JP2004214392A - Heat treatment apparatus of semiconductor substrate - Google Patents

Heat treatment apparatus of semiconductor substrate Download PDF

Info

Publication number
JP2004214392A
JP2004214392A JP2002381824A JP2002381824A JP2004214392A JP 2004214392 A JP2004214392 A JP 2004214392A JP 2002381824 A JP2002381824 A JP 2002381824A JP 2002381824 A JP2002381824 A JP 2002381824A JP 2004214392 A JP2004214392 A JP 2004214392A
Authority
JP
Japan
Prior art keywords
heat treatment
core tube
furnace core
treatment apparatus
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002381824A
Other languages
Japanese (ja)
Inventor
Motohiro Sei
元浩 清
Masahiko Kurokawa
昌彦 黒川
Koji Araki
浩司 荒木
Tatsuhiko Aoki
竜彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002381824A priority Critical patent/JP2004214392A/en
Publication of JP2004214392A publication Critical patent/JP2004214392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus of semiconductor substrates by which transfer of contamination to the semiconductor substrates due to spreading of metal impurity from a process core pipe during high temperature heat treatment. <P>SOLUTION: The heat treatment apparatus of the semiconductor substrates is provided with the process core pipe 1 provided with an air supply port 1a at its one end and an air exhaust port 1b at the other end, a heating means 2 for arranging the outer periphery of the process core pipe, a boat 3 mounting the many semiconductor substrates and mounted into the process core pipe, and a process gas supply means for supplying process gas from the air feeding port of the process core pipe. Magnetic field applying means 8 are provided which apply a magnetic field MF where the direction of magnetic force lines is equal to the circulating direction of process gas and the line have necessary magnetic flux density to the inside of the process core pipe. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板に拡散、酸化、CVD等の熱処理を施す半導体基板の熱処理装置に関する。
【0002】
【従来の技術】
一般に、半導体基板の熱処理装置は、石英ガラス、炭化珪素質材料等からなり、一端に給気口、他端に排気口を設けたプロセス炉芯管と、プロセス炉芯管の外周に配設される加熱手段と、プロセス炉芯管と同様の材料からなり、多数の半導体基板を搭載してプロセス炉芯管に装入されるボートと、プロセス炉芯管の給気口から不活性ガス、反応性ガス等のプロセスガスを供給するプロセスガス供給手段とを有して構成されている。
【0003】
従来、この種の半導体基板の熱処理装置としては、供給途中のプロセスガスを高純度にするため、プロセスガスを供給する供給管の途中から分岐する分岐管を有する配管を設け、この配管の、上記供給管と分岐管との分岐部分に磁場を発生させ、プロセスガス中の金属不純物を分岐管内に導くための磁場発生器を設けた半導体熱処理装置が開示されている。(たとえば特許文献1を参照)
【0004】
【特許文献1】
特開2000−269151号
【0005】
【発明が解決しようとする課題】
しかし、従来の半導体基板の熱処理装置では、高純度のプロセスガスを用いたとしても、高温熱処理中のプロセス炉芯管、ボート等からの金属不純物拡散による半導体基板への汚染転写を生じる不具合がある。
半導体基板が高濃度の金属汚染を受けた場合、リーク不良や酸化膜耐圧劣化等が発生してデバイスの歩留まりが著しく低下する。
そのため、近年のデバイスの微細化も相俟って、熱処理時の半導体基板に対する金属汚染の低減に対する要求が益々厳しくなっている。
【0006】
そこで、本発明は、高温熱処理中のプロセス炉芯管等からの金属不純物拡散により半導体基板への汚染転写を低減し得る半導体基板の熱処理装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するため、本発明の半導体基板の熱処理装置は、一端に給気口、他端に排気口を設けたプロセス炉芯管と、プロセス炉芯管の外周に配設される加熱手段と、多数の半導体基板を搭載してプロセス炉芯管に装入されるボートと、プロセス炉芯管の給気口からプロセスガスを供給するプロセスガス供給手段とを備える半導体基板の加熱処理装置において、前記プロセス炉芯管内に磁力線がプロセスガスの流通方向と同方向で所要磁束密度の磁場を印加する磁場印加手段を備えたことを特徴とする。
【0008】
前記所要磁束密度は、50〜5000ガウスであることが好ましい。
【0009】
【作用】
本発明の半導体基板の熱処理装置においては、熱処理による高温(1000〜1300℃)で活性化してプロセス炉芯管等から放出される金属不純物の拡散方向が、プロセスガスの流通方向と同方向へ制御される。
【0010】
磁場印加手段としては、プロセス炉芯管の外周に同心状に配置されるコイル、又はプロセス炉芯管外の両端に対向配置される電磁石若しくは永久磁石が用いられる。
【0011】
磁場印加手段による磁場の磁束密度が、50ガウス未満であると、金属不純物の拡散方向を抑制する効果が不十分となる。一方、5000ガウスを超えると、磁場の制御が困難となる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係る半導体基板の熱処理装置の実施の形態の一例を示す概略断面図である。
【0013】
この半導体基板の熱処理装置は、押上げ式縦型のもので、石英ガラス、炭化珪素質材料等からなり、閉鎖した上端中央部に給気口1aを設け、かつ、下端側部に排気口1bを設けた円筒状の垂直なプロセス炉芯管1を備えており、このプロセス炉芯管1の外周には、抵抗加熱ヒータからなる円筒状の加熱手段2が同心状に配設されている。
プロセス炉芯管1には、石英ガラス、炭化珪素質材料等からなり、図示しない多数の半導体基板(例えば、シリコンウェーハ)を搭載するボート3が、図示しない昇降手段を介して昇降され、かつ、プロセス炉芯管1の下端開口部を気密に閉鎖する炉芯管キャップ4に保温筒5を介在して垂直に載置されて装入可能に設けられている。
【0014】
又、プロセス炉芯管1の給気口1aには不活性ガス、反応性ガス等の高純度のプロセスガスを供給するプロセスガス供給手段(図示せず)がプロセスガス供給管6を介して接続されている。一方、排気口1bには、プロセスガスを排出するプロセスガス排出管7が接続されている。
そして、加熱手段2の外周には、磁力線がプロセスガスの流通方向(図1においては上下方向)と同方向で、磁束密度が50〜5000ガウスの磁場MFをプロセス炉芯管1内に印加する磁場印加手段としてのコイル8が同心状に配設されている。
【0015】
上述した半導体基板の熱処理装置によって半導体基板を熱処理するには、多数の半導体基板を搭載したボート3を、保温筒5を介在して炉芯管キャップ4に載置し、炉芯管キャップ4を上昇させてプロセス炉芯管1の下端を閉鎖した後、プロセスガス供給手段から高純度のプロセスガスをプロセス炉芯管1内に連続的に供給すると共に、加熱手段2によりプロセス炉芯管1内を所望温度に加熱し、かつ、磁場印加手段としてのコイル8によりプロセス炉芯管1内に磁場MFを印加する。
上記熱処理による高温で活性化され、プロセス炉芯管1、炉芯管キャップ4から、図1において矢印A,Bで示すように、その中心方向、すなわち、半導体基板に向って放出される金属不純物は、磁場印加手段としてのコイル8により印加される磁場MFによって、図1において矢印Xで示すように、プロセスガスの流通方向と同方向へ拡散方向を制御され、プロセスガスと一緒にプロセスガス排出管7から排出される。
従って、高温熱処理中のプロセス炉芯管1等からの金属不純物拡散による半導体基板への汚染転写を低減することができる。
【0016】
ここで、上述した半導体基板の熱処理装置を用い、水素ガス雰囲気下、1200℃の温度、磁束密度1000ガウスの磁場を印加した状態で、シリコンウェーハの高温熱処理を行い、高温熱処理前後でのシリコンウェーハのFe(鉄)濃度をSPV(表面光起電力)法にて測定したところ、表1に示すようになった。
又、比較のため、磁場印加手段の無いことを除けば前述したものと同様の半導体基板の熱処理装置を用い、水素ガス雰囲気下、1200℃の温度でシリコンウェーハの高温熱処理を行い、高温熱処理前後でのシリコンウェーハのFe濃度をSPV法にて測定したところ、表1に示すようになった。
【0017】
【表1】

Figure 2004214392
【0018】
表1から分るように、磁場を印加した場合、熱処理前後のシリコンウェーハのFe濃度はほとんど増加せず、磁場印加による金属汚染の低減が図られる一方、磁場を印加しない場合、熱処理を行うことでシリコンウェーハのFe濃度が約10倍となる。
【0019】
なお、上述した実施の形態においては、半導体基板の熱処理装置を押上げ式縦型のものとする場合について説明したが、これに限定されるものではなく、半導体基板の熱処理装置を吊下げ式縦型、あるいはプロセス炉芯管等を水平に配設する横型のものとしてもよい。
又、磁場印加手段は、コイル8に限らず、プロセス炉芯管外の両端に対向配置される電磁石又は永久磁石としてもよい。
【0020】
【発明の効果】
以上説明したように、本発明の半導体基板の熱処理装置によれば、熱処理による高温で活性化してプロセス炉芯管等から放出される金属不純物の拡散方向が、プロセスガスの流通方向と同方向へ制御されるので、高温熱処理中のプロセス炉芯管等からの金属不純物拡散による半導体基板への汚染転写を大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明に係る半導体基板の熱処理装置の実施の形態の一例を示す概略断面図である。
【符号の説明】
1 プロセス炉芯管
1a 給気口
1b 排気口
2 加熱手段
3 ボート
4 炉芯管キャップ
8 コイル(磁場印加手段)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor substrate heat treatment apparatus for performing heat treatment such as diffusion, oxidation, and CVD on a semiconductor substrate.
[0002]
[Prior art]
In general, a heat treatment apparatus for a semiconductor substrate is made of quartz glass, silicon carbide-based material, or the like, and is provided around a process furnace core tube having an air supply port at one end and an exhaust port at the other end, and an outer periphery of the process furnace core tube. A heating means, a boat made of the same material as the process furnace core tube, loaded with a large number of semiconductor substrates, and charged into the process furnace core tube; And a process gas supply means for supplying a process gas such as a reactive gas.
[0003]
Conventionally, as a heat treatment apparatus for a semiconductor substrate of this type, in order to increase the purity of the process gas during the supply, a pipe having a branch pipe branching from the middle of the supply pipe for supplying the process gas is provided. There is disclosed a semiconductor heat treatment apparatus provided with a magnetic field generator for generating a magnetic field at a branch portion between a supply pipe and a branch pipe and guiding metal impurities in a process gas into the branch pipe. (See, for example, Patent Document 1)
[0004]
[Patent Document 1]
JP-A-2000-269151
[Problems to be solved by the invention]
However, in the conventional semiconductor substrate heat treatment apparatus, even when a high-purity process gas is used, there is a problem that contamination is transferred to the semiconductor substrate due to diffusion of metal impurities from a process furnace core tube, a boat, or the like during high-temperature heat treatment. .
When the semiconductor substrate is subjected to high-concentration metal contamination, leak failure, deterioration of oxide film breakdown voltage, and the like occur, and the yield of the device is significantly reduced.
For this reason, with the recent miniaturization of devices, the demand for reduction of metal contamination on the semiconductor substrate during heat treatment has become increasingly severe.
[0006]
Therefore, an object of the present invention is to provide a heat treatment apparatus for a semiconductor substrate that can reduce transfer of contamination to a semiconductor substrate by diffusion of metal impurities from a process furnace core tube or the like during high-temperature heat treatment.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a heat treatment apparatus for a semiconductor substrate according to the present invention includes a process furnace core tube having an air supply port at one end and an exhaust port at the other end, and a heating unit disposed on an outer periphery of the process furnace core tube. And a boat loaded with a large number of semiconductor substrates and loaded into a process furnace core tube, and a process gas supply unit for supplying a process gas from an air supply port of the process furnace core tube. A magnetic field applying means for applying a magnetic field having a required magnetic flux density in the process furnace core tube in the same direction as the flow direction of the process gas is provided in the process furnace core tube.
[0008]
Preferably, the required magnetic flux density is between 50 and 5000 Gauss.
[0009]
[Action]
In the heat treatment apparatus for a semiconductor substrate according to the present invention, the diffusion direction of metal impurities activated at a high temperature (1000 to 1300 ° C.) by heat treatment and released from a process furnace core tube or the like is controlled in the same direction as the flow direction of the process gas. Is done.
[0010]
As the magnetic field applying means, a coil arranged concentrically around the outer periphery of the process furnace core tube, or an electromagnet or a permanent magnet arranged opposite to both ends outside the process furnace core tube is used.
[0011]
If the magnetic flux density of the magnetic field by the magnetic field applying means is less than 50 Gauss, the effect of suppressing the diffusion direction of the metal impurity becomes insufficient. On the other hand, if it exceeds 5000 Gauss, it becomes difficult to control the magnetic field.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view showing an example of an embodiment of a semiconductor substrate heat treatment apparatus according to the present invention.
[0013]
This heat treatment apparatus for a semiconductor substrate is a push-up type vertical type, which is made of quartz glass, silicon carbide-based material, etc., has an air supply port 1a at the center of the closed upper end, and an exhaust port 1b at the lower end side. Is provided with a cylindrical vertical process furnace core tube 1. On the outer periphery of the process furnace core tube 1, a cylindrical heating means 2 composed of a resistance heater is concentrically arranged.
In the process furnace core tube 1, a boat 3 made of quartz glass, silicon carbide material, or the like, and on which a number of semiconductor substrates (for example, silicon wafers) (not shown) are mounted is moved up and down via not-shown elevating means. The process furnace core tube 1 is vertically mounted with a heat retaining tube 5 interposed therebetween so as to be capable of being inserted into a furnace core tube cap 4 that hermetically closes a lower end opening of the process furnace core tube 1.
[0014]
A process gas supply means (not shown) for supplying a high-purity process gas such as an inert gas or a reactive gas is connected to an air supply port 1a of the process furnace core tube 1 through a process gas supply pipe 6. Have been. On the other hand, a process gas discharge pipe 7 for discharging a process gas is connected to the exhaust port 1b.
A magnetic field MF having a magnetic flux line in the same direction as the flow direction of the process gas (vertical direction in FIG. 1) and a magnetic flux density of 50 to 5000 Gauss is applied to the outer periphery of the heating means 2 in the process furnace core tube 1. A coil 8 as a magnetic field applying means is provided concentrically.
[0015]
In order to heat-treat a semiconductor substrate using the above-described semiconductor substrate heat treatment apparatus, a boat 3 on which a large number of semiconductor substrates are mounted is placed on a furnace core tube cap 4 with a heat retaining cylinder 5 interposed therebetween. After being raised to close the lower end of the process furnace core tube 1, high-purity process gas is continuously supplied from the process gas supply unit into the process furnace core tube 1, and the inside of the process furnace core tube 1 is heated by the heating unit 2. Is heated to a desired temperature, and a magnetic field MF is applied into the process furnace core tube 1 by a coil 8 as a magnetic field applying means.
Metal impurities which are activated at a high temperature by the heat treatment and are released from the process furnace core tube 1 and the furnace core tube cap 4 toward the center direction of the semiconductor substrate, as indicated by arrows A and B in FIG. As shown by an arrow X in FIG. 1, the diffusion direction of the process gas is controlled in the same direction as the flow direction of the process gas by the magnetic field MF applied by the coil 8 as the magnetic field applying means, and the process gas is discharged together with the process gas. It is discharged from the pipe 7.
Therefore, contamination transfer to the semiconductor substrate due to metal impurity diffusion from the process furnace core tube 1 or the like during the high-temperature heat treatment can be reduced.
[0016]
Here, the silicon wafer is subjected to a high-temperature heat treatment under a hydrogen gas atmosphere at a temperature of 1200 ° C. and a magnetic field of a magnetic flux density of 1000 gauss using the above-described semiconductor substrate heat treatment apparatus. Was measured by SPV (surface photovoltaic) method, and the results are as shown in Table 1.
For comparison, a silicon wafer was subjected to a high-temperature heat treatment at 1200 ° C. in a hydrogen gas atmosphere using a heat treatment apparatus for a semiconductor substrate similar to that described above except that there was no magnetic field applying means. Table 1 shows the Fe concentration of the silicon wafer measured by the SPV method.
[0017]
[Table 1]
Figure 2004214392
[0018]
As can be seen from Table 1, when a magnetic field is applied, the Fe concentration of the silicon wafer before and after the heat treatment hardly increases, and the metal contamination is reduced by applying the magnetic field. On the other hand, when the magnetic field is not applied, the heat treatment is performed. , The Fe concentration of the silicon wafer becomes about 10 times.
[0019]
Note that, in the above-described embodiment, the case where the heat treatment apparatus for a semiconductor substrate is a push-up type vertical type is described, but the present invention is not limited to this. A mold or a horizontal type in which a process furnace core tube or the like is disposed horizontally may be used.
Further, the magnetic field applying means is not limited to the coil 8, and may be an electromagnet or a permanent magnet disposed opposite to both ends outside the process furnace core tube.
[0020]
【The invention's effect】
As described above, according to the semiconductor substrate heat treatment apparatus of the present invention, the diffusion direction of metal impurities activated at a high temperature by heat treatment and released from a process furnace core tube or the like is in the same direction as the flow direction of the process gas. Therefore, contamination transfer to the semiconductor substrate due to diffusion of metal impurities from a process furnace core tube or the like during high-temperature heat treatment can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an embodiment of a heat treatment apparatus for a semiconductor substrate according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Process furnace core pipe 1a Air supply port 1b Exhaust port 2 Heating means 3 Boat 4 Furnace core pipe cap 8 Coil (magnetic field applying means)

Claims (2)

一端に給気口、他端に排気口を設けたプロセス炉芯管と、プロセス炉芯管の外周に配設される加熱手段と、多数の半導体基板を搭載してプロセス炉芯管に装入されるボートと、プロセス炉芯管の給気口からプロセスガスを供給するプロセスガス供給手段とを備える半導体基板の熱処理装置において、前記プロセス炉芯管内に磁力線がプロセスガスの流通方向と同方向で所要磁束密度の磁場を印加する磁場印加手段を備えたことを特徴とする半導体基板の熱処理装置。A process furnace core tube having an air supply port at one end and an exhaust port at the other end, heating means disposed on the outer periphery of the process furnace core tube, and a large number of semiconductor substrates mounted thereon and loaded into the process furnace core tube In a heat treatment apparatus for a semiconductor substrate, comprising a boat to be processed and a process gas supply means for supplying a process gas from an air supply port of a process furnace core tube, the magnetic field lines enter the process furnace core tube in the same direction as the flow direction of the process gas. A heat treatment apparatus for a semiconductor substrate, comprising: a magnetic field applying means for applying a magnetic field having a required magnetic flux density. 前記所要磁束密度が50〜5000ガウスであることを特徴とする請求項1記載の半導体基板の熱処理装置。2. The heat treatment apparatus for a semiconductor substrate according to claim 1, wherein the required magnetic flux density is 50 to 5000 Gauss.
JP2002381824A 2002-12-27 2002-12-27 Heat treatment apparatus of semiconductor substrate Pending JP2004214392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381824A JP2004214392A (en) 2002-12-27 2002-12-27 Heat treatment apparatus of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381824A JP2004214392A (en) 2002-12-27 2002-12-27 Heat treatment apparatus of semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2004214392A true JP2004214392A (en) 2004-07-29

Family

ID=32817635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381824A Pending JP2004214392A (en) 2002-12-27 2002-12-27 Heat treatment apparatus of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2004214392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183279A (en) * 2013-03-21 2014-09-29 Tokyo Electron Ltd Magnetic annealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183279A (en) * 2013-03-21 2014-09-29 Tokyo Electron Ltd Magnetic annealing device

Similar Documents

Publication Publication Date Title
JP4644943B2 (en) Processing equipment
WO2016038664A1 (en) Semiconductor annealing apparatus
TW584920B (en) Heat treatment device and heat treatment method
TW201142951A (en) Heat treatment apparatus and method of manufacturing semiconductor device
JP5478041B2 (en) Annealing equipment, heat treatment method
JP2004214392A (en) Heat treatment apparatus of semiconductor substrate
WO2006041069A1 (en) Annealed wafer manufacturing method and annealed wafer
JP2007059606A (en) Vertical wafer boat and vertical heat treatment furnace
JP2007180331A (en) Heat treatment device
JPS62140413A (en) Vertical type diffusion equipment
KR20010039898A (en) Heat treatment apparatus for semiconductor and heat treatment method for semiconductor substrate
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JP2008283143A (en) Treatment equipment, and transistor manufacturing method
JP2004079794A (en) Device for manufacturing semiconductor
JP2004281674A (en) Heat treatment equipment and process for producing substrate
JP5145792B2 (en) Single wafer heat treatment apparatus and heat treatment method
JP2004104029A (en) Substrate treatment apparatus and manufacturing method of semiconductor device
JPS5840824A (en) Heat treatment device for semiconductor wafer
JP2004356355A (en) Heat treatment method, method of manufacturing substrate, method of manufacturing semiconductor device, and heat treatment apparatus
JP2008218877A (en) Substrate treatment device and method of manufacturing semiconductor device
JP2006080294A (en) Method of manufacturing substrate
JPH05299369A (en) Heat-treating device
JP2010283270A (en) Heat processing device
JP2004281672A (en) Heat treatment equipment and method for manufacturing substrate
JP2008263064A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A7422