JP2004212561A - Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus - Google Patents

Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus Download PDF

Info

Publication number
JP2004212561A
JP2004212561A JP2002380949A JP2002380949A JP2004212561A JP 2004212561 A JP2004212561 A JP 2004212561A JP 2002380949 A JP2002380949 A JP 2002380949A JP 2002380949 A JP2002380949 A JP 2002380949A JP 2004212561 A JP2004212561 A JP 2004212561A
Authority
JP
Japan
Prior art keywords
dispersion
electrophotographic
fine particles
inorganic fine
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380949A
Other languages
Japanese (ja)
Other versions
JP3938043B2 (en
Inventor
Yuka Nakajima
由香 中島
Takakazu Tanaka
孝和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002380949A priority Critical patent/JP3938043B2/en
Publication of JP2004212561A publication Critical patent/JP2004212561A/en
Application granted granted Critical
Publication of JP3938043B2 publication Critical patent/JP3938043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor excellent in electrophotographic properties, image stability after repeated use and wear resistance by using a coating material for a surface layer in which inorganic fine particles are reduced in particle diameter and liquid stability is maintained, and to provide a process cartridge with the electrophotographic photoreceptor, and an electrophotographic apparatus. <P>SOLUTION: The electrophotographic photoreceptor contains inorganic fine particles having a volume average particle diameter of 0.01-5.0μm in a surface layer. Inorganic fine particles used for the surface layer are pressurized with a solvent to a high pressure, and by liquid collision under the high pressure, the inorganic fine particles are pulverized and dispersed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関するものである。詳しくは、表面層に無機微粒子、特には無機微粒子と熱可塑性樹脂とを含有する電子写真感光体において、特定の分散方法により無機微粒子が小粒径化され、液安定性が維持される表面層用塗料を用いることにより、電子写真特性及び繰り返し使用による画像安定性に優れ、耐摩耗性に優れる電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関するものである。
【0002】
【従来の技術】
近年、電子写真感光体に用いられる材料として、有機光導電物質が、その無公害性や高生産性といった利点を有するため広く利用されている。これらの電子写真感光体は、電気的および機械的特性の双方を満足するために電荷発生層と電荷輸送層を積層した機能分離型の感光体として利用される場合が多い。
【0003】
一方、当然のことながら、電子写真感光体には適用される電子写真プロセスに応じた感度や電気的特性、さらには光学的特性を備えていることが要求される。
【0004】
特に、繰り返し使用される感光体の表面層には、帯電、露光、トナー現像、紙への転写およびクリーニングといった様々な電気的および機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、感度の低下、帯電能の低下および残留電位の増加、さらには表面の摩耗や傷などに対する耐久性が要求される。加えて、トナー像の転写性や転写後の残留トナーのクリーニング性に優れていることが要求され、そのためには表面エネルギーが小さく、また滑り性が高いことが必要であり、かつ、これが繰り返し使用時にも性能が低下しないことが望まれる。
【0005】
有機光導電物質を用いた電子写真感光体は、上記特性、特に耐久性を満足することが困難であった。
【0006】
有機光導電物質を用いた電子写真感光体の表面層は一般に薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸特性をある程度満足する樹脂として、近年、アクリル樹脂やポリカーボネート樹脂、ポリアリレート樹脂などが実用化されている。しかしながら、前述したような特性の総てがこれらの樹脂で満足されるわけではなく、特に、さらなる高耐久化を図る上では前記樹脂の硬度は十分高いとは言い難い。すなわち前記樹脂を表面層用の樹脂として用いた場合でも、繰り返し使用に伴って、表面層が摩耗したり、傷が発生したり、滑り性が低下することがあった。また、近年の高感度化に対する要求から、電荷輸送物質などの低分子量成分が比較的大量に添加される場合が多く、より一層耐久性を有する樹脂が望まれている。
【0007】
具体的には、感光体表面の摩擦係数の低減や表面エネルギーの低減を目的として、摩耗低減剤としてのフッ素含有樹脂微粒子(例えば、特許文献1〜4参照)や無機微粒子(例えば、特許文献5〜11参照)等が提案されている。しかし、フッ素含有樹脂微粒子が表面層用塗料中で凝集や沈降を生ずると感光体表面層内で不均一となり、削れ量の差やクリーニング性の差等が生じ、画像欠陥の原因となってしまう。その対策として、フッ素含有樹脂微粒子の分散安定性を向上させるために、分散助剤として界面活性剤等を添加することが可能であるが、ある一定量を超えると電子写真感光体の電位特性の低下を伴ってしまう。
【0008】
一方、無機微粒子については疎水化処理されたシリカ微粒子や、酸化亜鉛等は分散助剤を必要としないため助剤による電位特性の低下という問題がない。また、無機微粒子を表面層に添加することにより、表面硬度が高くなり感光体を取り巻く外的衝撃に強くなる。また、小粒径の無機微粒子を用いることで、より高画質で、より表面硬度の増加による高耐久性が期待できる。しかし、小径化することにより微粒子の総表面積が増加し粒子間での凝集力が高まってしまい液安定性が悪くなり、分散凝集物により表面硬度に差が生じたり塗膜欠陥を引き起こし、著しく耐久性や画像品位を落とす等といった問題がある。
【0009】
このような問題を解決するために、塗料中分散液安定性を高める方法が試みられている。
【0010】
しかし、粉体等を分散する手段としては、超音波分散、ロールミル、ボールミル、サンドミルやアトライター等が知られているが、分散効率や分散能力等において、長所や短所を持ち合わせており、また同じ分散手段において分散方法を少しでも変えてしまうと粒径や液安定性に問題が生じる場合があった。またそのような問題がない場合でも電子写真感光体とした際、傷などの問題を生じる可能性があった。
【0011】
【特許文献1】
特開昭50−23231号公報
【特許文献2】
特開昭61−116362号公報
【特許文献3】
特開昭61−204633号公報
【特許文献4】
特開昭61−270768号公報
【特許文献5】
特開昭56−117245号公報
【特許文献6】
特開昭59−223443号公報
【特許文献7】
特開平08−202062号公報
【特許文献8】
特開平08−262756号公報
【特許文献9】
特開平08−320588号公報
【特許文献10】
特開2002−131964号公報
【特許文献11】
特開2002−182409号公報
【0012】
【発明が解決しようとする課題】
本発明の課題は、無機微粒子が小粒径化され、液安定性が維持される表面層用塗料を用いることにより、電子写真特性及び繰り返し使用による画像安定性に優れ、耐傷、耐摩耗性に優れた電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0013】
【課題を解決するための手段】
即ち、本発明は、表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体である。
【0014】
また、本発明は、表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、熱可塑性樹脂及び溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体である。
【0015】
更に、本発明は、上記電子写真感光体を有することを特徴とするプロセスカートリッジ及び電子写真装置である。
【0016】
【発明の実施の形態】
本発明における微細な流路に流体を圧送し、該微細な流路での高圧の液衝突により被分散物を粉砕及び分散させる手段としては、高圧ポンプとこれに配管により接続された複数の小径のオリフィスを有する治具と該オリフィスより液が吐出される際に液同志が衝突すべく加工された治具により構成され、本発明で言うところの高圧とは、前記高圧ポンプの吐出量、吐出圧とオリフィス系及び長さ、更には被分散物の粘度よりおおむね決定され、50〜1400kgf/cm(約5,000kPa〜140,000kPa: 1kgf/cm=100kPa)を好適とする。このような装置の模式的な例を図1に示す。図1を用いて装置の簡単な説明をすれば、非分散物投入容器31より投入された被分散物は、高圧ポンプ32の吸入〜吐出工程中に配管に充填される。高圧ポンプは、油圧シリンダーを用いたものやプランジャーポンプ等が利用される。被分散物は、ポンプの圧縮工程で液衝突治具34に圧送され1個〜数個のオリフィス37(直径50μm〜2mm、長さ2〜10mm)を有する治具中の移動により高圧状態での液衝突が行われる。試料受け容器35に受けられた試料は、必要であれば、更に非分散物投入容器31に投入され所望の物性まで繰り返し工程を採ることも可能である。更に、熱交換システムにより配管中の液温コントロールをすることも可能である。なお、図中33は高圧配管、36は圧力計、38は3方バルブである。また、液衝突治具34の外観図を図2に示す。
【0017】
本発明で用いられる無機微粒子とは、シリカ、アルミナ、酸化亜鉛及び酸化ジルコニウム等の酸化物、窒化炭素、窒化アルミ及び窒化珪素等の窒化物、炭化珪素等の炭化物、チタン酸ストロンチウム及びチタン酸バリウム等のチタン酸化合物が挙げられる。なお、好ましくはシリカである。シリカ粒子としては、天然の珪石または水晶の微粉砕化や球状処理化、又は中空処理化によるものや、合成シリカ等が挙げられる。またこれらの微粒子は、体積平均粒径が0.01〜2.0μmである。この粒子径が2.0μmより大きい場合には、表面層(微粒子含有層)自体に脆さが認められ、目的とする耐久性の向上が充分には発揮されない。かつ、大きな微粒子の存在によりクリーニング機構に損傷が起きる恐れがある。逆に、粒子径が0.01μmより小さい場合には、分散液がゲル状になりやすく、また電荷輸送用塗工液とした際、分散時に混入した気泡を防ぐことが困難で塗膜性に問題を生じる。また硬度の向上が充分には発揮できず、目的とする耐久性の向上が得られない。
【0018】
無機微粒子が吸湿性である場合、高湿環境で感光体表面の電気抵抗が低下し、画像ニジミ等の画像不良を生じることがあるため、疎水性であることが好ましい。親水性の無機微粒子の場合は周知の方法で疎水化処理をしておくことが好ましい。微粒子に求められる電気抵抗値は、最表面層に必要な電気抵抗値により様々であるが、10Ω・cm以上であることが望ましい。これより小さいと、感光体の電荷保持性、画像品質等に問題を生じる傾向がある。
【0019】
電子写真感光体製造工程において、使用する溶剤としてはクロロベンゼン、テトラヒドロフラン、1,4−ジオキサン、トルエン及びキシレン等が挙げられ、単独で用いても複数の溶剤を用いてもよい。
【0020】
また分散前に添加する樹脂として熱可塑性樹脂が好ましく、より好ましくはビスフェノールA骨格やZ骨格のポリカーボネート樹脂やポリアリレート樹脂であることがよい。
【0021】
本発明の感光体の表面層で使用する樹脂は、分散時または分散後に適当に混合することが一般的である。このような樹脂としては、ビスフェノールA骨格のポリカーボネート樹脂、ビスフェノールZ骨格のポリカーボネート、その他のポリカーボネート樹脂、ビスフェノールA骨格のポリアリレート樹脂、ビスフェノールZ骨格のポリアリレート樹脂、その他のポリアリレート樹脂、更にはアクリル樹脂、スチレン樹脂、アクリル−スチレン共重合樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリサルフォン樹脂等が挙げられ、単独で用いても複数の樹脂を併用してもよい。
【0022】
また、本発明の感光体の表面層には、感光材料の添加や、増感剤や酸化防止剤等の添加剤の添加も可能である。
【0023】
本発明の感光体の表面層に用いる無機微粒子が、溶剤と共にあるいは溶剤と熱可塑性樹脂と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものを用いた表面層用塗料においては、無機微粒子の小径化を可能とし、液安定性を長期間維持することができる。また、感光体の表面に無機微粒子を有効な量まで、凝集等のない均一な分散状態で含有することが可能で、従って適正な表面すべり性、潤滑性及び耐傷、耐摩耗性を有することができる。
【0024】
以下、本発明に用いる電子写真感光体の構成について説明する。
【0025】
本発明における電子写真感光体は、感光層が電荷輸送材料と電荷発生材料を同一の層に含有する単層型であっても、電荷輸送層と電荷発生層に分離した積層型でも良いが、電子写真特性的には積層型が好ましい。
【0026】
本発明で用いる支持体としては、導電性を有するものであればいずれのものでもよく、例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレス等の金属をドラムまたはシート状に成形したもの、アルミニウムや銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化スズ等をプラスチックフィルムに蒸着したもの等が挙げられる。
【0027】
LBP等画像入力がレーザー光の場合は散乱による干渉縞防止、または支持体の傷を被覆することを目的とした導電層を設けてもよい。これはカーボンブラックや金属粒子等の導電性粉体をバインダー樹脂に分散させて形成することができる。導電層の膜厚は、好ましくは5〜40μm、より好ましくは10〜30μmである。
【0028】
その上に接着機能を有する中間層を設ける。中間層の材料としてはポリアミド、ポリビニルアルコール、ポリエチレンオキシド、エチルセルロース、カゼイン、ポリウレタン及びポリエーテルウレタン等が挙げられる。これらは適当な溶剤に溶解して塗布される。中間層の膜厚は、好ましくは0.05〜5μm、より好ましくは0.3〜1μmである。
【0029】
中間層の上には電荷発生層が形成される。本発明に用いられる電荷発生材料としてはセレン−テルル、ピリリウム、チアピリリウム系染料、フタロシアニン、アントアントロン、ジベンズピレンキノン、トリスアゾ、シアニン、ジスアゾ、モノアゾ、インジゴ、キナクリドン及び非対称キノシアニン系の各顔料が挙げられ、より好ましく、フタロシアニン顔料であり、オキシチタニウムフタロシアニン、ヒドロキシフタロシアニンであり、その中でも、CuKαのX線回折におけるブラッグ角2θ±0.2°の9.0°、14.2°、23.9°、27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンまたCuKαのX線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、16.3°、18.6°、25.1°および28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニンが好ましくこれらは無機微粒子と接する場合、その分散安定性を妨げない。
【0030】
機能分離型の場合、電荷発生層は前記電荷発生材料を質量基準で0.3〜4倍量のバインダー樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミル及び液衝突型高速分散機等の方法で良く分散し、分散液を塗布し、乾燥して形成される。電荷発生層の膜厚は、好ましくは5μm以下、より好ましくは0.1〜2μmである。
【0031】
電荷輸送層はバインダー樹脂と電荷輸送材料とを溶剤中に溶解させた塗料を塗布し、乾燥して形成する。電荷輸送材料は質量基準で0.5〜2倍量のバインダー樹脂と共に塗布し、乾燥して電荷輸送層を形成する。電荷輸送層の膜厚は、好ましくは5〜40μm、より好ましくは10〜30μmである。
【0032】
図3に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。
【0033】
図において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、一次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)からの画像露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。
【0034】
形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取りされて給送された転写材7に、転写手段6により順次転写されていく。
【0035】
像転写を受けた転写材7は、感光体面から分離されて定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。
【0036】
像転写後の感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0037】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも1つを感光体1と共に一体に支持してカートリッジ化し、装置本体のレール12等の案内手段を用いて装置本体に着脱可能なプロセスカートリッジ11とすることができる。
【0038】
また、画像露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。
【0039】
本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター及びレーザー製版等電子写真応用分野にも広く用いることができる。
【0040】
以下、実施例に従って本発明をより詳細に説明する。なお、実施例中「部」は質量部を示す。
【0041】
【実施例】
[実施分散液1]
疎水化シリカパウダー(商品名:KMPX−100、平均粒径0.1μm、信越化学工業(株)製)20部をモノクロロベンゼン200部に混合し、撹拌した後、図1に示した装置で分散処理を実施した。分散時の処理圧力は、600kgf/cm(60,000kPa)となるようポンプストロークで調整した。吐出口より得られた液を再度投入し合計5回までの高圧処理が施された分散液をそれぞれ得た(更に高圧処理を続けたが5回以降、粒径に変化がなかった)。高圧処理回数に対する疎水化シリカパウダーの分散平均粒径と粒度分布をLeeds and Northrup社製(商品名:マイクロトラックUPA粒度分析計)で測定した結果を表1に示す。
【0042】
[比較分散液1]
実施分散液1において使用した高圧処理に代えて分散方法を超音波分散とした以外は、実施例1と全く同様な処理を実施した。なお、超音波分散機は20kHzの発振器を有し、発振出力は1kWで、処理時間はそれぞれ30、60及び120分とした。これら各条件で得られた分散液に実施分散液1と同様に粒度分布を測定した。結果を表1に示す(更に超音波分散を続けたが120分以降、粒径に変化がなかった)。
【0043】
[実施分散液2]
実施分散液1の分散液を2週間静置保存した以外は、実施分散液1の測定条件に従い粒度分布を測定した。結果を表1に示す(ただし高圧処理5回品のみ2週間後の粒径のみ表記)。
【0044】
[比較分散液2]
比較分散液1の分散液を2週間静置保存した以外は、実施分散液1の測定条件に従い粒度分布を測定した。結果を表1に示す(ただし超音波分散120分品の2週間後の粒径のみ表記)。
【0045】
【表1】

Figure 2004212561
【0046】
[実施分散液3]
疎水化シリカパウダー(商品名:KMPX−100、平均粒径0.1μm、信越化学工業(株)製)20部と熱可塑性樹脂としてポリカーボネート樹脂(商品名:ユーピロンZ400、三菱瓦斯化学(株)製)20部をモノクロロベンゼン200部に混合し、撹拌した以外は、実施分散液1と同様に分散し、粒度分布を測定した(更に高圧処理を続けたが5回以降、粒径に変化がなかった)。結果を表2に示す。
【0047】
[比較分散液3]
疎水化シリカパウダー(商品名:KMPX−100、平均粒径0.1μm、信越化学工業(株)製)20部と熱可塑性樹脂としてポリカーボネート樹脂(商品名:ユーピロンZ400、三菱瓦斯化学(株)製)20部をモノクロロベンゼン200部に混合し、撹拌した以外は、比較分散液1と同様に分散し、粒度分布を測定した(更に超音波分散を続けたが120分以降、粒径に変化がなかった)。結果を表2に示す。
【0048】
[実施分散液4]
実施分散液3の分散液を2週間静置保存した以外は、実施分散液1の測定条件に従い粒度分布を測定した。結果を表2に示す(ただし高圧処理5回品の2週間後の粒径のみ表記)。
【0049】
[比較分散液4]
比較分散液3の分散液を2週間静置保存した以外は、実施分散液1との測定条件に従い粒度分布を測定した。結果を表2に示す(ただし超音波分散120分品の2週間後の粒径のみ表記)。
【0050】
【表2】
Figure 2004212561
【0051】
[実施分散液5]
実施分散液3において熱可塑性樹脂を以下に示される構造式(1)で示されるポリアリレート樹脂(重量平均分子量:100,000)に代えた以外は全て同じで、分散し、粒度分布を測定した。結果を表3に示す。なお表3に記載の実施分散液の平均粒径は5回品の粒径を記載する。
【0052】
【化1】
Figure 2004212561
【0053】
[比較分散液5]
比較分散液3において熱可塑性樹脂を式(1)で示されるポリアリレート樹脂(に代えた以外は全て同じで、分散し、粒度分布を測定した。結果を表3に示す。なお表3に記載の比較分散液の平均粒径は120分品の粒径を記載する。
【0054】
[実施分散液6、7]
実施分散液5において疎水化シリカパウダーをそれぞれ疎水化シリカパウダー(商品名:X−120、平均粒径0.02μm、信越化学工業(株)製)、シリカドール(商品名:30G−100、平均粒径0.1μm、日本化学工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0055】
[比較分散液6、7]
比較分散液5において疎水化シリカパウダーをそれぞれ疎水化シリカパウダー(商品名:X−120、平均粒径0.02μm、信越化学工業(株)製)、シリカドール(商品名:30G−100、平均粒径0.1μm、日本化学工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0056】
[実施分散液8、9]
実施分散液5において疎水化シリカパウダーをそれぞれアルミナ(商品名:LS−235、平均粒径0.1μm、日本軽金属(株)製)、酸化亜鉛(商品名:FINEX−25LP、平均粒径0.1μm、堺化学工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0057】
[比較分散液8、9]
比較分散液5において疎水化シリカパウダーそれぞれアルミナ(商品名:LS−235、平均粒径0.1μm、日本軽金属(株)製)、酸化亜鉛(商品名:FINEX−25LP、平均粒径0.1μm、堺化学工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0058】
[実施分散液10、11]
実施分散液5において疎水化シリカパウダー(商品名:KMP−110、平均粒径1.9μm、信越化学工業(株)製、)に代えた以外は全て同じで、結果を表3に示す。
【0059】
[比較分散液10]
比較分散液5において疎水化シリカパウダーを疎水化シリカパウダー(商品名:KMP−110、平均粒径1.9μm、信越化学工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0060】
[実施分散液11]
実施分散液5において熱可塑性樹脂を以下に示される構造式(2)(重量平均分子量:72,000)に代えた以外は全て同じで、結果を表3に示す。
【0061】
【化2】
Figure 2004212561
【0062】
[比較分散液11]
比較分散液5において熱可塑性樹脂を式(2)で示されるポリカーボネ−ト樹脂に代えた以外は全て同じで、結果を表3に示す。
【0063】
[実施分散液12]
実施分散液5において熱可塑性樹脂を以下に示される構造式(3)(重量平均分子量:69,000)に代えた以外は全て同じで、結果を表3に示す。
【0064】
【化3】
Figure 2004212561
【0065】
[比較分散液12]
比較分散液5において熱可塑性樹脂を式(3)で示される樹脂(に代えた以外は全て同じで、結果を表3に示す(。
【0066】
[比較分散液13]
実施分散液5において疎水化シリカパウダーを合成シリカ(商品名:アエロジル300CF、平均粒径0.007μm、土屋カオリン工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0067】
[比較分散液14]
実施分散液5において疎水化シリカパウダーをアルミナ(商品名:AL43M、平均粒径2.2μm、土屋カオリン工業(株)製)に代えた以外は全て同じで、結果を表3に示す。
【0068】
【表3】
Figure 2004212561
【0069】
比較分散液の平均粒子径は実施分散液に比べ、高い。また比較分散液は安定性が悪い。更に比較分散液13においては分散過程において、多量の気砲が発生し、その気砲が圧力の低下を招き、分散不良になった。さらに分散3時間後にはゲル状になってしまった。また比較分散液14においては他の液と比較して最も沈降の度合いが大きいということがわかった。
【0070】
[実施例1]
直径30mm×長さ357.5mmのアルミニウムシリンダーを支持体とし、それに、以下の材料より構成される塗料を支持体上に浸漬コーティング法で塗布し140℃で30分熱硬化して15μmの導電層を形成した。
【0071】
導電性顔料:SnOコート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
バインダー樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール、メトキシプロパノール0.2/0.8 20部
【0072】
次に、この上にN−メトキシメチル化ナイロン3部及び共重合ナイロン3部をメタノール65部及びn−ブタノール30部の混合溶媒に溶解した溶液を浸漬コーティング法で塗布し、100℃で10分乾燥して、膜厚が0.5μmの中間層を形成した。
【0073】
次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の9.0°、14.2°、23.9°及び27.1°に強いピークを有するオキシチタニウムフタロシアニン(TiOPc)4部とポリビニルブチラール(商品名:エスレックBM2、積水化学(株)製)2部及びシクロヘキサノン60部を直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル100部を加えて電荷発生層用分散液を調製した。これを浸漬コーティング法で塗布し、100℃で10分乾燥して、膜厚が0.2μmの電荷発生層を形成した。
【0074】
次に、実施分散液1で得られた疎水化シリカパウダー分散液(高圧処理5回品)150部にバインダー樹脂としてポリカーボネート樹脂(商品名:ユーピロンZ400、三菱瓦斯化学(株)製)50部をモノクロロベンゼン80部とジクロロメタン40部と共に加え、溶解させ、この溶解液に下記構造式で示される電荷輸送材料の質量比が(4):(5)=8:1となるように合計40部
下記構造式(4)で示されるトリアリールアミン化合物
【0075】
【化4】
Figure 2004212561
下記構造式(5)で示されるスチルベン化合物
【0076】
【化5】
Figure 2004212561
を溶解させ電荷輸送層用塗料とし、前記電荷発生層上に浸漬コーティング法で塗布し、120℃で1時間乾燥して、膜厚が29μmの電荷輸送層を形成し、電子写真感光体とした。
【0077】
[比較例1]
疎水化シリカパウダー分散液として比較分散液1で示した中で120分の条件の分散液を用いた以外は、実施例1と全く同様な感光体を作成した。
【0078】
[実施例2]
実施例1で得られた電荷輸送層用塗料を2週間静置保存したものを使用した以外は、実施例1と全く同様な感光体を作成した。
【0079】
[比較例2]
比較例1で得られた電荷輸送層用塗料を2週間静置保存したものを使用した以外は、実施例1と全く同様な感光体を作成した。
【0080】
[比較例3]
実施例1の電荷輸送層用塗料において、実施分散液1を除き、モノクロロベンゼン180部とジクロロメタン80部に代えた以外は、実施例1と全く同様な感光体を作成した。
【0081】
このようにして得られた実施例1、2の感光体及び比較例1、2、3の感光体について複写機「GP−40」(キヤノン(株)製)を用いて評価した。評価方法を以下に示し、評価結果を表4に示す。
【0082】
作成した電子写真感光体をAC電圧を重畳したローラー接触帯電手段(AC/DCローラー接触帯電手段)を有する複写機でプロセススピード210mm/secを有する「GP−40」(キヤノン(株)製)に取り付け、温度23℃、湿度50%RHの常温常湿環境(N/N)下で測定した。なおGP−40には、電子写真感光体の電位特性を測定するため、現像位置にプローブを取り付けた電位測定冶具を用いて測定した。 『電位』は、帯電電位Vd、感度EΔ500及び残留電位Vrを初期と連続通紙耐久40,000枚後に測定したものである。なお帯電電位Vdは絶対値が大きい程帯電能がよいことを示し、感度EΔ500は−700Vから−200Vに電位を減衰させるのに必要な光量で、値が小さい程感度がよいことを示す。
【0083】
『感光体欠陥』は、感光体表面の目視観察による疎水化シリカパウダーの凝集物を意味する。
【0084】
『耐久削れ性』では連続通紙耐久40,000枚後の感光体削れ量を示す。なお膜厚の測定にはフィッシャー社製渦電流式膜厚測定機(パーマスコープタイプE111)を用いた。 『耐久画像』では40,000枚後の画像品位を示し、ハーフトーン画像上に現われる画像欠陥を目視により、評価した。なお画像欠陥の種類としては凝集物そのものによる画像欠陥、感光体の周方向に対して凝集物を起点とした傷による画像欠陥などが見られる場合がある。
【0085】
画像はA4で、印字率4%の格子パターンとした。また、シーケンスはプリント1枚毎に1回停止する間欠モードとした。トナーがなくなったならば補給した。
【0086】
【表4】
Figure 2004212561
【0087】
[実施例3、4]
実施分散液1で示した疎水化シリカパウダー分散液(高圧処理5回品)の量をそれぞれ70部、110部に代えた以外は、実施例1と同様に電子写真感光体を作成し評価した。なお、実施例3〜実施例13までの配合比を表.5にまた結果を表6に示す。
【0088】
[実施例5]
電荷輸送層用バインダー樹脂を式(1)で示されるポリアリレート樹脂に代えた以外は、実施例1と同様に電子写真感光体を作成し評価した。
【0089】
[実施例6]
実施分散液3で示した疎水化シリカパウダー分散液(高圧処理5回品)量を160部とし、更にポリカーボネート樹脂量を35部に変えた以外は、実施例1と同様に電子写真感光体を作成し評価した。
【0090】
[実施例7]
実施分散液5で示した疎水化シリカパウダー分散液(高圧処理5回品)量を160部とし、更に電荷輸送用バインダーを式(1)で示されるポリアリレート樹脂に代え、樹脂量を35部に変えた以外は実施例1と同様に電子写真感光体を作成し評価した。
【0091】
[実施例8〜11]
電荷輸送層として、それぞれ実施分散液6、8、9、10において得られた分散液(高圧処理5回品)と配合比、電荷輸送層用バインダーについては表5記載の通りに使用した以外は、実施例1と同様に電子写真感光体を作成し評価した。
【0092】
[実施例12]
実施分散液11で示した疎水化シリカパウダー分散液(高圧処理5回品)量を160部とし、更に電荷輸送用バインダーとして構造式(3)で示されるバインダーに代え、樹脂量を35部に変えた以外は、実施例1と同様に電子写真感光体を作成し評価した。
【0093】
[実施例13]
実施例1の電子写真感光体において電荷輸送層を変え、更に保護層を設けた。即ち、電荷輸送層としてポリカーボネート樹脂(商品名:ユーピロンZ400、三菱瓦斯化学(株)製)50部と実施例1で示した電荷輸送材料40部をモノクロロベンゼン200部とジクロロメタン80部と共に加え、溶解させ、電荷輸送層用塗料とし、浸漬コーティング法で塗布し、120℃で60分間乾燥して、膜厚が21μmの電荷輸送層を設けた。
【0094】
次に、保護層として実施分散液1で得られた疎水化シリカパウダー分散液(高圧処理5回品)25部、電荷輸送層で用いた式(4)で示される電荷輸送材料4部、ポリカーボネート樹脂(商品名:ユーピロンZ800、三菱瓦斯化学(株)製)4部、モノクロロベンゼン200部及びジクロルメタン250部を混合し、溶解して表面保護層用塗料とした。この塗料を上記電荷輸送層上に霧化塗布し、120℃で60分間乾燥して、膜厚が5.0μmの保護層を形成し、電子写真感光体を作成し、評価した。
【0095】
[比較例4〜8]
電荷輸送層として、それぞれ比較分散液5、6、8、9、13において得られた分散液(120分品)と配合比及び電荷輸送層用バインダーについては表5の通りに使用した以外は、実施例1と同様に電子写真感光体を作成し、評価した。その結果を表6に示す。
【0096】
[比較例9]
実施例13において、保護層を以下のように変更した。
【0097】
すなわち保護層として比較分散液1を用いた以外は実施例13と同様に作成し、評価した。
【0098】
【表5】
Figure 2004212561
【0099】
【表6】
Figure 2004212561
【0100】
実施例は感光体は凝集物もなく、表面が平滑であり均一であった。さらに良好な電子写真特性を示し、かつ画質も良好であった。
【0101】
[実施例14]
実施例1において、支持体を直径30mm×長さ260.5mmのアルミニウムシリンダーに代えた以外は、実施例1と同様に電子写真感光体を作製し、以下の評価機を用いて測定した以外は実施例1と同様である。
【0102】
・評価機
LBP−SX(レーザービームプリンター)(キヤノン(株)製)
帯電方式:コロナ帯電
プロセススピード:47mm/sec
クリーニングブレード:感光体に対する線圧を通常の1.4倍に設定
暗部電位Vd:−500
レーザー光量:波長802nmのレーザー光を照射したときに明部電位Vlが−100Vとなる光量に設定
なお、現像位置にプローブを取り付けた電位測定治具を用いて電子写真特性を測定した。
【0103】
また、耐久枚数を5,000枚とした。
【0104】
以下、表7に結果を示す。
【0105】
[実施例15]
実施例1における電子写真感光体において、以下の評価機を用いて測定した以外は、実施例1と同様に評価した。
【0106】
・評価機
NP−6030(普通紙複写機)(キヤノン(株)製)
帯電方式:直流電圧印加(DC帯電)
プロセススピード:200(mm/sec)
クリーニングブレード:感光体に対する線圧を通常の1.4倍に設定
暗部電位Vd:−400
レーザー光量:明部電位Vlが−70Vとなる光量に設定
なお、現像位置にプローブを取り付けた電位測定治具を用いて電子写真特性を測定した。
【0107】
また、耐久枚数は40,000枚とした。
【0108】
以下、表7に結果を示す。
【0109】
[比較例10]
比較例1において、支持体を直径30mm×長さ260.5mmのアルミニウムシリンダーに代えた以外は比較例1と同様に電子写真感光体を作製し、実施例14と同様に測定した。
【0110】
[比較例11]
比較例1における電子写真感光体において、実施例15と同様に測定した。
【0111】
【表7】
Figure 2004212561
【0112】
以上本発明の実施例について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
【0113】
[実施態様1]
表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体。
【0114】
[実施態様2]
前記昇圧、粉砕及び分散が、前記無機微粒子及び溶剤を微細な流路に圧送し、該微細な流路での高圧の液衝突により行われる実施態様1に記載の電子写真感光体。
【0115】
[実施態様3]
前記昇圧、粉砕及び分散が、前記無機微粒子及び溶剤を微細な流路に圧送し、該流路の吐出口直後の障害壁への液衝突により行われる実施態様1に記載の電子写真感光体。
【0116】
[実施態様4]
表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、熱可塑性樹脂及び溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体。
【0117】
[実施態様5]
前記昇圧、粉砕及び分散が、前記無機微粒子、熱可塑性樹脂及び溶剤を微細な流路に圧送し、該微細な流路での高圧の液衝突により行われる実施態様4に記載の電子写真感光体。
【0118】
[実施態様6]
前記昇圧、粉砕及び分散が、前記無機微粒子、熱可塑性樹脂及び溶剤を微細な流路に圧送し、該流路の吐出口直後の障害壁への液衝突により行われる実施態様4に記載の電子写真感光体。
【0119】
[実施態様7]
前記感光体の表面層が電荷輸送層である実施態様1乃至6のいずれかに記載の電子写真感光体。
【0120】
[実施態様8]
前記熱可塑性樹脂がポリカーボネート樹脂あるいはポリアリレート樹脂である実施態様4乃至7のいずれかに記載の電子写真感光体。
【0121】
[実施態様9]
前記無機微粒子がシリカ微粒子である実施態様1乃至8のいずれかに記載の電子写真感光体。
【0122】
[実施態様10]
前記無機微粒子が疎水化されたシリカ微粒子である実施態様1乃至9のいずれかに記載の電子写真感光体。
【0123】
[実施態様11]
接触帯電方式に使用される実施態様1乃至10のいずれかに記載の電子写真感光体。
【0124】
【発明の効果】
本発明によれば、高圧状態に昇圧され、該高圧の液衝突による粉砕及び分散により、無機微粒子を微小径に分散でき、かつ長期にわたり液安定性が維持できる表面層用塗料が得られ、この表面層塗料を用いた電子写真感光体表面は、凝集物のない均一な表面を形成し、かつ電気的感度も良好で帯電特性、感度、残留電位の繰り返し電位安定性が優れ、更には表面滑り性及び耐傷性、耐摩耗性の優れた電子写真感光体を得、画質画像欠陥のない優れた画像を提供することが可能である。
【図面の簡単な説明】
【図1】本発明に用いる液衝突型高速分散機の概略構成を示す図である。
【図2】本発明に用いる液衝突型高速分散機における液衝突治具の外観図である。
【図3】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus. Specifically, in an electrophotographic photoreceptor containing inorganic fine particles, particularly inorganic fine particles and a thermoplastic resin in the surface layer, the surface layer in which the inorganic fine particles are reduced in particle size by a specific dispersion method and the liquid stability is maintained The present invention relates to an electrophotographic photoreceptor having excellent electrophotographic characteristics and image stability due to repeated use and excellent abrasion resistance by using a coating material, and a process cartridge and an electrophotographic apparatus having the electrophotographic photoreceptor.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as a material used for an electrophotographic photoreceptor, an organic photoconductive substance has been widely used because of its advantages such as non-pollution and high productivity. These electrophotographic photoconductors are often used as function-separated photoconductors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical properties.
[0003]
On the other hand, as a matter of course, the electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process.
[0004]
In particular, since various electrical and mechanical external forces such as charging, exposure, toner development, transfer to paper, and cleaning are directly applied to the surface layer of the photoreceptor used repeatedly, durability is required for them. . Specifically, a reduction in sensitivity, a reduction in charging ability, an increase in residual potential, and durability against abrasion and scratches on the surface are required. In addition, it is required that the transferability of the toner image and the cleaning property of the residual toner after transfer are excellent, and for that purpose, it is necessary that the surface energy is low and the slip property is high, and this is used repeatedly. Sometimes it is desired that the performance does not decrease.
[0005]
It has been difficult for an electrophotographic photosensitive member using an organic photoconductive material to satisfy the above-mentioned characteristics, particularly durability.
[0006]
The surface layer of an electrophotographic photosensitive member using an organic photoconductive substance is generally a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins, polycarbonate resins, polyarylate resins, and the like have been put to practical use as resins that satisfy the above-described various properties to some extent. However, not all of the above-mentioned properties are satisfied by these resins, and it is hard to say that the hardness of the resins is sufficiently high particularly for further increasing the durability. That is, even when the resin is used as a resin for the surface layer, the surface layer may be worn, scratched, or deteriorated in slipperiness with repeated use. In addition, due to recent demand for higher sensitivity, a relatively large amount of a low molecular weight component such as a charge transporting substance is often added, and a resin having more durability is desired.
[0007]
Specifically, fluorine-containing resin fine particles (for example, see Patent Literatures 1 to 4) and inorganic fine particles (for example, Patent Literature 5) as wear reducing agents for the purpose of reducing the friction coefficient and the surface energy of the photoreceptor surface. To 11) have been proposed. However, if the fluorine-containing resin fine particles agglomerate or settle in the surface layer paint, they become non-uniform in the photoreceptor surface layer, resulting in a difference in abrasion amount, a difference in cleaning performance, etc., which causes image defects. . As a countermeasure, it is possible to add a surfactant or the like as a dispersing aid in order to improve the dispersion stability of the fluorine-containing resin fine particles. It will be accompanied by a drop.
[0008]
On the other hand, as for the inorganic fine particles, hydrophobic particles of silica fine particles and zinc oxide do not require a dispersing aid, so that there is no problem that the electric potential characteristics are lowered by the aid. Further, by adding the inorganic fine particles to the surface layer, the surface hardness is increased and the external impact surrounding the photoreceptor is increased. Further, by using inorganic fine particles having a small particle size, higher image quality and higher durability due to an increase in surface hardness can be expected. However, by reducing the diameter, the total surface area of the fine particles increases, the cohesive force between the particles increases, and the liquid stability deteriorates. However, there are problems such as deterioration of image quality and image quality.
[0009]
In order to solve such a problem, a method for increasing the stability of a dispersion in a coating material has been attempted.
[0010]
However, as a means for dispersing powders and the like, ultrasonic dispersion, roll mill, ball mill, sand mill, attritor, and the like are known, but have advantages and disadvantages in dispersion efficiency and dispersion capacity, and are also the same. If the dispersing method is slightly changed in the dispersing means, problems may occur in the particle size and the liquid stability. Further, even when there is no such problem, there is a possibility that a problem such as a scratch may occur when the electrophotographic photosensitive member is used.
[0011]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 50-23231
[Patent Document 2]
JP-A-61-116362
[Patent Document 3]
JP-A-61-204633
[Patent Document 4]
JP-A-61-270768
[Patent Document 5]
JP-A-56-117245
[Patent Document 6]
JP-A-59-223443
[Patent Document 7]
JP 08-202062 A
[Patent Document 8]
JP 08-262756 A
[Patent Document 9]
JP 08-320588 A
[Patent Document 10]
JP 2002-131964 A
[Patent Document 11]
JP 2002-182409 A
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a surface layer coating in which inorganic fine particles are reduced in particle size and liquid stability is maintained, so that electrophotographic characteristics and image stability due to repeated use are excellent, and scratch resistance and abrasion resistance are improved. An object of the present invention is to provide an excellent electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus.
[0013]
[Means for Solving the Problems]
That is, the present invention provides an electrophotographic photosensitive member containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm in a surface layer, wherein the inorganic fine particles used in the surface layer are pressurized together with a solvent to a high pressure state, An electrophotographic photoreceptor characterized by being pulverized and dispersed by the high-pressure liquid collision.
[0014]
Further, the present invention provides an electrophotographic photoreceptor containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm in a surface layer, wherein the inorganic fine particles used in the surface layer are in a high pressure state together with a thermoplastic resin and a solvent. The electrophotographic photoreceptor is characterized in that it is pressurized and pulverized and dispersed by the high-pressure liquid collision.
[0015]
Further, the present invention is a process cartridge and an electrophotographic apparatus including the above electrophotographic photosensitive member.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As means for pumping a fluid to a fine flow path in the present invention and pulverizing and dispersing an object to be dispersed by high-pressure liquid collision in the fine flow path, a high-pressure pump and a plurality of small diameter pipes connected to the high-pressure pump are used. And a jig machined so that the liquids collide with each other when the liquid is discharged from the orifice. In the present invention, the high pressure means the discharge amount of the high-pressure pump, It is generally determined from the pressure, orifice system and length, and the viscosity of the material to be dispersed, and is 50 to 1400 kgf / cm. 2 (About 5,000 kPa to 140,000 kPa: 1 kgf / cm 2 = 100 kPa). FIG. 1 shows a schematic example of such an apparatus. Briefly describing the apparatus with reference to FIG. 1, the material to be dispersed charged from the non-dispersed material charging container 31 is filled in the pipe during the suction-discharge process of the high-pressure pump 32. As the high-pressure pump, a pump using a hydraulic cylinder, a plunger pump, or the like is used. The object to be dispersed is pressure-fed to the liquid impingement jig 34 in the compression step of the pump, and moves in a jig having one or several orifices 37 (50 μm to 2 mm in diameter, 2 to 10 mm in length) in a high-pressure state. Liquid collision occurs. If necessary, the sample received in the sample receiving container 35 can be further charged into the non-dispersed material input container 31 to repeat the process until desired physical properties are obtained. Furthermore, it is also possible to control the temperature of the liquid in the pipe by a heat exchange system. In the drawing, reference numeral 33 denotes a high-pressure pipe, 36 denotes a pressure gauge, and 38 denotes a three-way valve. FIG. 2 shows an external view of the liquid collision jig 34.
[0017]
The inorganic fine particles used in the present invention include oxides such as silica, alumina, zinc oxide and zirconium oxide, nitrides such as carbon nitride, aluminum nitride and silicon nitride, carbides such as silicon carbide, strontium titanate and barium titanate. And the like. Preferably, silica is used. Examples of the silica particles include those obtained by finely pulverizing or spheroidizing natural silica or quartz, or performing hollow processing, and synthetic silica. These fine particles have a volume average particle size of 0.01 to 2.0 μm. When the particle diameter is larger than 2.0 μm, the surface layer (fine particle-containing layer) itself is brittle, and the intended improvement in durability is not sufficiently exhibited. In addition, the cleaning mechanism may be damaged due to the presence of large particles. Conversely, if the particle size is smaller than 0.01 μm, the dispersion liquid tends to be gelled, and when used as a charge transport coating liquid, it is difficult to prevent air bubbles mixed during dispersion, resulting in poor coating properties. Cause problems. Further, the hardness cannot be sufficiently improved, and the intended improvement in durability cannot be obtained.
[0018]
When the inorganic fine particles are hygroscopic, the electrical resistance of the surface of the photoreceptor decreases in a high humidity environment, which may cause image defects such as image bleeding. Therefore, the inorganic fine particles are preferably hydrophobic. In the case of hydrophilic inorganic fine particles, it is preferable to perform a hydrophobic treatment by a known method. The electric resistance required for the fine particles varies depending on the electric resistance required for the outermost surface layer. 8 It is preferable that the resistance is Ω · cm or more. If it is smaller than this, problems tend to occur in the charge retention of the photoconductor, image quality, and the like.
[0019]
In the electrophotographic photoreceptor manufacturing process, examples of the solvent to be used include chlorobenzene, tetrahydrofuran, 1,4-dioxane, toluene, xylene, and the like. A single solvent or a plurality of solvents may be used.
[0020]
Further, a thermoplastic resin is preferable as the resin added before the dispersion, and a polycarbonate resin or a polyarylate resin having a bisphenol A skeleton or a Z skeleton is more preferable.
[0021]
The resin used in the surface layer of the photoreceptor of the present invention is generally appropriately mixed during or after dispersion. Examples of such a resin include a polycarbonate resin having a bisphenol A skeleton, a polycarbonate having a bisphenol Z skeleton, other polycarbonate resins, a polyarylate resin having a bisphenol A skeleton, a polyarylate resin having a bisphenol Z skeleton, other polyarylate resins, and acrylic. Resins, styrene resins, acryl-styrene copolymer resins, polyester resins, polyurethane resins, polysulfone resins, etc., may be used alone or in combination with a plurality of resins.
[0022]
Further, a photosensitive material and additives such as a sensitizer and an antioxidant can be added to the surface layer of the photoreceptor of the present invention.
[0023]
Inorganic fine particles used for the surface layer of the photoreceptor of the present invention are pressurized to a high pressure state together with a solvent or together with a solvent and a thermoplastic resin, and in a surface layer paint using those crushed and dispersed by the high-pressure liquid collision, In addition, the diameter of the inorganic fine particles can be reduced, and the liquid stability can be maintained for a long time. In addition, the surface of the photoreceptor can contain the inorganic fine particles to an effective amount in a uniform dispersion state without aggregation or the like, and therefore, have an appropriate surface slip property, lubricity, scratch resistance, and wear resistance. it can.
[0024]
Hereinafter, the configuration of the electrophotographic photosensitive member used in the present invention will be described.
[0025]
The electrophotographic photoreceptor in the present invention may be a single-layer type in which the photosensitive layer contains a charge transport material and a charge generation material in the same layer, or may be a stacked type in which a charge transport layer and a charge generation layer are separated. In terms of electrophotographic characteristics, a laminated type is preferable.
[0026]
The support used in the present invention may be any support as long as it has electrical conductivity.For example, aluminum, copper, chromium, nickel, zinc, stainless and other metals formed into a drum or sheet, aluminum Examples thereof include those obtained by laminating a metal foil such as copper or copper on a plastic film, those obtained by depositing aluminum, indium oxide, tin oxide, or the like on a plastic film.
[0027]
When an image input such as LBP is a laser beam, a conductive layer may be provided for the purpose of preventing interference fringes due to scattering or covering a scratch on the support. This can be formed by dispersing a conductive powder such as carbon black or metal particles in a binder resin. The thickness of the conductive layer is preferably 5 to 40 μm, more preferably 10 to 30 μm.
[0028]
An intermediate layer having an adhesive function is provided thereon. Examples of the material for the intermediate layer include polyamide, polyvinyl alcohol, polyethylene oxide, ethyl cellulose, casein, polyurethane, and polyether urethane. These are applied by dissolving in an appropriate solvent. The thickness of the intermediate layer is preferably 0.05 to 5 μm, more preferably 0.3 to 1 μm.
[0029]
A charge generation layer is formed on the intermediate layer. Examples of the charge generating material used in the present invention include selenium-tellurium, pyrylium, thiapyrylium dyes, phthalocyanine, anthantrone, dibenzapyrene quinone, trisazo, cyanine, disazo, monoazo, indigo, quinacridone and asymmetric quinocyanine pigments. And more preferably phthalocyanine pigments, such as oxytitanium phthalocyanine and hydroxyphthalocyanine. Among them, 9.0 °, 14.2 °, and 23.9 with a Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα. Oxytitanium phthalocyanine in crystalline form having strong peaks at 25 ° and 27.1 °, and 7.5 °, 9.9 °, 16.3 ° and 18.3 at Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα. A crystal form having strong peaks at 6 °, 25.1 ° and 28.3 °. If b carboxymethyl phthalocyanine is in contact with preferably these inorganic fine particles, it does not interfere with the dispersion stability.
[0030]
In the case of the function separation type, the charge generation layer is a homogenizer, an ultrasonic dispersion, a ball mill, a vibration ball mill, a sand mill, an attritor, a roll mill and a liquid containing the charge generation material together with a binder resin and a solvent in an amount of 0.3 to 4 times by mass. It is formed by dispersing well by a method such as a collision type high-speed disperser, applying a dispersion, and drying. The thickness of the charge generation layer is preferably 5 μm or less, more preferably 0.1 to 2 μm.
[0031]
The charge transport layer is formed by applying a paint in which a binder resin and a charge transport material are dissolved in a solvent, and drying. The charge transport material is applied together with a binder resin in an amount of 0.5 to 2 times by mass and dried to form a charge transport layer. The thickness of the charge transport layer is preferably 5 to 40 μm, more preferably 10 to 30 μm.
[0032]
FIG. 3 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
[0033]
In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate around an axis 2 at a predetermined peripheral speed in a direction indicated by an arrow. In the rotation process, the photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on its peripheral surface by the primary charging means 3, and then the image from an exposure means (not shown) such as a slit exposure or a laser beam scanning exposure. Receives exposure light 4. Thus, an electrostatic latent image is sequentially formed on the peripheral surface of the photoconductor 1.
[0034]
The formed electrostatic latent image is then subjected to toner development by the developing unit 5, and the developed toner image is synchronized between the photosensitive member 1 and the transfer unit 6 between the photosensitive member 1 and the transfer unit 6 from a paper supply unit (not shown). The transfer material 6 is sequentially transferred to the transferred and transferred transfer material 7.
[0035]
The transfer material 7 that has undergone the image transfer is separated from the photoreceptor surface, introduced into the fixing means 8 and subjected to image fixing to be printed out of the apparatus as a copy.
[0036]
The surface of the photoreceptor 1 after the image transfer is cleaned and cleaned by removing the untransferred toner by a cleaning unit 9, and further subjected to a charge removal process by a pre-exposure light 10 from a pre-exposure unit (not shown). Used for image formation. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.
[0037]
In the present invention, among the above-mentioned components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5, and the cleaning unit 9, a plurality of components are integrally connected as a process cartridge. May be detachably attached to a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. For example, a process in which at least one of the primary charging unit 3, the developing unit 5 and the cleaning unit 9 is integrally supported together with the photoreceptor 1 to form a cartridge, and which can be attached to and detached from the apparatus main body using guide means such as the rail 12 of the apparatus main body. The cartridge 11 can be used.
[0038]
When the electrophotographic apparatus is a copier or a printer, the image exposure light 4 is reflected light or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam is emitted according to the signal. Light emitted by scanning, driving of an LED array, driving of a liquid crystal shutter array, and the like.
[0039]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, liquid crystal printers, and laser plate making.
[0040]
Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples, "parts" indicates parts by mass.
[0041]
【Example】
[Execution dispersion liquid 1]
20 parts of hydrophobized silica powder (trade name: KMPX-100, average particle size: 0.1 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed with 200 parts of monochlorobenzene, stirred, and dispersed by the apparatus shown in FIG. Processing was performed. The processing pressure during dispersion is 600 kgf / cm 2 (60,000 kPa) was adjusted by the pump stroke. The liquid obtained from the discharge port was added again to obtain a dispersion liquid subjected to high-pressure treatment up to a total of 5 times (the high-pressure treatment was continued, but the particle size did not change after 5 times). Table 1 shows the results of the measurement of the dispersion average particle size and the particle size distribution of the hydrophobized silica powder with respect to the number of times of the high-pressure treatment using a product made by Leads and Northrup (trade name: Microtrac UPA particle size analyzer).
[0042]
[Comparative Dispersion 1]
Exactly the same treatment as in Example 1 was performed, except that the dispersion method was ultrasonic dispersion instead of the high-pressure treatment used in the dispersion liquid 1. The ultrasonic disperser had a 20 kHz oscillator, an oscillation output of 1 kW, and processing times of 30, 60, and 120 minutes, respectively. The particle size distribution of the dispersion obtained under each of these conditions was measured in the same manner as in Working dispersion 1. The results are shown in Table 1 (further ultrasonic dispersion was continued, but the particle size did not change after 120 minutes).
[0043]
[Execution dispersion liquid 2]
The particle size distribution was measured according to the measurement conditions of the working dispersion 1, except that the working dispersion 1 was kept standing for 2 weeks. The results are shown in Table 1 (however, only the particle size after 2 weeks for the high-pressure-treated product 5 times is shown).
[0044]
[Comparative dispersion liquid 2]
The particle size distribution was measured in accordance with the measurement conditions of the working dispersion 1, except that the dispersion of the comparative dispersion 1 was kept standing for 2 weeks. The results are shown in Table 1 (however, only the particle size after two weeks of the ultrasonic dispersion 120-minute product is shown).
[0045]
[Table 1]
Figure 2004212561
[0046]
[Execution dispersion liquid 3]
20 parts of hydrophobic silica powder (trade name: KMPX-100, average particle size 0.1 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) and polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a thermoplastic resin ) 20 parts were mixed with 200 parts of monochlorobenzene, and dispersed, and the particle size distribution was measured in the same manner as in the dispersion 1, except that the mixture was stirred. (The high pressure treatment was continued, but the particle size did not change after 5 times.) T). Table 2 shows the results.
[0047]
[Comparative dispersion 3]
20 parts of hydrophobic silica powder (trade name: KMPX-100, average particle size 0.1 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) and polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a thermoplastic resin 20) Monochlorobenzene was mixed with 200 parts of monochlorobenzene and dispersed, and the particle size distribution was measured in the same manner as in Comparative Dispersion Liquid 1 except for stirring (further ultrasonic dispersion was continued, but the particle size changed after 120 minutes). Did not.) Table 2 shows the results.
[0048]
[Execution dispersion liquid 4]
The particle size distribution was measured according to the measurement conditions of the working dispersion 1, except that the working dispersion 3 was kept standing for 2 weeks. The results are shown in Table 2 (however, only the particle size after two weeks of the high-pressure treated product five times) is shown.
[0049]
[Comparative dispersion liquid 4]
The particle size distribution was measured in accordance with the measurement conditions for the working dispersion 1 except that the dispersion of the comparative dispersion 3 was left standing for 2 weeks. The results are shown in Table 2 (however, only the particle size after two weeks of the ultrasonic dispersion 120-minute product is shown).
[0050]
[Table 2]
Figure 2004212561
[0051]
[Execution dispersion liquid 5]
The dispersion was measured in the same manner as in Working Dispersion 3, except that the thermoplastic resin was replaced with a polyarylate resin (weight average molecular weight: 100,000) represented by the following structural formula (1), and the particle size distribution was measured. . Table 3 shows the results. In addition, the average particle diameter of the working dispersion described in Table 3 is the particle diameter of a five-time product.
[0052]
Embedded image
Figure 2004212561
[0053]
[Comparative dispersion liquid 5]
In Comparative Dispersion Liquid 3, the dispersion was the same except that the thermoplastic resin was replaced with the polyarylate resin (represented by the formula (1), and the particle size distribution was measured. The results are shown in Table 3. The results are shown in Table 3. The average particle size of the comparative dispersion is the particle size of the 120-minute product.
[0054]
[Execution dispersions 6 and 7]
The hydrophobized silica powder in the working dispersion 5 was converted to a hydrophobized silica powder (trade name: X-120, average particle size: 0.02 μm, manufactured by Shin-Etsu Chemical Co., Ltd.), silica doll (trade name: 30G-100, average) The results are shown in Table 3 except that the particle size was changed to 0.1 μm, manufactured by Nippon Chemical Industry Co., Ltd.).
[0055]
[Comparative dispersions 6, 7]
In Comparative Dispersion 5, the hydrophobized silica powder was converted to a hydrophobized silica powder (trade name: X-120, average particle size: 0.02 μm, manufactured by Shin-Etsu Chemical Co., Ltd.), silica doll (trade name: 30G-100, average) The results are shown in Table 3 except that the particle size was changed to 0.1 μm, manufactured by Nippon Chemical Industry Co., Ltd.).
[0056]
[Execution dispersions 8, 9]
The hydrophobized silica powder in the working dispersion 5 was prepared by using alumina (trade name: LS-235, average particle size: 0.1 μm, manufactured by Nippon Light Metal Co., Ltd.), zinc oxide (trade name: FINEX-25LP, average particle size: 0.1 μm). 1 μm, manufactured by Sakai Chemical Industry Co., Ltd.), and the results are shown in Table 3.
[0057]
[Comparative dispersions 8, 9]
In Comparative Dispersion 5, the hydrophobized silica powder was alumina (trade name: LS-235, average particle size: 0.1 μm, manufactured by Nippon Light Metal Co., Ltd.), zinc oxide (trade name: FINEX-25LP, average particle size: 0.1 μm) , Manufactured by Sakai Chemical Industry Co., Ltd.), and the results are shown in Table 3.
[0058]
[Execution dispersions 10 and 11]
The results are shown in Table 3 except that Hydrophobized silica powder (trade name: KMP-110, average particle size: 1.9 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) was used in the working dispersion liquid 5, and the results are shown in Table 3.
[0059]
[Comparative dispersion 10]
Table 3 shows the results except that the hydrophobized silica powder was replaced with the hydrophobized silica powder (trade name: KMP-110, average particle size: 1.9 μm, manufactured by Shin-Etsu Chemical Co., Ltd.) in Comparative Dispersion 5. Shown in
[0060]
[Execution dispersion liquid 11]
The results are shown in Table 3 except that the thermoplastic resin in the working dispersion 5 was replaced with the structural formula (2) (weight average molecular weight: 72,000) shown below.
[0061]
Embedded image
Figure 2004212561
[0062]
[Comparative dispersion liquid 11]
The results are shown in Table 3 except that the thermoplastic resin in Comparative Dispersion 5 was replaced with the polycarbonate resin represented by the formula (2).
[0063]
[Execution dispersion liquid 12]
The results are shown in Table 3 except that the thermoplastic resin in the working dispersion 5 was replaced with the structural formula (3) shown below (weight average molecular weight: 69000).
[0064]
Embedded image
Figure 2004212561
[0065]
[Comparative dispersion 12]
All of the comparative dispersion 5 was the same except that the thermoplastic resin was replaced with the resin represented by the formula (3) (the results are shown in Table 3).
[0066]
[Comparative dispersion 13]
The results are shown in Table 3 except that the hydrophobized silica powder in the working dispersion 5 was replaced with synthetic silica (trade name: Aerosil 300CF, average particle size 0.007 μm, manufactured by Tsuchiya Kaolin Industries, Ltd.).
[0067]
[Comparative dispersion 14]
The results are shown in Table 3 except that the hydrophobized silica powder in the working dispersion 5 was replaced with alumina (trade name: AL43M, average particle size: 2.2 μm, manufactured by Tsuchiya Kaolin Industries, Ltd.).
[0068]
[Table 3]
Figure 2004212561
[0069]
The average particle size of the comparative dispersion is higher than the working dispersion. Also, the comparative dispersion has poor stability. Further, in the comparative dispersion liquid 13, a large amount of air bubbles were generated during the dispersion process, and the air bubbles caused a decrease in pressure, resulting in poor dispersion. After 3 hours from the dispersion, the gel became gel-like. It was also found that the comparative dispersion liquid 14 had the largest degree of sedimentation as compared with the other liquid dispersions.
[0070]
[Example 1]
An aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm is used as a support, and a coating composed of the following materials is applied on the support by a dip coating method and thermally cured at 140 ° C. for 30 minutes to form a 15 μm conductive layer. Was formed.
[0071]
Conductive pigment: SnO 2 Coated barium sulfate 10 parts
Pigment for resistance adjustment: 2 parts of titanium oxide
Binder resin: 6 parts of phenolic resin
Leveling material: 0.001 part of silicone oil
Solvent: methanol, methoxypropanol 0.2 / 0.8 20 parts
[0072]
Next, a solution obtained by dissolving 3 parts of N-methoxymethylated nylon and 3 parts of copolymerized nylon in a mixed solvent of 65 parts of methanol and 30 parts of n-butanol was applied thereon by dip coating, and then 100 ° C. for 10 minutes. After drying, an intermediate layer having a thickness of 0.5 μm was formed.
[0073]
Next, 4 parts of oxytitanium phthalocyanine (TiOPc) having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° at Bragg angles 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction. And 2 parts of polyvinyl butyral (trade name: Esrec BM2, manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone were dispersed in a sand mill using glass beads of 1 mm in diameter for 4 hours. A dispersion was prepared. This was applied by a dip coating method and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm.
[0074]
Next, 50 parts of a polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as a binder resin in 150 parts of the hydrophobized silica powder dispersion (high-pressure treated 5 times product) obtained in Working dispersion 1. 80 parts of monochlorobenzene and 40 parts of dichloromethane are added and dissolved, and a total of 40 parts of the charge transporting material represented by the following structural formula is added to the solution so that the mass ratio of the charge transporting material is (4) :( 5) = 8: 1.
Triarylamine compound represented by the following structural formula (4)
[0075]
Embedded image
Figure 2004212561
A stilbene compound represented by the following structural formula (5)
[0076]
Embedded image
Figure 2004212561
Was dissolved to form a coating for a charge transport layer, applied on the charge generation layer by a dip coating method, and dried at 120 ° C. for 1 hour to form a charge transport layer having a thickness of 29 μm, thereby obtaining an electrophotographic photoreceptor. .
[0077]
[Comparative Example 1]
A photoconductor was prepared in exactly the same manner as in Example 1, except that the dispersion under the condition of 120 minutes was used as the dispersion of hydrophobic silica powder in Comparative dispersion 1.
[0078]
[Example 2]
A photoreceptor was produced in exactly the same manner as in Example 1, except that the charge transport layer coating obtained in Example 1 was left standing for 2 weeks.
[0079]
[Comparative Example 2]
A photoconductor was prepared in exactly the same manner as in Example 1 except that the charge transport layer coating obtained in Comparative Example 1 was used by standing for 2 weeks.
[0080]
[Comparative Example 3]
A photoconductor was prepared in exactly the same manner as in Example 1 except that the dispersion for liquid charge transport layer in Example 1 was replaced with 180 parts of monochlorobenzene and 80 parts of dichloromethane, except for the dispersion liquid 1.
[0081]
The photoconductors of Examples 1 and 2 and the photoconductors of Comparative Examples 1, 2, and 3 thus obtained were evaluated using a copying machine “GP-40” (manufactured by Canon Inc.). The evaluation method is shown below, and the evaluation results are shown in Table 4.
[0082]
The produced electrophotographic photoreceptor was transferred to "GP-40" (manufactured by Canon Inc.) having a process speed of 210 mm / sec by a copying machine having a roller contact charging means (AC / DC roller contact charging means) on which an AC voltage was superimposed. The measurement was performed under a normal temperature and normal humidity environment (N / N) at a temperature of 23 ° C. and a humidity of 50% RH. GP-40 was measured using a potential measuring jig having a probe attached to the developing position in order to measure the potential characteristics of the electrophotographic photosensitive member. The “potential” is a value obtained by measuring the charging potential Vd, the sensitivity EΔ500, and the residual potential Vr at the initial stage and after 40,000 sheets of continuous paper endurance. The larger the absolute value of the charging potential Vd, the better the charging ability, and the sensitivity EΔ500 is the amount of light required to attenuate the potential from −700 V to −200 V, and the smaller the value, the better the sensitivity.
[0083]
“Photoconductor defect” means an aggregate of hydrophobized silica powder by visual observation of the photoconductor surface.
[0084]
“Durable scraping” indicates the amount of photoreceptor scrap after 40,000 continuous paper passes. The film thickness was measured using an eddy current film thickness measuring device (Permascope type E111) manufactured by Fischer. The "durable image" shows the image quality after 40,000 sheets, and the image defects appearing on the halftone image were visually evaluated. As the types of image defects, image defects due to aggregates themselves, image defects due to scratches originating from aggregates in the circumferential direction of the photoreceptor, and the like may be observed.
[0085]
The image was an A4 grid pattern with a printing rate of 4%. The sequence was an intermittent mode in which the printing was stopped once for each print. When the toner ran out, it was replenished.
[0086]
[Table 4]
Figure 2004212561
[0087]
[Examples 3 and 4]
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the amount of the hydrophobized silica powder dispersion (high-pressure treated 5 times) shown in Working dispersion 1 was changed to 70 parts and 110 parts, respectively. . Table 3 shows the compounding ratios of Examples 3 to 13. 5 and Table 6 show the results.
[0088]
[Example 5]
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the charge transport layer binder resin was changed to the polyarylate resin represented by the formula (1).
[0089]
[Example 6]
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the amount of the hydrophobized silica powder dispersion (high-pressure treated 5 times) shown in Working dispersion 3 was changed to 160 parts, and the amount of the polycarbonate resin was changed to 35 parts. Created and evaluated.
[0090]
[Example 7]
The amount of the hydrophobized silica powder dispersion (five times of high pressure treatment) shown in Working dispersion 5 was 160 parts, and the charge transport binder was changed to the polyarylate resin represented by the formula (1), and the resin amount was 35 parts. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the composition was changed to.
[0091]
[Examples 8 to 11]
As the charge transport layer, the dispersions obtained in Working Dispersions 6, 8, 9, and 10 (five times of high pressure treatment) and the compounding ratio, and the binder for the charge transport layer were used as shown in Table 5, except that An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1.
[0092]
[Example 12]
The amount of the hydrophobized silica powder dispersion (five times of high pressure treatment) shown in Working dispersion 11 was 160 parts, and the amount of resin was 35 parts instead of the binder represented by the structural formula (3) as the charge transport binder. An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except for changing.
[0093]
Example 13
The charge transport layer was changed in the electrophotographic photoreceptor of Example 1, and a protective layer was further provided. That is, 50 parts of a polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 40 parts of the charge transport material shown in Example 1 were added together with 200 parts of monochlorobenzene and 80 parts of dichloromethane as a charge transport layer, and dissolved. Then, a charge transport layer paint was applied, applied by a dip coating method, and dried at 120 ° C. for 60 minutes to provide a charge transport layer having a film thickness of 21 μm.
[0094]
Next, as a protective layer, 25 parts of the hydrophobized silica powder dispersion obtained in Working Dispersion 1 (high-pressure treated 5 times product), 4 parts of the charge transport material represented by the formula (4) used in the charge transport layer, and polycarbonate A resin (trade name: Iupilon Z800, manufactured by Mitsubishi Gas Chemical Co., Ltd.) (4 parts), monochlorobenzene (200 parts), and dichloromethane (250 parts) were mixed and dissolved to prepare a coating for a surface protective layer. This paint was applied on the charge transport layer by atomization and dried at 120 ° C. for 60 minutes to form a protective layer having a thickness of 5.0 μm, and an electrophotographic photosensitive member was prepared and evaluated.
[0095]
[Comparative Examples 4 to 8]
As the charge transport layer, the dispersions (120-minute products) obtained in Comparative Dispersions 5, 6, 8, 9, and 13 and the blending ratio and the binder for the charge transport layer were used as shown in Table 5, respectively. An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1. Table 6 shows the results.
[0096]
[Comparative Example 9]
In Example 13, the protective layer was changed as follows.
[0097]
That is, it was prepared and evaluated in the same manner as in Example 13 except that Comparative Dispersion Liquid 1 was used as the protective layer.
[0098]
[Table 5]
Figure 2004212561
[0099]
[Table 6]
Figure 2004212561
[0100]
In the examples, the photoreceptor had no aggregates, and the surface was smooth and uniform. Further, it showed good electrophotographic characteristics and also had good image quality.
[0101]
[Example 14]
In Example 1, an electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the support was replaced with an aluminum cylinder having a diameter of 30 mm and a length of 260.5 mm, and the measurement was performed using the following evaluator. This is similar to the first embodiment.
[0102]
・ Evaluation machine
LBP-SX (laser beam printer) (manufactured by Canon Inc.)
Charging method: Corona charging
Process speed: 47mm / sec
Cleaning blade: Set linear pressure to photoreceptor to 1.4 times normal
Dark section potential Vd: -500
Laser light amount: set to a light amount at which the bright portion potential Vl becomes -100 V when irradiated with a laser beam having a wavelength of 802 nm.
The electrophotographic characteristics were measured using a potential measuring jig having a probe attached to the developing position.
[0103]
In addition, the number of durable sheets was 5,000.
[0104]
The results are shown in Table 7 below.
[0105]
[Example 15]
The electrophotographic photoreceptor in Example 1 was evaluated in the same manner as in Example 1 except that the measurement was performed using the following evaluator.
[0106]
・ Evaluation machine
NP-6030 (plain paper copier) (manufactured by Canon Inc.)
Charging method: DC voltage application (DC charging)
Process speed: 200 (mm / sec)
Cleaning blade: Set linear pressure to photoreceptor to 1.4 times normal
Dark part potential Vd: -400
Laser light intensity: set to the light intensity at which the bright part potential Vl becomes -70V
The electrophotographic characteristics were measured using a potential measuring jig having a probe attached to the developing position.
[0107]
The number of endurance sheets was 40,000.
[0108]
The results are shown in Table 7 below.
[0109]
[Comparative Example 10]
An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 1 except that the support was replaced with an aluminum cylinder having a diameter of 30 mm and a length of 260.5 mm, and the measurement was conducted in the same manner as in Example 14.
[0110]
[Comparative Example 11]
The measurement was performed in the same manner as in Example 15 for the electrophotographic photosensitive member of Comparative Example 1.
[0111]
[Table 7]
Figure 2004212561
[0112]
The embodiments of the present invention have been described above. Preferred embodiments of the present invention are listed below.
[0113]
[Embodiment 1]
In an electrophotographic photosensitive member containing a surface layer containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm, the inorganic fine particles used for the surface layer are pressurized to a high pressure state together with a solvent, and An electrophotographic photoreceptor characterized by being pulverized and dispersed.
[0114]
[Embodiment 2]
2. The electrophotographic photoreceptor according to claim 1, wherein the pressurization, pulverization, and dispersion are performed by pressure-feeding the inorganic fine particles and the solvent to a fine flow path and performing high-pressure liquid collision in the fine flow path.
[0115]
[Embodiment 3]
2. The electrophotographic photoreceptor according to claim 1, wherein the pressurization, pulverization, and dispersion are performed by pressure-feeding the inorganic fine particles and the solvent to a fine channel, and liquid collision with an obstacle wall immediately after an outlet of the channel.
[0116]
[Embodiment 4]
In an electrophotographic photosensitive member containing a surface layer containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm, the inorganic fine particles used in the surface layer are pressurized to a high pressure state together with a thermoplastic resin and a solvent. An electrophotographic photoreceptor characterized in that it is pulverized and dispersed by liquid collision.
[0117]
[Embodiment 5]
The electrophotographic photoreceptor according to embodiment 4, wherein the pressurization, pulverization, and dispersion are performed by pressure-feeding the inorganic fine particles, the thermoplastic resin, and the solvent to a fine flow path, and performing high-pressure liquid collision in the fine flow path. .
[0118]
[Embodiment 6]
The electron according to embodiment 4, wherein the pressurization, pulverization, and dispersion are performed by pressure-feeding the inorganic fine particles, the thermoplastic resin, and the solvent to a fine channel, and liquid collision with an obstacle wall immediately after a discharge port of the channel. Photoreceptor.
[0119]
[Embodiment 7]
The electrophotographic photosensitive member according to any one of embodiments 1 to 6, wherein the surface layer of the photosensitive member is a charge transport layer.
[0120]
[Embodiment 8]
The electrophotographic photoreceptor according to any one of embodiments 4 to 7, wherein the thermoplastic resin is a polycarbonate resin or a polyarylate resin.
[0121]
[Embodiment 9]
The electrophotographic photoreceptor according to any one of embodiments 1 to 8, wherein the inorganic fine particles are silica fine particles.
[0122]
[Embodiment 10]
The electrophotographic photosensitive member according to any one of embodiments 1 to 9, wherein the inorganic fine particles are hydrophobic silica fine particles.
[0123]
[Embodiment 11]
The electrophotographic photosensitive member according to any one of Embodiments 1 to 10, which is used in a contact charging system.
[0124]
【The invention's effect】
According to the present invention, a surface layer coating material which is pressurized to a high pressure state, and can be dispersed in a fine particle by inorganic particles by pulverization and dispersion by high-pressure liquid collision, and which can maintain liquid stability for a long time, is obtained. The surface of the electrophotographic photoreceptor using the surface layer paint forms a uniform surface without agglomerates, has good electrical sensitivity, and has excellent charging characteristics, sensitivity, and repetitive potential stability of residual potential. It is possible to obtain an electrophotographic photosensitive member having excellent scratch resistance, abrasion resistance and abrasion resistance, and to provide an excellent image having no image quality image defects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a liquid collision type high-speed disperser used in the present invention.
FIG. 2 is an external view of a liquid collision jig in a liquid collision type high-speed dispersion machine used in the present invention.
FIG. 3 is a view showing a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member according to the present invention.

Claims (4)

表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体。In an electrophotographic photosensitive member containing a surface layer containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm, the inorganic fine particles used for the surface layer are pressurized to a high pressure state together with a solvent, and An electrophotographic photoreceptor characterized by being pulverized and dispersed. 表面層に体積平均粒径0.01〜2.0μmの無機微粒子を含有する電子写真感光体において、該表面層に用いられる無機微粒子が、熱可塑性樹脂及び溶剤と共に高圧状態に昇圧され、該高圧の液衝突により粉砕及び分散されたものであることを特徴とする電子写真感光体。In an electrophotographic photosensitive member containing a surface layer containing inorganic fine particles having a volume average particle diameter of 0.01 to 2.0 μm, the inorganic fine particles used in the surface layer are pressurized to a high pressure state together with a thermoplastic resin and a solvent. An electrophotographic photoreceptor characterized in that it is pulverized and dispersed by liquid collision. 請求項1または2に記載の電子写真感光体、帯電手段、現像手段及びクリーニング手段からなる群より選ばれる少なくとも一つの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。3. An electrophotographic photoreceptor according to claim 1, wherein at least one means selected from the group consisting of a charging means, a developing means and a cleaning means is integrally supported, and is detachably mountable to an electrophotographic apparatus main body. Process cartridge. 請求項1または2に記載の電子写真感光体、帯電手段、露光手段、現像手段及び転写手段を有することを特徴とする電子写真装置。An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 1, a charging unit, an exposing unit, a developing unit, and a transferring unit.
JP2002380949A 2002-12-27 2002-12-27 Method for producing electrophotographic photosensitive member Expired - Lifetime JP3938043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380949A JP3938043B2 (en) 2002-12-27 2002-12-27 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380949A JP3938043B2 (en) 2002-12-27 2002-12-27 Method for producing electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2004212561A true JP2004212561A (en) 2004-07-29
JP3938043B2 JP3938043B2 (en) 2007-06-27

Family

ID=32817025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380949A Expired - Lifetime JP3938043B2 (en) 2002-12-27 2002-12-27 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP3938043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059249A (en) * 2009-09-08 2011-03-24 Mitsubishi Chemicals Corp Method of producing coating liquid for forming undercoat layer of electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2015141235A (en) * 2014-01-27 2015-08-03 三菱化学株式会社 Electrophotographic cartridge, electrophotographic photoreceptor, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059249A (en) * 2009-09-08 2011-03-24 Mitsubishi Chemicals Corp Method of producing coating liquid for forming undercoat layer of electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2015141235A (en) * 2014-01-27 2015-08-03 三菱化学株式会社 Electrophotographic cartridge, electrophotographic photoreceptor, and image forming apparatus

Also Published As

Publication number Publication date
JP3938043B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
EP1744227B1 (en) Image forming apparatus with cleaning blade
EP2093618B1 (en) Image forming apparatus and process cartridge
US20070212139A1 (en) Image forming apparatus, process unit, and cleaning device
JP2016212218A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP5857827B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
JP4590484B2 (en) Electrophotographic apparatus and process cartridge
JP2006184745A (en) Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic apparatus
JP2010230981A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
EP1193559A2 (en) Electrophotographic photosensitive member, electrophotographic apparatus and process cartridge
JP4227555B2 (en) Image forming method
JP4387864B2 (en) Image forming method
JP2008191488A (en) Electrophotographic apparatus
JP2009128842A (en) Image forming apparatus
JP2004212561A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2010164952A (en) Electrophotographic photoreceptor and image forming apparatus
JP2005037562A (en) Electrophotographic photoreceptor, image forming apparatus using the same, image forming method and process cartridge for image forming apparatus
JP4018529B2 (en) Electrophotographic photoreceptor
JP2008292572A (en) Electrophotographic device
JP2009186672A (en) Electrophotographic photoreceptor and image forming apparatus equipped with the same
WO2007136012A1 (en) Coating liquid for undercoating layer formation in electrophotographic photoreceptor, and process for producing the same
JP4174384B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2005121884A (en) Image forming apparatus
JP2009069772A (en) Image forming apparatus
JP4174245B2 (en) Electrophotographic apparatus and process cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Ref document number: 3938043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7