JP2004213997A - Pretreatment method of separator for fuel cell, and fuel cell laminating that plate having carried out pretreatment - Google Patents

Pretreatment method of separator for fuel cell, and fuel cell laminating that plate having carried out pretreatment Download PDF

Info

Publication number
JP2004213997A
JP2004213997A JP2002381388A JP2002381388A JP2004213997A JP 2004213997 A JP2004213997 A JP 2004213997A JP 2002381388 A JP2002381388 A JP 2002381388A JP 2002381388 A JP2002381388 A JP 2002381388A JP 2004213997 A JP2004213997 A JP 2004213997A
Authority
JP
Japan
Prior art keywords
fuel cell
pretreatment
separator
ultrasonic vibration
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002381388A
Other languages
Japanese (ja)
Other versions
JP3831705B2 (en
Inventor
Masataka Kadowaki
正天 門脇
Yukinori Akiyama
幸徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002381388A priority Critical patent/JP3831705B2/en
Publication of JP2004213997A publication Critical patent/JP2004213997A/en
Application granted granted Critical
Publication of JP3831705B2 publication Critical patent/JP3831705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a pretreatment method of a separator that enables to produce a assembled fuel cell which has no initial operation trouble and can maintain stable generating capacity from operation start, by applying a pretreatment after processing of a separator constituting a unit cell of the fuel cell. <P>SOLUTION: The separator after completion of processing is set in a vibrating tank, and a pure water with a conductivity of 5 μS/cm or less or a mixture of pure water and ethanol having a conductivity of 5 μS/cm or less is supplied to the vibrating tank, and ultrasonic vibration with an oscillation frequency 20-50 kHz and an effective ultrasonic power density of 5-20 kW/m<SP>3</SP>is applied for 30 minutes. This ultrasonic vibration is applied three times while exchanging the water solution, and by applying working-up cleaning, the pretreatment process is completed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の単セルを構成するセパレータの前処理方法に関する。
【0002】
【従来の技術】
燃料電池は、電解質膜が、片側に燃料極触媒層と多孔質支持層からなる燃料極ともう一方の側には空気極触媒層と多孔質支持層からなる空気極で挟まれ、さらにその外側には水素や酸素といった反応ガスの供給路を兼ねたセパレータで挟持されている。燃料極側に設けられたセパレータの反応ガス供給路に供給された水素ガスは、多孔質支持層で拡散され、燃料極触媒層に吸収されて水素イオンと電子に分かれる。空気極では、セパレータの反応ガス供給路に供給された酸素が多孔質層で拡散され、空気極触媒層に吸収されて、電解質膜を移動してきた水素イオンと外部回路を移動してきた電子とで水を生成する。この反応で、燃料極触媒層で分離した電子が外部の回路を移動することにより、電流が流れることになる。この構成の単電池は単セルと呼ばれるが、起電力が1ボルト程度と小さいため、電気機器の電源として使用するためにはこの単セルを多数積層してスタックを構成し、必要な出力の電池に組み上げる。このような構成の単セルにおいて、セパレータの役割は、単セルを積層したときに、燃料極に入る燃料ガスと空気極に入る酸化剤ガス(空気など)を分離することと、単セル間を電気的に接続するという2つの役割を持っている。これらの役割を安定して果たし、低コスト化が可能なセパレータとして、カーボンを材料にしてモールド成形で作成されているものがある(例えば、参考文献1参照)。
【0003】
【特許文献1】
特開2000−223133号公報(第2−3頁)
【0004】
【発明が解決しようとする課題】
しかしながら、モールド成形品はバインダー樹脂の含有率が高く、切削加工で使用されるバインダー樹脂の含有率の低いカーボンプレートに比較してカーボンの密度が小さいため、電気伝導度が低いものとなってしまう。そこで、これを改良するため、モールド成形品のカーボンプレートの表面を粗にする処理を行い、これを使用して単セルを構成し、さらに積層して燃料電池として運転試験を行なった。その結果、反応ガスや冷却水の出口配管部で黒色の流出物(黒い固着物)が見られた。したがって、このカーボンプレートを使用した単セルを積層して組み上げた燃料電池を含む燃料電池システムを稼動させた場合は、システム配管内での配管詰まりや、ポンプの故障が燃料電池システムのトラブルを発生させる要因となることが考えられる。この、黒色の流出物の発生を防止するために、単なる洗浄、たとえば流水洗浄、浸水洗浄、洗浄剤による表面洗浄、空気や窒素によるブローなどでは、電気伝導度は確保できるが、不安定成分を除去しきれず、電池として稼動試験を行なった際、上述の黒色流出部の発生は避けられない。一方、レーザなどの高いエネルギーを表面に与えると、表面は安定化する可能性はあるが、逆に表面が乱れ、且つ、電気伝導度も低下する可能性があり、製造コストも高くなる。
そこで、本発明は、上記課題に鑑みて創案なされたものであり、燃料電池の運転による黒色の流出物の発生を阻止するための効果的な対策をとることで、低コストで安定した発電を可能にするセパレータを実現することにある。
【0005】
【課題を解決するための手段】
そこで、上述した課題であるところの一見相反する、導電性と表面の安定性を両立させるため、また、簡単で確実な効果を得る手段として、超音波の振動によってエネルギーを与えて表面処理を行なうことが、最も簡単で効果的であることを見出した。
【0006】
つまり、上記課題を解決するために、本発明の請求項1に記載された発明は、電解質膜の両面に酸素極と水素極とを接合して構成された膜・電極接合体を挟むように配置され、カーボンを主成分として反応ガスまたは冷却水の供給路を有するセパレータの加工後の前処理方法であって、該前処理方法は前記セパレータを水溶液に浸漬させ、前記水溶液を超音波振動させることを特徴とするものである。
【0007】
また、本発明の請求項2に記載された発明は、請求項1において、前記水溶液は導電率が5μS/cm以下の純水、または前記導電率が5μS/cm以下の純水とエタノールとの混合液であることを特徴とするものである。
【0008】
また、本発明の請求項3に記載された発明は、請求項1又は2において前記超音波振動の周波数は20〜50kHzであり、且つ、有効超音波出力密度は5〜20kW/mであることを特徴とするものである。
【0009】
また、本発明の請求項4に記載された発明は、請求項1乃至3の何れか1項において、前記超音波振動による前処理工程は、有効超音波出力量密度が5〜30kWh/mであることを特徴とするものである。
【0010】
また、本発明の請求項5に記載された発明は、請求項1乃至4の何れか1項において、前記超音波振動による前処理工程は、前記超音波振動を加える毎に新しい上記水溶液を用い、且つ、30分間の超音波振動を3回繰り返して行なうことを特徴とするものである。
【0011】
【発明の実施の形態】
以下、この発明の好適な実施形態を図1乃至2を参照しながら、詳細に説明する。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0012】
図1は、本発明に係る燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池の第1実施例を示す前処理工程の流れ図である。なお、前処理工程で超音波振動のエネルギーを与える1つの手段として、具体的には水溶液を超音波振動させ、その水溶液を介してエネルギーを与えるものである。この工程で使用する振動槽は1つであり、比較的少量の被振動物へ超音波振動のエヘルギーを与える工程となっている。被振動物のセパレータは、カーボンの粉末を樹脂のバインダーに分散させてモールド成形し、これをプレス加工で所望する形状に成形し、焼成して固結させ、表面に形成された樹脂の皮膜をサンドブラストなどの表面処理によって削りとり、表面にカーボンを露出させて表面の導電率を上げたものである。但し、製造方法については、その他、切削加工、射出成形、エッチング加工、放電加工、超音波加工、彫刻加工などが挙げられるがこれらに限定されるものではない。
【0013】
上述した方法で作成されたセパレータに超音波振動のエネルギーを与える前処理工程1は、セパレータを振動槽へセットS1し、次いで振動槽へ水溶液の供給S2を行い振動槽を水溶液で満たす。水溶液としては、導電率が5μS/cm以下の純水、または導電率が5μS/cm以下の純水とエタノールとの混合液が用いられる。これは、イオン交換水出口に取り付けられた導電率計の表示が5μS/cm以下であるため、導電率の管理が厳密に行なえること、特殊な溶液でなくコストも高くないことなどを考慮したものである。次に超音波振動の発振周波数が20〜50kHzで、好ましくは24〜40kHz、有効超音波出力密度(kW/m)は、超音波発振器から出力される超音波出力を振動槽の容積で割って、単位容積当たりに相当する超音波出力を表したもので、5〜20kW/mで、好ましくは9〜16kW/mの超音波印加条件で1回目の超音波振動30が30分間の印加時間で行なわれる。1回目の超音波振動S3が終わると新しい水溶液に交換S4して1回目と同様の超音波印加条件及び印加時間で2回目の超音波振動S5が行なわれ、さらに水溶液の交換S6をして1回目および2回目と同様の超音波印加条件および印加時間で3回目の超音波振動S7が行なわれる。超音波振動を3回に分けて行なうのは、超音波振動が終わる毎に超音波振動によるエネルギーを与えた結果の水溶液を観察することにより、表面の不安定成分が除去されて浮いてこなくなるのを確認するためである。合計3回の超音波振動によるエネルギーで与えられる総有効超音波出力密度は有効超音波出力密度×総超音波印加時間となり、これを有効超音波出力量密度(kWh/m)として表すと、5〜30kWh/mで、好ましくは9〜24kWh/mである。その後、振動槽からセパレータが引上げS8られて、仕上げ洗浄S9を経て前処理工程が終わる。仕上げ洗浄にも導電率が5μS/cm以下の純水または導電率が5μS/cm以下の純水とエタノールとの混合液が使用される。
【0014】
図2は、本発明に係る燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池の第2実施例を示す前処理工程の模式図である。なお、この工程で使用する振動槽は3つであり、比較的多量の被振動物へ超音波振動のエヘルギーを与える工程となっている。被振動物のセパレータは上述した第1実施例の方法で作成されたものである。まず、3つの振動槽10、11、12を用意し、夫夫の振動槽に実施例1で使用したと同様の導電率が5μS/cm以下の純水または導電率が5μS/cm以下の純水とエタノールとの混合液を満たしておく。そして、最初に第1振動槽10にセパレータを浸漬させて、これも実施例1と同様の超音波印加条件および印加時間で超音波振動を行なう。次に第2振動槽11、第3振動槽12で順次超音波振動のエネルギーを与え、最後に第3振動槽12から引き上げて最後に仕上げ洗浄をおこなって前処理工程を完了する。
【0015】
超音波振動によってエネルギーを与える有効超音波出力密度は、超音波が弱すぎると、表面のバインダーの樹脂に辛うじて接着されたカーボンが分離されないで残り、強すぎると表面に露出した粗なカーボンが離脱し、樹脂面が多く露出すると表面は安定化する変わりに表面の導電性が低下する。また、超音波振動を印加する時間が短すぎると表面処理が不完全になって表面にカーボンが残存し超音波振動で与えたエネルギー効果が十分得られないことになり、長すぎると印加時間に相当するコストほどには超音波振動によるエネルギー効果が得られないことになる。これは、振動回数についても同様なことがいえる。以上のことを踏まえ、本発明による前処理方法は、超音波発振周波数及び印加時間の条件を変えて実験を繰り返し、その結果を検証し、表面処理効果と作業コストの整合を見極めながら導いた結果に基づいて見出されたものである。
【0016】
【発明の効果】
以上説明したように、本発明の燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池で前処理されたセパレータは、バインダーに弱い結合力で結びついたカーボンが除去されているため、水溶液を介して超音波振動のエネルギーで表面処理したセパレータを使って単セルを作成し、その単セルを積層して組み上げた燃料電池では、反応ガス流路または冷却水流路に高速の気体や液体が流れてもカーボンが離脱することがない、従って、夫夫の流路が閉塞することによる発電反応の低下や、気体及び液体の流れる配管内の汚れや閉塞が原因で起こる運転障害による発電能力の低下や装置のトラブルといった問題も生じることがない。したがって、初期の運転トラブルがなく、運転開始から安定した発電能力が維持できるなどの優れた効果が得られるものである。
【図面の簡単な説明】
【図1】本発明に係わる燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池の第1実施例を示す前処理工程の流れ図である。
【図2】本発明に係わる燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池の第2実施例を示す前処理工程の模式図である。
【符号の説明】
1 前処理工程
S1 セット
S2 水溶液の供給
S3 1回目の超音波振動
S4 水溶液の交換
S5 2回目の超音波振動
S6 水溶液の交換
S7 3回目の超音波振動
S8 引上
S9 仕上げ洗浄
10 第1振動槽
11 第2振動槽
12 第3振動槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for pretreating a separator constituting a single cell of a fuel cell.
[0002]
[Prior art]
In a fuel cell, an electrolyte membrane is sandwiched between a fuel electrode comprising a fuel electrode catalyst layer and a porous support layer on one side and an air electrode comprising an air electrode catalyst layer and a porous support layer on the other side. Are sandwiched by separators which also serve as supply paths for reaction gases such as hydrogen and oxygen. Hydrogen gas supplied to the reaction gas supply passage of the separator provided on the fuel electrode side is diffused in the porous support layer, absorbed by the fuel electrode catalyst layer and separated into hydrogen ions and electrons. At the air electrode, oxygen supplied to the reaction gas supply path of the separator is diffused in the porous layer, absorbed by the air electrode catalyst layer, and formed by hydrogen ions moving through the electrolyte membrane and electrons moving through the external circuit. Produces water. In this reaction, the electrons separated in the fuel electrode catalyst layer move through an external circuit, so that a current flows. The unit cell having this configuration is called a unit cell. However, since the electromotive force is as small as about 1 volt, in order to use it as a power source for electric equipment, a large number of such unit cells are stacked to form a stack, and a battery having a required output is formed. Assemble. In the unit cell having such a configuration, the role of the separator is to separate the fuel gas entering the fuel electrode and the oxidizing gas (such as air) entering the air electrode when the unit cells are stacked, and to separate the unit cells from each other. It has two roles of electrical connection. As a separator that can stably fulfill these roles and reduce cost, there is a separator formed by molding using carbon as a material (for example, see Reference Document 1).
[0003]
[Patent Document 1]
JP-A-2000-223133 (pages 2-3)
[0004]
[Problems to be solved by the invention]
However, the molded article has a high binder resin content, and has a lower carbon density than a carbon plate having a lower binder resin content used in cutting, resulting in lower electric conductivity. . Therefore, in order to improve this, a process of roughening the surface of the carbon plate of the molded article was performed, and a single cell was formed using the carbon plate. As a result, a black effluent (black solid matter) was observed at the outlet pipe of the reaction gas and the cooling water. Therefore, when operating a fuel cell system including a fuel cell assembled by stacking single cells using this carbon plate, clogging in the system piping and failure of the pump may cause problems in the fuel cell system. This can be a factor that causes In order to prevent the generation of this black effluent, electric conductivity can be secured by simple washing, for example, washing with running water, washing with water, washing with a cleaning agent, or blowing with air or nitrogen. When the battery cannot be completely removed and an operation test is performed as a battery, occurrence of the black outflow portion described above is inevitable. On the other hand, when high energy such as laser is applied to the surface, the surface may be stabilized, but conversely, the surface may be disturbed and the electrical conductivity may be reduced, and the manufacturing cost may be increased.
In view of the above, the present invention has been made in view of the above-described problems. By taking effective measures to prevent the generation of black effluent due to the operation of a fuel cell, stable power generation at low cost is achieved. It is to realize a separator that makes it possible.
[0005]
[Means for Solving the Problems]
Therefore, in order to achieve both the conductivity and the stability of the surface, which are seemingly contradictory, which are the above-mentioned problems, and as a means for obtaining a simple and reliable effect, surface treatment is performed by applying energy by ultrasonic vibration. Has been found to be the easiest and most effective.
[0006]
That is, in order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is to sandwich a membrane-electrode assembly formed by joining an oxygen electrode and a hydrogen electrode on both surfaces of an electrolyte membrane. A pretreatment method after processing a separator having a supply path of a reaction gas or cooling water containing carbon as a main component, wherein the pretreatment method includes immersing the separator in an aqueous solution and ultrasonically vibrating the aqueous solution. It is characterized by the following.
[0007]
Further, in the invention described in claim 2 of the present invention, in claim 1, the aqueous solution is a mixture of pure water having a conductivity of 5 μS / cm or less, or pure water having a conductivity of 5 μS / cm or less and ethanol. It is a mixed liquid.
[0008]
Also, in the invention described in claim 3 of the present invention, in claim 1 or 2, the frequency of the ultrasonic vibration is 20 to 50 kHz, and the effective ultrasonic output density is 5 to 20 kW / m 3 . It is characterized by the following.
[0009]
Further, in the invention described in claim 4 of the present invention, in any one of claims 1 to 3, the pre-processing step by the ultrasonic vibration has an effective ultrasonic output amount density of 5 to 30 kWh / m 3. It is characterized by being.
[0010]
Further, in the invention described in claim 5 of the present invention, in any one of claims 1 to 4, the pretreatment step by the ultrasonic vibration uses the new aqueous solution every time the ultrasonic vibration is applied. In addition, ultrasonic vibration for 30 minutes is repeated three times.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. The embodiments are not limited to these embodiments unless otherwise described.
[0012]
FIG. 1 is a flowchart of a pretreatment process showing a first embodiment of a fuel cell separator pretreatment method according to the present invention and a fuel cell in which plates subjected to the pretreatment are stacked. In addition, as one means for applying ultrasonic vibration energy in the pretreatment step, specifically, an aqueous solution is subjected to ultrasonic vibration and energy is applied through the aqueous solution. One vibration tank is used in this step, and this is a step of applying the ultrasonic vibration energy to a relatively small amount of the vibrating object. The separator of the vibrating object is obtained by dispersing carbon powder in a resin binder, molding the resultant, molding it into a desired shape by press working, baking and consolidating the resin film formed on the surface. This is obtained by shaving off by surface treatment such as sand blasting to expose carbon on the surface to increase the conductivity of the surface. However, other manufacturing methods include, but are not limited to, cutting, injection molding, etching, electric discharge, ultrasonic processing, engraving, and the like.
[0013]
In the pretreatment step 1 for applying ultrasonic vibration energy to the separator prepared by the above-described method, the separator is set S1 in a vibration tank, and then the aqueous solution is supplied S2 to the vibration tank to fill the vibration tank with the aqueous solution. As the aqueous solution, pure water having a conductivity of 5 μS / cm or less, or a mixed solution of pure water having a conductivity of 5 μS / cm or less and ethanol is used. The reason for this is that the conductivity meter attached to the ion-exchanged water outlet indicates 5 μS / cm or less, so that the conductivity can be strictly controlled and the cost is not high because it is not a special solution. Things. Next, the oscillation frequency of the ultrasonic vibration is 20 to 50 kHz, preferably 24 to 40 kHz, and the effective ultrasonic output density (kW / m 3 ) is obtained by dividing the ultrasonic output output from the ultrasonic oscillator by the volume of the vibration tank. And represents an ultrasonic output corresponding to a unit volume, and the first ultrasonic vibration 30 is applied for 5 minutes to 20 kW / m 3 , preferably 9 to 16 kW / m 3 for 30 minutes. This is performed during the application time. When the first ultrasonic vibration S3 is completed, the solution is replaced with a new aqueous solution S4, and the second ultrasonic vibration S5 is performed under the same ultrasonic application conditions and application time as those of the first ultrasonic vibration. The third ultrasonic vibration S7 is performed under the same ultrasonic application conditions and application time as the first and second ultrasonic vibrations. The ultrasonic vibration is divided into three times. When the ultrasonic vibration is terminated, by observing the aqueous solution as a result of applying the energy by the ultrasonic vibration, unstable components on the surface are removed and the surface does not float. This is to confirm. The total effective ultrasonic output density given by the energy of the total of three ultrasonic vibrations is the effective ultrasonic output density × the total ultrasonic application time, and this is expressed as an effective ultrasonic output amount density (kWh / m 3 ). in 5~30kWh / m 3, preferably 9~24kWh / m 3. Thereafter, the separator is pulled up from the vibrating tank S8, and the pretreatment step is completed through the finish cleaning S9. Pure water having a conductivity of 5 μS / cm or less or a mixed solution of pure water having a conductivity of 5 μS / cm or less and ethanol is also used for the finish cleaning.
[0014]
FIG. 2 is a schematic diagram of a pretreatment step showing a second embodiment of a fuel cell in which a fuel cell separator pretreatment method according to the present invention and plates subjected to the pretreatment are laminated. The number of the vibrating tanks used in this step is three, and this is a step of applying the ultrasonic vibration energy to a relatively large amount of the vibrating object. The separator of the vibrating object is formed by the method of the first embodiment described above. First, three vibration tanks 10, 11, and 12 are prepared, and pure water having a conductivity of 5 μS / cm or less or pure water having a conductivity of 5 μS / cm or less is used in each of the vibration tanks. Fill with a mixture of water and ethanol. Then, first, the separator is immersed in the first vibration tank 10, and ultrasonic vibration is performed under the same ultrasonic application conditions and application time as in the first embodiment. Next, the energy of the ultrasonic vibration is sequentially applied to the second vibration tank 11 and the third vibration tank 12, and finally, the energy is lifted up from the third vibration tank 12, and the finish cleaning is performed.
[0015]
The effective ultrasonic output density, which gives energy by ultrasonic vibration, is that if the ultrasonic waves are too weak, the carbon barely adhered to the binder resin on the surface remains without being separated, and if it is too strong, the coarse carbon exposed on the surface separates However, when the resin surface is largely exposed, the conductivity of the surface decreases instead of stabilizing the surface. Also, if the time for applying the ultrasonic vibration is too short, the surface treatment becomes incomplete and carbon remains on the surface, and the energy effect given by the ultrasonic vibration cannot be sufficiently obtained. The energy effect by the ultrasonic vibration cannot be obtained as much as the corresponding cost. The same can be said for the number of vibrations. Based on the above, the pretreatment method according to the present invention was repeated while changing the conditions of the ultrasonic oscillation frequency and the application time, verifying the results, and deriving while confirming the matching between the surface treatment effect and the operation cost. Was found based on
[0016]
【The invention's effect】
As described above, the pretreatment method of the fuel cell separator of the present invention and the separator pretreated in the fuel cell in which the plates subjected to the pretreatment are stacked, the carbon bonded to the binder by a weak bonding force is removed. Therefore, a single cell is created using a separator surface-treated with the energy of ultrasonic vibrations through an aqueous solution, and in a fuel cell that is assembled by stacking the single cells, a high-speed Even if gas or liquid flows, the carbon does not desorb.Therefore, the operation that occurs due to the deterioration of the power generation reaction due to the blockage of the respective flow paths and the contamination or blockage in the pipes through which the gas and liquid flow. There is no problem such as a decrease in power generation capacity due to a failure or a trouble in the device. Therefore, there are no initial driving troubles, and excellent effects such as stable power generation capability from the start of operation can be obtained.
[Brief description of the drawings]
FIG. 1 is a flow chart of a pretreatment process showing a first embodiment of a fuel cell separator according to the present invention, which is a pretreatment method for a fuel cell separator and a fuel cell in which plates subjected to the pretreatment are stacked.
FIG. 2 is a schematic view of a pretreatment process showing a second embodiment of a fuel cell in which a pretreatment method for a fuel cell separator according to the present invention and a plate subjected to the pretreatment are stacked.
[Explanation of symbols]
Reference Signs List 1 Pretreatment step S1 Set S2 Supply of aqueous solution S3 First ultrasonic vibration S4 Replacement of aqueous solution S5 Second ultrasonic vibration S6 Replacement of aqueous solution S7 Third ultrasonic vibration S8 Pull-up S9 Finish cleaning 10 First vibration tank 11 Second vibration tank 12 Third vibration tank

Claims (5)

電解質膜の両面に酸素極と水素極とを接合して構成された膜・電極接合体を挟むように配置され、カーボンを主成分として反応ガスまたは冷却水の供給路を有するセパレータの加工後の前処理方法であって、該前処理方法は前記セパレータを水溶液に浸漬させ、前記水溶液を超音波振動させることを特徴とする燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池。After processing of a separator which is arranged so as to sandwich a membrane-electrode assembly formed by joining an oxygen electrode and a hydrogen electrode to both surfaces of an electrolyte membrane and has a supply path of a reaction gas or cooling water containing carbon as a main component. A pretreatment method, wherein the pretreatment method comprises immersing the separator in an aqueous solution, and ultrasonically vibrating the aqueous solution, and laminating a fuel cell separator pretreatment method and a plate subjected to the pretreatment. Fuel cell. 前記水溶液は導電率が5μS/cm以下の純水、または前記導電率が5μS/cm以下の純水とエタノールとの混合液であることを特徴とする請求項1に記載の燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池。2. The fuel cell separator according to claim 1, wherein the aqueous solution is pure water having a conductivity of 5 μS / cm or less, or a mixed solution of pure water having a conductivity of 5 μS / cm or less and ethanol. 3. A fuel cell in which a pretreatment method and plates subjected to the pretreatment are laminated. 前記超音波振動の周波数は20〜50kHzであり、且つ、有効超音波出力密度は5〜20kW/mであることを特徴とする請求項1または2に記載の燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池。 3. The method of claim 1, wherein a frequency of the ultrasonic vibration is 20 to 50 kHz, and an effective ultrasonic power density is 5 to 20 kW / m 3. 4. And a fuel cell in which plates pre-treated are stacked. 前記超音波振動による前処理工程は、有効超音波出力量密度が5〜30kWh/mであることを特徴とする請求項1乃至3の何れか1項に記載の燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池。4. The pretreatment of the fuel cell separator according to claim 1, wherein in the pretreatment step by the ultrasonic vibration, the effective ultrasonic output amount density is 5 to 30 kWh / m 3. 5. A method and a fuel cell in which plates pretreated are laminated. 前記超音波振動による前処理工程は、前記超音波振動を加える毎に新しい上記水溶液を用い、且つ、30分間の超音波振動を3回繰り返して行なうことを特徴とする請求項1乃至4の何れか1項に記載の燃料電池用セパレータの前処理方法およびその前処理を施したプレートを積層した燃料電池。5. The pre-treatment step by ultrasonic vibration, wherein a new aqueous solution is used every time the ultrasonic vibration is applied, and ultrasonic vibration for 30 minutes is repeated three times. A method for pre-treating a fuel cell separator according to claim 1 and a fuel cell obtained by stacking plates subjected to the pre-treatment.
JP2002381388A 2002-12-27 2002-12-27 MANUFACTURING METHOD FOR FUEL CELL SEPARATOR, FUEL CELL SEPARATOR, AND FUEL CELL Expired - Fee Related JP3831705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381388A JP3831705B2 (en) 2002-12-27 2002-12-27 MANUFACTURING METHOD FOR FUEL CELL SEPARATOR, FUEL CELL SEPARATOR, AND FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381388A JP3831705B2 (en) 2002-12-27 2002-12-27 MANUFACTURING METHOD FOR FUEL CELL SEPARATOR, FUEL CELL SEPARATOR, AND FUEL CELL

Publications (2)

Publication Number Publication Date
JP2004213997A true JP2004213997A (en) 2004-07-29
JP3831705B2 JP3831705B2 (en) 2006-10-11

Family

ID=32817320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381388A Expired - Fee Related JP3831705B2 (en) 2002-12-27 2002-12-27 MANUFACTURING METHOD FOR FUEL CELL SEPARATOR, FUEL CELL SEPARATOR, AND FUEL CELL

Country Status (1)

Country Link
JP (1) JP3831705B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
WO2011089758A1 (en) * 2010-01-20 2011-07-28 パナソニック電工株式会社 Production method for fuel cell separator, fuel cell separator, production method for fuel cell separator having gasket, and production method for fuel cell.
JP2011150858A (en) * 2010-01-20 2011-08-04 Panasonic Electric Works Co Ltd Method for manufacturing fuel cell separator, fuel cell separator, method for manufacturing fuel cell separator with gasket, and method for manufacturing fuel cell
KR101217502B1 (en) * 2011-05-27 2013-01-02 두산중공업 주식회사 Coating methdo of internal reforming catalyst for molten carbonate fuel cell
JP2015222729A (en) * 2015-08-03 2015-12-10 パナソニックIpマネジメント株式会社 Fuel battery separator
JP2017143078A (en) * 2017-04-12 2017-08-17 パナソニックIpマネジメント株式会社 Method for manufacturing fuel cell separator and fuel cell separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034295A (en) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and solid polymer electrolyte fuel cell using it
WO2011089758A1 (en) * 2010-01-20 2011-07-28 パナソニック電工株式会社 Production method for fuel cell separator, fuel cell separator, production method for fuel cell separator having gasket, and production method for fuel cell.
JP2011150858A (en) * 2010-01-20 2011-08-04 Panasonic Electric Works Co Ltd Method for manufacturing fuel cell separator, fuel cell separator, method for manufacturing fuel cell separator with gasket, and method for manufacturing fuel cell
KR101217502B1 (en) * 2011-05-27 2013-01-02 두산중공업 주식회사 Coating methdo of internal reforming catalyst for molten carbonate fuel cell
JP2015222729A (en) * 2015-08-03 2015-12-10 パナソニックIpマネジメント株式会社 Fuel battery separator
JP2017143078A (en) * 2017-04-12 2017-08-17 パナソニックIpマネジメント株式会社 Method for manufacturing fuel cell separator and fuel cell separator

Also Published As

Publication number Publication date
JP3831705B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP3748417B2 (en) Direct liquid fuel fuel cell power generator and control method thereof
JP2005522846A (en) Control of gas transport in fuel cells.
JP2013026209A (en) Apparatus and method for activating fuel cell stack
JP2004213997A (en) Pretreatment method of separator for fuel cell, and fuel cell laminating that plate having carried out pretreatment
EP1769554A2 (en) Method for making components for fuel cells and fuel cells made thereby
JP4350069B2 (en) FUEL CELL SYSTEM, FUEL CELL REFORMING DEVICE USED FOR THE SAME, AND METHOD FOR PRODUCING THE SAME
Chen et al. Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
CN105392925B (en) Hydrogen reclaimer and operating method
KR100755620B1 (en) High-performance micro fuel cells
JP4643393B2 (en) Fuel cell
KR100803250B1 (en) A vibration generator and a polymer electrolyte membrane fuel cell with a water removing structure using the vibration generator
JP2006202554A (en) Fuel cell system and its operation method
WO2008143020A1 (en) Solid state polymer type fuel cell
JP2003282089A (en) Micro fuel cell
US8524410B2 (en) Water removal from gas flow channels of fuel cells
JP2006269363A (en) Fuel cell
CN104362358A (en) Direct methanol fuel cell fuel-feeding method and structure thereof
Wu et al. Ultrasonic radiation to enable improvement of direct methanol fuel cell
CN201498553U (en) Fuel cell system for vehicles
JP2006278073A (en) Joining method and apparatus of solid polymer electrolyte film and catalyst layer
JP2009170218A (en) Manufacturing method of assembly for fuel cell
CN204204966U (en) Direct methanol fuel cell
JP3991283B2 (en) Storage method of polymer electrolyte membrane electrode assembly
JP2006344412A (en) Conductive porous material used for fuel cell, and fuel cell
JP6229603B2 (en) Method for forming conductive film for fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees