【0001】
【発明の属する技術分野】
本発明は、ヘテロ接合を有する太陽電池に関し、特に、CIGSと呼ばれるCu(InGa)Se2などを光吸収層とするヘテロ接合を有する太陽電池に関し、より詳しくは、太陽電池の要素のうち透明電極層、窓層(光吸収層との間にpn接合を形成する層)および光吸収層(主たる光電変換層)の材料の電子親和力の関係に関するものである。
【0002】
【従来の技術】
シリコン太陽電池以外の太陽電池は2種の異なった化合物半導体のpn接合(ヘテロ接合)によることが普通であり、禁制帯幅(Eg)の大きい方が窓層として受光側に位置し、Egの小さい方が主たる光吸収(光電変換)層となる。大きい光電変換効率を得るには光吸収層のEgが太陽光スペクトルに対して最適化されることが重要であって、その値として理論的に示される1.4eV〜1.5eVが最適値であると一般に信じられている[例えば、非特許文献1、2参照]。窓層については太陽光スペクトルの大部分を透過させるに十分な大きさのEgであること(およそ3eV以上)が第一の条件で、その上で透過領域における光吸収係数が小さいことに主として注意が払われてきた。
【0003】
本発明は、特に限定されるものではないが、CIGS太陽電池に対し有利に適用される。CIGS太陽電池の有用性については既によく知られており、販売も始まっている [例えば、非特許文献3参照]。これは、Cu(In1-xGax)Se2を光吸収層とし、ZnO(酸化亜鉛)を窓層とすることを基本とする太陽電池である。この場合には、CIGSがp型半導体、ZnOがn型半導体となっている。
CIGS太陽電池は、表面(素子形成面)光入射型と構成することも裏面(基板側)光入射型として構成することも可能であるが、表面光入射型が広く採用されている。表面光入射型太陽電池を図2に、裏面光入射型太陽電池を図3に示す。
【0004】
表面光入射型太陽電池は、図2に示すように、基板1上に金属からなる裏面電極層2を形成し、その上に光吸収層3、バッファ層4、窓層5、透明電極層6、反射防止層7を順次形成したものである。反射防止層7の一部は除去され、その除去領域には陰極端子8が形成され、また裏面電極層2上には陽極端子9が形成されており、出力端子として用いられる。
裏面光入射型太陽電池では、図3に示すように、基板1上に透明電極層6が形成され、その上に窓層5、バッファ層4、光吸収層3、裏面電極層2が順次形成されている。透明電極層6上と裏面電極層2上には、それぞれ出力端子となる陰極端子8と陽極端子9とが形成されており、また基板裏面には反射防止層7が形成されている。
【0005】
典型的従来例では、基板1は数mm厚のガラス基板、裏面電極層2は約1μmのMo層、光吸収層3は約2μm厚のp型CIGS層、バッファ層4は50〜100nm厚のCdS層、窓層5は約100nmのn型ZnO層、透明電極層6はIII族元素を添加して高濃度n型とした1μm弱のZnO層、反射防止層7はMgF2膜である。透明電極層6は縮退した高濃度n型半導体でフェルミ準位が伝導帯に存在して金属のように働くものである。透明電極層とするためにZnOに添加するIII族元素はAl、Ga、Bなどで、Alを用いることが多い。透明電極層の材料に窓層とは異なる材料、例えばITOが用いられることもある。
【0006】
この太陽電池では、CIGS光吸収層が最も重要な機能(光エネルギーを電子・正孔対に転換する機能)を果たすと考えられてその材料名によってCIGS太陽電池と呼ばれるが、ZnO窓層との間で形成されるpn接合ダイオードがこのデバイスの主要部である。このデバイスのエネルギーバンドは図4(a)に示すようになっているものと考えられる。図中、CB1とVB1は、CIGSの伝導帯下端と荷電子帯上端を示し、CB2とVB2は、ZnO(またはZnO:Al)の伝導帯下端と荷電子帯上端を示し、EF1とEF2は、CIGSとZnOのフェルミレベルを示す。また、Vは光照射の結果として発生する順方向電圧であり、ここで、qは素電荷である。
CdSバッファ層の役割については諸説があって厳密には解明されていないが必要なことは広く認められている。バッファ層を十分に薄くすれば接合は実質的にCIGS光吸収層とZnO窓層との間で形成されると考えてよい。
ZnO窓層を省くと、図4(b)に示すように、本質的にZnO:AlとCIGSとのショットキー接合になる。この構造でも光電変換機能はあるが、ZnO:Al層中に電界がないので界面においてZnO:Alの伝導帯の電子が薄いCdS層を経て(CdSがない場合は直接)CIGSの価電子帯の正孔と再結合する(図4中に矢印で示す)確率が高まり、外部回路に流れて仕事をするキャリアが減る。すなわち、高い変換効率を得るために高抵抗な窓層を設けてpn接合とすることは必須の要件である。
【0007】
CIGS太陽電池の場合、実際に光吸収層材料CuIn1-xGaxSe2のEgはxの増加に伴って増大しx〜0.7のときにEgの最適値1.4eV〜1.5eVになるが(図8参照)、x〜0.3をピークとしてそれ以上のxになると期待に反して変換効率が低下する。その状況を図5に示す。図5は、横軸に禁制帯幅、縦軸に変換効率をとり、理論限界を実曲線で示し、試作例の実測値を白丸等でプロットしたものである。図5に示されるように、理論限界値は禁制帯幅が1.4eV付近で最大となる。このように、理論限界値が最大となる禁制帯幅と実製作例での変換効率が最大となる禁制帯幅とが乖離していることに符合して、図6に示されるように、x〜0.3以上では開放電圧の増加勾配は緩やかになる。図6は、横軸に組成比、縦軸に開放電圧をとり、試作例の実測値を黒丸でプロットしたものである。図6に示されるように、xが0.3までは、開放電圧はリニアに増大するがxが0.3以上では開放電圧が飽和する傾向を示し、禁制帯幅が1.4eV(xが約0.7)では期待値より小さくなる。すなわち、xが0.3以上で十分な開放電圧を得られないことが変換効率を上げられない直接の原因と考えられる。
【0008】
この点に対処して、窓層の電子親和力について考慮が払われた。その結果、ヘテロ接合を有する太陽電池を構成する場合、窓層材料には、太陽光スペクトルの大部分を透過させるに足る大きさの禁制帯幅Egを有することのほかに、その電子親和力(χ2)が光吸収層材料のそれ(χ1)と等しいかそれより小さいことが望ましいと考えられた。電子親和力の差すなわち伝導帯下端のバンドオフセットをΔEC=χ1−χ2と定義すれば、この条件はΔEC≧0で表される。ΔEC≧0である場合のバンド構造を図7(a)に示す。この条件が満たされる場合、窓層の伝導帯下端(CB2)が光吸収層のそれ(CB1)の近くまで順方向電圧が加わっても光吸収層の伝導帯にある少数キャリアである電子(e)にそれを加速するドリフト電界(Vb1)が働く。ΔEC=0が理想的な条件であるが、ΔEC>0のとき窓層側にできるバンドの曲がり(Vb2)は窓層材料のキャリア濃度を光吸収層材料のそれより若干大きくすれば大きな障壁とはならないので、ΔEC>0は許される条件である。これに対してΔEC<0になると、光吸収層材料の接合界面におけるエネルギーが押し上げられるために、図7(b)に示すように、ドリフト電界(Vb1)は光吸収層材料の伝導帯電子に対してバリアを形成することになるので、ΔEC≧0の場合に比べてΔECだけ小さい順方向電圧しか発生し得ないことになる。図7(b)は説明のために描いた架空の状態であって、光照射のみでこの状態まで順方向電圧が上がることは実際にはない。
【0009】
CIGS太陽電池において光吸収層材料のGa組成比を増していくと価電子帯のエネルギーはほとんど変わらずにEgが大きくなることが知られている[例えば、非特許文献4参照]。すなわち、Ga組成比の増大に応じて伝導帯のエネルギーが上昇して電子親和力は小さくなる。その結果、Ga組成比とEgおよびΔECとの関係を示す図8から分かるように、Ga組成比を増していくとCIGSの電子親和力はあるところで、ZnOのそれと逆転し、前述したように、ZnO/CIGS太陽電池の順方向電圧が制約されるようになる。この原理によって、図6に示されるように、実際のCIGS太陽電池の開放電圧が例えば非特許文献2において期待されるようには増大しないことが推定された。
【0010】
そこで、CIGS光吸収層材料のGa組成比に合わせてΔEC≧0となるように窓層材料を調整しなければならないことになる。一つの方法としてZnOにZn以外のII族元素(B、Mg、Caなど)を添加して合金酸化物とすることが考えられた。たとえば、ZnMgOではすでにMg組成比の増加にともなって電子親和力が小さくなることが確かめられており[例えば、非特許文献5参照]、図9に示されるように、Mg組成比が25%以内でCuIn1-xGaxSe2におけるx=0からx=1の全領域に適合させられることが分かっている。また、Mg組成比の増加にともなって禁制帯幅も大きくなり[例えば、非特許文献6参照]、太陽電池の窓層材料として好都合である。
【0011】
【非特許文献1】
H. W.Schock, Tech. Digest 14th Sunshine Workshop Thin Film Cells(2001) 65
【非特許文献2】
R. Herberholz, V. Nadenau, U. Ruhle, C. Coble, H. W. Schock and B. Dimmler, Solar Energy Materials and Solar Cells 49 (1997) 227.
【非特許文献3】
小長井誠編著、「薄膜太陽電池の基礎と応用」第6章、オーム社(2001).
【非特許文献4】
[4] S. B. Zhang, S-H. Wei and A. Zunger, J. Appl. Phys. 83 (1998)3192.
【非特許文献5】
T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura and Y. Hamakawa, J. Appl. Phys. 89 (2001) 8327.
【非特許文献6】
A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72 (1998)2466.
【0012】
【発明が解決しようとする課題】
しかしながら、光吸収層と窓層とのバンドオフセットを上述のように設定してヘテロ接合太陽電池を作製してもなおCIGSのGa組成比xが0.7付近での開放電圧は期待されたほどには上がらず、Ga組成比xが0.7付近での変換効率がなおGa組成比xが0.3付近でのそれを越えることができないことが判明した。
本願発明の課題は、上述した従来技術の問題点を解決することであって、その目的は、変換効率のより高いヘテロ接合太陽電池を提供できるようにすることである。
【0013】
【課題を解決するための手段】
上記の目的を達成するため、本発明によれば、光入射側に透明電極層が、その反対側に高導電率電極層がそれぞれ配置され、前記透明電極層と前記高導電率電極層との間の前記高導電率電極層側に第1導電型の光吸収層が、その前記透明電極層側に第2導電型の窓層が配置されているヘテロ接合を有する太陽電池において、透明電極層材料の電子親和力が光吸収層材料のそれに等しいかそれより小さいことを特徴とするヘテロ接合太陽電池、が提供される。
【0014】
また、上記の目的を達成するため、本発明によれば、光入射側に透明電極層が、その反対側に高導電率電極層がそれぞれ配置され、前記透明電極層と前記高導電率電極層との間の前記高導電率電極層側に第1導電型の光吸収層が、その前記透明電極層側に第2導電型の窓層が配置されているヘテロ接合を有する太陽電池において、透明電極層材料の電子親和力が窓層材料のそれより小さいことを特徴とするヘテロ接合を有する太陽電池、が提供される。
【0015】
また、上記の目的を達成するため、本発明によれば、光入射側に透明電極層が、その反対側に高導電率電極層がそれぞれ配置され、前記透明電極層と前記高導電率電極層との間の前記高導電率電極層側に第1導電型の光吸収層が、その前記透明電極層側に第2導電型の窓層が配置されているヘテロ接合を有する太陽電池において、透明電極層材料の電子親和力が光吸収層材料のそれに等しいかそれより小さくかつ窓層材料のそれに等しいかそれより小さいことを特徴とするヘテロ接合を有する太陽電池、が提供される。
【0016】
【作用】
ヘテロ接合太陽電池の変換効率が期待されたほどには向上しない理由について鋭意探求した結果、本発明者等は、変換効率の向上には光吸収層と窓層との間のバンドオフセットが影響しているとしても、実際にはその外にある透明電極層材料の電子親和力がそれ以上に重要であることを見出した。CIGS太陽電池では、透明電極層とするためにZnOに添加するIII族元素はAl、Ga、Bなどで、Alを用いることが多い。透明電極層材料には高濃度にキャリアが存在して縮退しているのでその電子親和力は仕事関数と考えてもよい。
【0017】
透明電極層材料の電子親和力が光吸収層と窓層のそれより小さい場合(本願発明による場合)と逆に透明電極層材料の電子親和力が光吸収層と窓層のそれより大きい場合のバンド構造をそれぞれ図1(a)と図1(b)に示す。図1において、CB1、VB1およびEF 1はそれぞれ光吸収層材料の伝導帯下端、価電子帯上端およびフェルミ準位を、CB2およびVB2はそれぞれ窓層材料の伝導帯下端および価電子帯上端を、CB3、VB3およびEF3はそれぞれ透明電極層材料の伝導帯下端、価電子帯上端およびフェルミ準位を示し、ΔECおよびΔEC*は、それぞれ光吸収層材料の電子親和力χ1と窓層材料の電子親和力χ2とのバンドオフセット(ΔEC=χ1−χ2)および窓層材料の電子親和力χ2と透明電極層材料の電子親和力χ3とのバンドオフセット(ΔEC*=χ2−χ3)を示す。
ΔEC≧0、ΔEC*≧0が満たされる場合、図1(a)に示されるように、光電変換により大きな順方向電圧Vを得ることができるが、ΔEC≧0が満たされていても、ΔEC*<0である場合には、図1(b)に示されるように、順方向電圧Vは小さくなってしまう。すなわち、ΔEC、ΔEC*≧0である場合には、大きな変換効率を期待することができるが、ΔEC*<0である場合には変換効率は下がってしまう。
【0018】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。
本発明のヘテロ接合を有する太陽電池は、図2または図3に示すように構成され、その好ましいバンド構造の1例は図1(a)に示される。
基板1には、ガラス基板、ステンレスなどからなる金属基板、液晶ポリマーなどからなる樹脂基板、樹脂被覆金属基板などを用いることができる。また、裏面電極層2は、Mo、Wなどの高融点金属材料を用いて0.5〜2μm程度の膜厚に形成される。
光吸収層3は、好ましくはA(B1-xCx)D2(但し、AはIB族元素、B、CはIIIB族元素、DはVIB族元素、0≦x≦1)で表される化合物半導体により形成される。例えば、Cu(In1- xGax)Se2、Cu(In1- xGax)S2を用いて1ないし数μmの膜厚に形成される。ここで、Cu(In1- xGax)Se2を用いて光吸収層を形成する場合、高い変換効率が期待できるxが0.5≦x≦0.8の範囲の材料を用いることが特に好ましい。
【0019】
バッファ層4は、省略可能な半導体層であるが、形成する場合には、CdS、ZnS、ZnSe、Zn(O,OH,S)、Zn(OH,Se)、In(OH,S)、ZnInSeのいずれかにより形成することが好ましい。その望ましい膜厚は5〜100nmである。
窓層5は、好ましくはZn1- xMxO(但し、MはBeあるいはMgあるいはCa、0<x<1)により50〜200の膜厚に形成される。Zn1- xMxO窓層は、n型半導体層であるが、故意には不純物が添加されないか低濃度に不純物が添加(<1019cm-3)された高抵抗半導体層である。いずれの材料を用いる場合であっても、その電子親和力が、光吸収層3のそれと等しいかそれより小さくなるように(すなわち、ΔE≧0)選定される。光吸収層3がCu(In1- xGax)Se2(0≦x≦1)であるとき、Zn1-xMgxO(0≦x≦0.2)により窓層を形成することが特に好ましい。
透明電極層6は、本発明により、その電子親和力(若しくはその仕事関数)が、窓層5の電子親和力と等しいかよれより小さくなるように(すなわち、ΔE*≧0)規定される、膜厚が0.5ないし1.5μmの半導体層である。好ましくは、AlあるいはGaあるいはInを1019cm-3以上添加したZn1- xMxO(但し、MはBeあるいはMgあるいはCa、0<x<1)により形成される。透明電極層6は、窓層5と同一材料を用いて形成することもできるが、ΔE*≧0の条件が満たされる限り異なる材料であってもよい。
反射防止層7は例えばMgF2を用いて、陰極端子8、陽極端子9は例えばAl、Au、Ni、Ti、Pdなどを用いて形成される。
【0020】
【実施例】
3mm厚のガラス基板上にDCマグネトロンスパッタ法により、Moを1μm厚に堆積して裏面電極層を形成した。Cu、Ga、In、Seの各元素の蒸発源〔セル〕を有する蒸着装置を用いて各材料を蒸発させ、G/G+I=0.7になるように調整して、光吸収層となるCIGS層を2μm厚に形成した。その上に化学析出法によりCdSを厚さ10nmに析出させて、バッファ層を形成した。次に、ZnOターゲットとMgOターゲットの二元ターゲットを用いたスパッタ法によりZn0.85Mg0.15Oを1.2μmの膜厚に形成した。透明電極層を形成するために、Zn0.7Mg0.3O層表面にイオン注入法によりAlを高濃度にドープして、窓層と透明電極層とを形成した。その上に、スパッタ法によりMgF2を1μmの膜厚に堆積して反射防止層を形成した。最後に、裏面電極層と透明電極層の表面の一部を露出させ、Au/NiCrからなる陰・陽極端子を形成した。
【0021】
以上好ましい実施の形態、実施例について説明したが本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜の変更が可能なものである。例えば、本発明は短冊状のセルが複数個直列に接続されたモジュール構成の太陽電池にも適用できるものであり、さらには、半導体基板を用いた太陽電池にも適用できるものである。
【0022】
【発明の効果】
以上説明したように、本発明の太陽電池は、透明電極層の電子親和力を窓層や光吸収層のそれより小さくしたものであるので、透明電極層の伝導帯下端のレベルによって光電変換による順方向電圧が制限を受けることがなくなり、大きな開放電圧を得ることが可能になり、変換効率を向上させることができる。特に、CIGS太陽電池の場合、光吸収層材料CIGSのGa組成比を高めてもバンドオフセットに起因する損失を減らすことができ、理論的最高変換効率に近い変換効率を実現できる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池のエネルギーバンド図(a)と、本発明によらない太陽電池のエネルギーバンド図(b)。
【図2】表面光入射型太陽電池の模式断面図。
【図3】裏面光入射型太陽電池の模式断面図。
【図4】従来のCIGS太陽電池のエネルギーバンド図。
【図5】CIGS太陽電池の変換効率の理論的な限界(曲線)と従来のCIGS太陽電池の変換効率(プロット)の禁制帯幅依存性を示すグラフ。
【図6】従来のCIGS太陽電池開放電圧のGa組成比依存性を示すグラフ。
【図7】バンドオフセットが正の場合(a)と負の場合(b)における順方向電圧とドリフト電界とを比較するためのエネルギーバンド図。
【図8】CuIn1-xGaxSe2の禁制帯幅(Eg)と窓層材料に対する伝導帯バンドオフセット(ΔEC)のGa組成比(x)に対する変化を示すグラフ。
【図9】Zn1-xMgxOのMg組成比(x)と電子親和力の関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell having a heterojunction, and more particularly, to a solar cell having a heterojunction having a light absorption layer of Cu (InGa) Se 2 called CIGS, and more particularly, to a transparent electrode among solar cell elements. It relates to the relationship between the electron affinity of the materials of the layer, the window layer (a layer forming a pn junction with the light absorbing layer), and the light absorbing layer (main photoelectric conversion layer).
[0002]
[Prior art]
Solar cells other than silicon solar cells usually use a pn junction (heterojunction) of two different compound semiconductors, and the one having a larger forbidden band width (E g ) is located on the light receiving side as a window layer. The smaller g is the main light absorbing (photoelectric conversion) layer. Large to obtain a photoelectric conversion efficiency is an important that the E g of the light absorbing layer is optimized for solar spectrum, 1.4EV~1.5EV optimum values theoretically shown as the value Is generally believed [see, for example, Non-Patent Documents 1 and 2]. For the window layer, the first condition is that E g is large enough to transmit most of the sunlight spectrum (about 3 eV or more), and that the light absorption coefficient in the transmission region is small. Attention has been paid.
[0003]
The present invention is advantageously applied to, but not limited to, CIGS solar cells. The usefulness of CIGS solar cells is already well known and sales have begun [for example, see Non-Patent Document 3]. This is a solar cell based on using Cu (In 1-x Ga x ) Se 2 as a light absorbing layer and ZnO (zinc oxide) as a window layer. In this case, CIGS is a p-type semiconductor and ZnO is an n-type semiconductor.
The CIGS solar cell can be configured as a front (element formation surface) light incidence type or a rear (substrate side) light incidence type, but the front light incidence type is widely adopted. FIG. 2 shows a front-illuminated solar cell and FIG. 3 shows a back-illuminated solar cell.
[0004]
As shown in FIG. 2, the front-illuminated solar cell has a back electrode layer 2 made of metal on a substrate 1, and a light absorbing layer 3, a buffer layer 4, a window layer 5, a transparent electrode layer 6, The anti-reflection layer 7 is sequentially formed. A part of the anti-reflection layer 7 is removed, a cathode terminal 8 is formed in the removed area, and an anode terminal 9 is formed on the back electrode layer 2, and is used as an output terminal.
In the back-illuminated solar cell, as shown in FIG. 3, a transparent electrode layer 6 is formed on a substrate 1, and a window layer 5, a buffer layer 4, a light absorbing layer 3, and a back electrode layer 2 are sequentially formed thereon. Have been. A cathode terminal 8 and an anode terminal 9 serving as output terminals are formed on the transparent electrode layer 6 and the back electrode layer 2, respectively, and an antireflection layer 7 is formed on the back surface of the substrate.
[0005]
In a typical conventional example, the substrate 1 is a glass substrate having a thickness of several mm, the back electrode layer 2 is a Mo layer having a thickness of about 1 μm, the light absorbing layer 3 is a p-type CIGS layer having a thickness of about 2 μm, and the buffer layer 4 is a 50-100 nm thick layer. The CdS layer, the window layer 5 is an n-type ZnO layer of about 100 nm, the transparent electrode layer 6 is a ZnO layer of less than 1 μm which is made high-concentration n-type by adding a group III element, and the antireflection layer 7 is an MgF 2 film. The transparent electrode layer 6 is a degenerated high-concentration n-type semiconductor in which the Fermi level exists in the conduction band and acts like a metal. The group III element added to ZnO to form a transparent electrode layer is Al, Ga, B or the like, and Al is often used. A material different from the window layer, for example, ITO may be used for the material of the transparent electrode layer.
[0006]
In this solar cell, the CIGS light-absorbing layer is considered to perform the most important function (the function of converting light energy into electron-hole pairs) and is called a CIGS solar cell by its material name. The pn junction diode formed between them is the main part of this device. It is considered that the energy band of this device is as shown in FIG. In the figure, CB 1 and VB 1 indicate the lower end of the conduction band and the upper end of the valence band of CIGS, CB 2 and VB 2 indicate the lower end of the conduction band and the upper end of the valence band of ZnO (or ZnO: Al). F1 and E F2 indicates the Fermi level of the CIGS and ZnO. V is a forward voltage generated as a result of light irradiation, where q is an elementary charge.
There are various theories about the role of the CdS buffer layer, and although it is not strictly elucidated, it is widely accepted that it is necessary. If the buffer layer is made sufficiently thin, it can be considered that the junction is substantially formed between the CIGS light absorbing layer and the ZnO window layer.
When the ZnO window layer is omitted, a Schottky junction between ZnO: Al and CIGS is essentially obtained as shown in FIG. This structure also has a photoelectric conversion function. However, since there is no electric field in the ZnO: Al layer, electrons in the conduction band of ZnO: Al pass through the thin CdS layer at the interface (directly in the absence of CdS) and have a valence band of CIGS. The probability of recombination with holes (indicated by the arrow in FIG. 4) increases, and the number of carriers flowing to an external circuit and performing work decreases. That is, in order to obtain high conversion efficiency, it is an essential requirement to provide a high resistance window layer to form a pn junction.
[0007]
For CIGS solar cells, actually the optimum value of E g when the E g of the light absorbing layer material CuIn 1-x Ga x Se 2 increases with increasing x x~0.7 1.4eV~1 Although it becomes 0.5 eV (see FIG. 8), if x becomes a peak after x-0.3, the conversion efficiency decreases contrary to expectation. The situation is shown in FIG. In FIG. 5, the horizontal axis indicates the forbidden band width, the vertical axis indicates the conversion efficiency, the theoretical limit is indicated by a real curve, and the measured values of the prototype are plotted by white circles and the like. As shown in FIG. 5, the theoretical limit becomes maximum when the forbidden band width is around 1.4 eV. As shown in FIG. 6, as shown in FIG. 6, the difference between the forbidden band width at which the theoretical limit value is maximum and the forbidden band width at which the conversion efficiency in the actual production example is maximum is separated. Above 0.3, the increasing slope of the open-circuit voltage becomes gentle. In FIG. 6, the horizontal axis indicates the composition ratio and the vertical axis indicates the open-circuit voltage, and the measured values of the experimental example are plotted with black circles. As shown in FIG. 6, the open-circuit voltage increases linearly up to x of 0.3, but tends to saturate when x is 0.3 or more, and the forbidden band width is 1.4 eV (x is At about 0.7), it is smaller than the expected value. In other words, it is considered that the fact that x is not less than 0.3 and a sufficient open-circuit voltage cannot be obtained is a direct cause that the conversion efficiency cannot be increased.
[0008]
To address this, consideration was given to the electron affinity of the window layer. As a result, when constructing a solar cell having a heterojunction, the window layer material has a forbidden band width E g large enough to transmit most of the solar spectrum and also has a high electron affinity ( It was considered desirable that χ 2 ) be equal to or less than that of the light absorbing layer material (χ 1 ). If the difference in electron affinity, that is, the band offset at the bottom of the conduction band is defined as ΔE C = χ 1 −χ 2 , this condition is represented by ΔE C ≧ 0. FIG. 7A shows the band structure when ΔE C ≧ 0. When this condition is satisfied, even if a forward voltage is applied near the bottom of the conduction band (CB 2 ) of the window layer to that of the light absorption layer (CB 1 ), electrons which are minority carriers in the conduction band of the light absorption layer are applied. In (e), a drift electric field (V b1 ) for accelerating it works. Although ΔE C = 0 is an ideal condition, when ΔE C > 0, the bending (V b2 ) of the band formed on the window layer side can be obtained by making the carrier concentration of the window layer material slightly larger than that of the light absorbing layer material. ΔE C > 0 is a permissible condition because it does not constitute a large barrier. On the other hand, when ΔE c <0, the energy at the bonding interface of the light absorbing layer material is pushed up, and therefore, as shown in FIG. 7B, the drift electric field (V b1 ) is changed to the conduction band of the light absorbing layer material. Since a barrier is formed for electrons, only a forward voltage smaller by ΔE C than in the case of ΔE C ≧ 0 can be generated. FIG. 7B is an imaginary state drawn for explanation, and the forward voltage does not actually increase to this state only by light irradiation.
[0009]
E g energy hardly changes in the gradually increasing Ga composition ratio of the light absorbing layer material valence band that is larger known in CIGS solar cells [for example, see non-patent document 4]. That is, the energy of the conduction band increases with an increase in the Ga composition ratio, and the electron affinity decreases. As a result, as can be seen from FIG. 8 showing the relationship between the Ga composition ratio and E g and ΔE C , as the Ga composition ratio increases, the electron affinity of CIGS reverses that of ZnO at a certain point, as described above. , The forward voltage of the ZnO / CIGS solar cell is restricted. According to this principle, as shown in FIG. 6, it was estimated that the actual open circuit voltage of the CIGS solar cell did not increase as expected in Non-Patent Document 2, for example.
[0010]
Therefore, the window layer material must be adjusted so that ΔE C ≧ 0 in accordance with the Ga composition ratio of the CIGS light absorbing layer material. As one method, it has been considered that a group II element (B, Mg, Ca, etc.) other than Zn is added to ZnO to form an alloy oxide. For example, in ZnMgO, it has already been confirmed that the electron affinity decreases as the Mg composition ratio increases [see, for example, Non-Patent Document 5], and as shown in FIG. It has been found that it can be adapted to the entire region of x = 0 to x = 1 in CuIn 1-x Ga x Se 2 . Further, as the Mg composition ratio increases, the forbidden band width also increases [for example, see Non-Patent Document 6], which is favorable as a window layer material for a solar cell.
[0011]
[Non-patent document 1]
HWSchock, Tech.Digest 14th Sunshine Workshop Thin Film Cells (2001) 65
[Non-patent document 2]
R. Herberholz, V. Nadenau, U. Ruhle, C. Coble, HW Schock and B. Dimmler, Solar Energy Materials and Solar Cells 49 (1997) 227.
[Non-Patent Document 3]
Edited by Makoto Konagai, "Basics and Applications of Thin Film Solar Cells", Chapter 6, Ohmsha (2001).
[Non-patent document 4]
[4] SB Zhang, SH. Wei and A. Zunger, J. Appl. Phys. 83 (1998) 3192.
[Non-Patent Document 5]
T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura and Y. Hamakawa, J. Appl. Phys. 89 (2001) 8327.
[Non-Patent Document 6]
A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.
[0012]
[Problems to be solved by the invention]
However, even when a heterojunction solar cell is manufactured by setting the band offset between the light absorbing layer and the window layer as described above, the open-circuit voltage at a Ga composition ratio x of CIGS of around 0.7 is as expected. It was found that the conversion efficiency when the Ga composition ratio x was around 0.7 could not exceed that when the Ga composition ratio x was around 0.3.
An object of the present invention is to solve the above-mentioned problems of the related art, and an object thereof is to provide a heterojunction solar cell having higher conversion efficiency.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a transparent electrode layer is arranged on the light incident side, and a high conductivity electrode layer is arranged on the opposite side, and the transparent electrode layer and the high conductivity electrode layer A solar cell having a hetero-junction in which a light-absorbing layer of the first conductivity type is disposed on the side of the high conductivity electrode layer and a window layer of the second conductivity type is disposed on the transparent electrode layer side. A heterojunction solar cell is provided, wherein the electron affinity of the material is less than or equal to that of the light absorbing layer material.
[0014]
In order to achieve the above object, according to the present invention, a transparent electrode layer is arranged on the light incident side, and a high conductivity electrode layer is arranged on the opposite side, and the transparent electrode layer and the high conductivity electrode layer are arranged. A solar cell having a hetero-junction in which a light-absorbing layer of the first conductivity type is disposed on the high-conductivity electrode layer side and a window layer of the second conductivity type is disposed on the transparent electrode layer side. There is provided a solar cell having a heterojunction, wherein the electron affinity of the electrode layer material is smaller than that of the window layer material.
[0015]
In order to achieve the above object, according to the present invention, a transparent electrode layer is arranged on the light incident side, and a high conductivity electrode layer is arranged on the opposite side, and the transparent electrode layer and the high conductivity electrode layer are arranged. A solar cell having a hetero-junction in which a light-absorbing layer of the first conductivity type is disposed on the high-conductivity electrode layer side and a window layer of the second conductivity type is disposed on the transparent electrode layer side. A solar cell having a heterojunction is provided, wherein the electron affinity of the electrode layer material is equal to or smaller than that of the light absorbing layer material and equal to or smaller than that of the window layer material.
[0016]
[Action]
As a result of enthusiastic research on the reason why the conversion efficiency of the heterojunction solar cell is not improved as expected, the present inventors found that the band offset between the light absorption layer and the window layer affected the improvement of the conversion efficiency. However, in practice, it has been found that the electron affinity of the transparent electrode layer material outside that is more important. In a CIGS solar cell, a group III element added to ZnO to form a transparent electrode layer is Al, Ga, B, or the like, and Al is often used. Since the carrier is present in the transparent electrode layer material at a high concentration and is degenerated, its electron affinity may be considered as a work function.
[0017]
Contrary to the case where the electron affinity of the transparent electrode layer material is smaller than that of the light absorption layer and the window layer (according to the present invention), the band structure where the electron affinity of the transparent electrode layer material is larger than that of the light absorption layer and the window layer Are shown in FIGS. 1 (a) and 1 (b), respectively. In Figure 1, CB 1, VB 1 and E F 1 is the bottom of the conduction band of the respective light-absorbing layer material, the valence band maximum and the Fermi level, CB 2 and VB 2 is the conduction band minimum and valence of each window layer material the electron band upper end, CB 3, VB 3 and E F3 is the bottom of the conduction band of the respective transparent electrode layer material, shows the valence band maximum and the Fermi level, Delta] E C and Delta] E C * is an electron of each light absorbing layer material affinity chi 1 and the band offset between the electron affinity chi 2 of the window layer material (ΔE C = χ 1 -χ 2 ) and the window layer band offset between the electron affinity chi 2 and the electron affinity chi 3 of the transparent electrode layer material of the material ( ΔE C * = χ 2 −χ 3 ).
When ΔE C ≧ 0 and ΔE C * ≧ 0 are satisfied, a large forward voltage V can be obtained by photoelectric conversion as shown in FIG. 1A, but ΔE C ≧ 0 is satisfied. However, when ΔE C * <0, the forward voltage V becomes small as shown in FIG. That is, when ΔE C and ΔE C * ≧ 0, a large conversion efficiency can be expected, but when ΔE C * <0, the conversion efficiency decreases.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
The solar cell having a heterojunction of the present invention is configured as shown in FIG. 2 or FIG. 3, and one example of a preferable band structure is shown in FIG.
As the substrate 1, a glass substrate, a metal substrate made of stainless steel, a resin substrate made of a liquid crystal polymer, a resin-coated metal substrate, or the like can be used. The back electrode layer 2 is formed to a thickness of about 0.5 to 2 μm using a high melting point metal material such as Mo or W.
The light absorbing layer 3 is preferably represented by A (B 1-x C x ) D 2 (where A is a group IB element, B and C are group IIIB elements, D is a group VIB element, and 0 ≦ x ≦ 1). Formed from the compound semiconductor to be formed. For example, it is formed to a thickness of 1 to several μm using a Cu (In 1- x Ga x) Se 2, Cu (In 1- x Ga x) S 2. Here, the case of forming the light absorption layer using the Cu (In 1- x Ga x) Se 2, x can be expected high conversion efficiency be a material in the range of 0.5 ≦ x ≦ 0.8 Particularly preferred.
[0019]
The buffer layer 4 is a semiconductor layer which can be omitted, but when it is formed, it is formed of CdS, ZnS, ZnSe, Zn (O, OH, S), Zn (OH, Se), In (OH, S), ZnInSe. It is preferred to be formed by any of the above. The desirable film thickness is 5 to 100 nm.
Window layer 5 is preferably Zn 1- x M x O (where, M is Be or Mg, or Ca, 0 <x <1) is formed to a thickness of the 50-200. Zn 1- x M x O window layer is an n-type semiconductor layer, a high resistance semiconductor layer is an impurity in a low concentration or impurities are not added is added (<10 19 cm -3) is intentionally. Whichever material is used, the electron affinity is selected so as to be equal to or smaller than that of the light absorbing layer 3 (that is, ΔE ≧ 0). When the light absorbing layer 3 is made of Cu (In 1- x Ga x ) Se 2 (0 ≦ x ≦ 1), a window layer is formed of Zn 1-x Mg x O (0 ≦ x ≦ 0.2). Is particularly preferred.
According to the present invention, the thickness of the transparent electrode layer 6 is specified such that its electron affinity (or its work function) is equal to or smaller than the electron affinity of the window layer 5 (that is, ΔE * ≧ 0). Is a semiconductor layer of 0.5 to 1.5 μm. Preferably, it is formed of Zn 1- x M x O (where M is Be, Mg or Ca, and 0 <x <1) to which Al, Ga or In is added at 10 19 cm −3 or more. The transparent electrode layer 6 can be formed using the same material as the window layer 5, but may be a different material as long as the condition of ΔE * ≧ 0 is satisfied.
The antireflection layer 7 is formed using, for example, MgF 2 , and the cathode terminal 8 and the anode terminal 9 are formed using, for example, Al, Au, Ni, Ti, Pd, or the like.
[0020]
【Example】
Mo was deposited to a thickness of 1 μm on a 3 mm thick glass substrate by DC magnetron sputtering to form a back electrode layer. Each material is evaporated using a vapor deposition apparatus having an evaporation source [cell] of each element of Cu, Ga, In, and Se, and adjusted so that G / G + I = 0.7. The layer was formed to a thickness of 2 μm. CdS was deposited thereon to a thickness of 10 nm by a chemical deposition method to form a buffer layer. Next, Zn 0.85 Mg 0.15 O was formed to a thickness of 1.2 μm by a sputtering method using a binary target of a ZnO target and a MgO target. In order to form a transparent electrode layer, Al was highly doped on the surface of the Zn 0.7 Mg 0.3 O layer by an ion implantation method to form a window layer and a transparent electrode layer. An antireflection layer was formed thereon by depositing MgF 2 to a thickness of 1 μm by a sputtering method. Finally, a part of the surface of the back electrode layer and part of the surface of the transparent electrode layer was exposed to form a negative / anode terminal made of Au / NiCr.
[0021]
Although the preferred embodiments and examples have been described above, the present invention is not limited to these, and appropriate changes can be made without departing from the spirit of the present invention. For example, the present invention is applicable to a solar cell having a module configuration in which a plurality of strip-shaped cells are connected in series, and is further applicable to a solar cell using a semiconductor substrate.
[0022]
【The invention's effect】
As described above, in the solar cell of the present invention, since the electron affinity of the transparent electrode layer is smaller than that of the window layer or the light absorbing layer, the order of photoelectric conversion depends on the level of the conduction band lower end of the transparent electrode layer. The direction voltage is not restricted, and a large open voltage can be obtained, so that the conversion efficiency can be improved. In particular, in the case of a CIGS solar cell, even if the Ga composition ratio of the light absorption layer material CIGS is increased, the loss due to the band offset can be reduced, and conversion efficiency close to the theoretical maximum conversion efficiency can be realized.
[Brief description of the drawings]
FIG. 1 is an energy band diagram of a solar cell according to the present invention (a) and an energy band diagram of a solar cell not according to the present invention (b).
FIG. 2 is a schematic cross-sectional view of a surface light incident solar cell.
FIG. 3 is a schematic sectional view of a back-illuminated solar cell.
FIG. 4 is an energy band diagram of a conventional CIGS solar cell.
FIG. 5 is a graph showing the theoretical limit (curve) of the conversion efficiency of the CIGS solar cell and the dependence of the conversion efficiency (plot) of the conventional CIGS solar cell on the forbidden bandwidth.
FIG. 6 is a graph showing the dependency of the open circuit voltage of a conventional CIGS solar cell on the Ga composition ratio.
FIG. 7 is an energy band diagram for comparing a forward voltage and a drift electric field when the band offset is positive (a) and when the band offset is negative (b).
FIG. 8 is a graph showing a change in a band gap (E g ) of CuIn 1-x Ga x Se 2 and a band offset (ΔE C ) of a conduction band with respect to a window layer material with respect to a Ga composition ratio (x).
FIG. 9 is a graph showing the relationship between the Mg composition ratio (x) of Zn 1-x Mg x O and the electron affinity.