan
Hamrun et al. Toxicity test of bioactive red alga extract Eucheuma spinosum on shrimp Artemia salina leach
CN106727623A (en) Application of the Tang oligosaccharide in anti-avian leukosis virus preparation is prepared
EP1461050B1 (en) Oral immunostimulation of mammals, birds, and reptiles from (1-4) linked beta-d-mannuronic acid
JP2004215506A (en) Sea weed extract
CN111514174B (en) Extraction method and application of seabuckthorn fruit combined polyphenol
CN105796587B (en) Caulis bambusae in taenian polysaccharide immunological regulation, it is antitumor in application
JP4448330B2 (en) Matsutake-derived anion exchange resin adsorbed fraction, immune enhancer, and stress load recovery accelerator
CN112110924B (en) 6-S,9-N- (diacetyl-Lys-OBzl-mercapto) purine, synthesis, activity and application thereof
RU2151600C1 (en) Biologically active plant proteoglycan and method of its preparing
EP1150697A1 (en) High molecular weight extracts of convolvulus arvensis (field bindweed)
CN1120015C (en) High-efficient pure natural hypoglycemic agent
CN1205231C (en) Water soluble heteropolysaccharide with anti-tumor activity and its preparing method and use
CN110279862A (en) A kind of anti-cancer composition and its application in the drug of preparation treatment osteosarcoma
CN100471869C (en) Preparation and assaying of peptide dextran possessing detectable oral absorption immune regulation of rainbow conk
CN112125905B (en) 6-S,9-N- (diacetyl-Lys-OBzl-mercapto) purine, synthesis, activity and application thereof
CN109953999B (en) Composition comprising Ganoderma polysaccharide and Polyporus polysaccharide with immunity enhancing effect
JP2012153612A (en) Nitrogen monoxide production enhancer and antitumor agent from macrophage, and pharmaceutical composition, food, feed and cosmetic including the same
January Bioprospecting for bioactive polysaccharides from marine algae endemic to South Africa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070418

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070601