JP2004212307A - Nuclear reactor water injection facility - Google Patents

Nuclear reactor water injection facility Download PDF

Info

Publication number
JP2004212307A
JP2004212307A JP2003001683A JP2003001683A JP2004212307A JP 2004212307 A JP2004212307 A JP 2004212307A JP 2003001683 A JP2003001683 A JP 2003001683A JP 2003001683 A JP2003001683 A JP 2003001683A JP 2004212307 A JP2004212307 A JP 2004212307A
Authority
JP
Japan
Prior art keywords
reactor
water injection
electric motor
steam turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003001683A
Other languages
Japanese (ja)
Other versions
JP4045431B2 (en
Inventor
Shigeru Yokouchi
滋 横内
Hiroshi Goto
廣 後藤
Koji Ando
浩二 安藤
Masayoshi Matsuura
正義 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003001683A priority Critical patent/JP4045431B2/en
Publication of JP2004212307A publication Critical patent/JP2004212307A/en
Application granted granted Critical
Publication of JP4045431B2 publication Critical patent/JP4045431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To integrate water injection lines for injecting water into a reactor pressure vessel under high pressures to one system, so as to enhance economy without impairing safety. <P>SOLUTION: A nuclear reactor water injection pump 4 in the system for injecting water into the reactor pressure vessel 1 under high pressures after an accident is made drivable by two methods of a steam turbine 5 driven by steam taken out from the reactor pressure vessel 1, and an electric motor 6 driven by power supply from a diesel generator 35 capable of supplying electric power in emergency, the water injection pump 4 is driven by the turbine 5 within a range of driving the turbine 5 by pressure inside the reactor pressure vessel 1, and the pump 4 is driven switchedly by the electric motor 6 outside the range of driving the steam turbine 5, so as to be able to enhance the economy while including a function provided in conventional two high-pressure water injection lines. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は原子炉注水設備の改良に係わり、特に原子炉への注水ポンプの駆動機として、原子炉圧力容器の蒸気により駆動される蒸気タービンと非常時に給電可能な電源設備から給電される電動モーターを持つことを特徴とした原子炉注水設備に関するものである。
【0002】
【従来の技術】
原子力プラントの原子炉隔離時冷却系は、原子炉圧力容器内の圧力が高圧時に原子炉圧力容器内に注水を行う。その注水を行う原子炉注水設備としては、沸騰水型原子力発電(BWR)プラントの場合、原子炉隔離時冷却系(RCIC)と高圧炉心注水系(HPCF)とが同時に採用されている(例えば、特許文献1参照)。
【0003】
原子炉隔離時冷却系は、原子炉圧力容器内で発生した蒸気の一部を配管を介して蒸気タービンに導入してその蒸気タービンを駆動し、その蒸気タービンで原子炉隔離時冷却ポンプを起動する。原子炉隔離時冷却ポンプが起動すると、復水貯蔵タンクやサプレッションプール内の冷却水が配管を通じて原子炉圧力容器内へ圧送されて注水される。
【0004】
また、高圧炉心注水系(HPCF)は、電動モーター駆動のポンプを用いるもので、電動モーターにより高圧炉心注水ポンプを駆動し、復水貯蔵タンクやサプレッションプール内の冷却水を配管を通じて前記原子炉圧力容器内へ注水している。
【0005】
【特許文献1】
特開平7−253492号公報(第4頁0013項,図1)
【0006】
【発明が解決しようとする課題】
原子力プラントにおいては、安全性が最も優先される課題である。その一方で安全性は確保しつつ、ある程度の経済性を有することは現実問題として必要なことである。そのため、安全性と経済性を両立する設備の開発は常に存在する課題である。このような状況の中で本発明が解決する課題は原子炉圧力容器内の圧力が高圧時に原子炉圧力容器へ注水する機能を有する設備に関するものである。
【0007】
従来の原子力プラントでは、原子炉隔離時冷却系は原子炉圧力容器内の圧力が低くなると原子炉隔離時冷却ポンプを駆動するのに十分な動力を蒸気タービンから得ることができなくなるため、原子炉圧力容器内が高圧の間(図2の斜線で示した領域)しか注水を行えない。一方、高圧炉心注水系は原子炉圧力容器内の圧力の低下とは駆動力が無関係な電力であるため、原子炉圧力容器内の蒸気の圧力が低圧時にも注水可能(図3の曲線の特性で注水する)である。
【0008】
原子炉隔離時冷却系と高圧炉心注水系は共に高圧時の炉心への注水を行える設備であるため、この2つの系統を統合することができれば系統の削減が可能になり必要機器が削減されるため経済性向上につながる。
【0009】
しかし、この2つの系統を現状のままどちらかに統合するには次のような問題点が存在する。上述したように原子炉隔離時冷却系は低圧時での炉心注水が行えないため高圧炉心注水系の代替とはなり得ない。一方、高圧炉心注水系で原子炉隔離時冷却系の代替とすることは、機能上は大きな問題は生じないが次のような理由で経済性への寄与があまり大きくない。
【0010】
即ち、従来の原子力プラントでは高圧炉心注水系の注水ポンプは、非常用ディーゼル発電機から給電されることとなっており、事故発生直後の非常用ディーゼル発電機への負荷が最も集中する時間帯に起動しなければならない。さらに、高圧炉心注水系は高圧状態の原子炉圧力容器内に注水を行うため高揚程が必要であり、また原子炉圧力容器内の炉心を水没状態に維持すること、即ち炉心冠水維持のためにある程度の流量を確保しなければならない。そのため、その駆動力は非常に大きなものとなる。
【0011】
このことから非常用ディーゼル発電機から給電されて駆動する高圧炉心注水系に高圧時の炉心注水機能を統合することは発電機負荷の低減にはならず統合の経済的効果が少ない。
【0012】
したがって、本発明の目的は、原子炉圧力容器内の圧力が高圧時の炉心への注水を行う2系統の注水設備の統合に当たって発電機負荷の低減と言う観点で経済的効果が上げられるようにすることである。
【0013】
【課題を解決するための手段】
本発明の基本的手段は、安全性を高めるために原子炉注水ポンプの駆動源を蒸気タービンと電動モーターの2つの設備とすることで、多重性を持たせることができ非常時の炉心注水設備をより確実に起動できるようにしたことである。
【0014】
これにより従来の原子炉隔離時冷却系と高圧炉心注水系が統合しても、原子炉注水ポンプの駆動源に多重性を持たせて、安全性を確保しながら機器削減につながり、かつその多重性によって電動モーターによる駆動力負担が軽減されて電動モーターへの給電に用いられる非常用発電機の容量低減が可能になるため経済性も向上する。
【0015】
また、好ましくは、その基本的手段に加えて、事故発生直後の原子炉圧力容器内が高圧である場合には蒸気タービンにより原子炉注水ポンプを起動し、原子炉圧力容器内の圧力が低下し蒸気タービンを駆動できなくなると非常用発電機から給電される電動モーターによる駆動に切り替える要にしたことである。
【0016】
これにより従来の原子炉隔離時冷却系と高圧炉心注水系が統合され機器削減につながり、かつ電動モーターへの給電に用いられる非常用発電機の容量低減が可能になるため経済性も向上する。
【0017】
更に、原子炉注水ポンプを蒸気タービンと電動モーターのどちらかで駆動する際に、用いていない機器が回転することは駆動源にとって負荷になってしまうため適宜連軸機を設置することによりその負荷を取り除くことができるようにした。
【0018】
また、電動モーターの起動に関するインターロックを設けることで低圧時の必要なときにのみ電動モーターによる原子注水ポンプの駆動を可能に構成しても良い。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。核燃料が装荷された炉心2は、原子炉圧力容器1内の冷却水中に冠水している。炉心2には原子炉圧力容器1内の冷却水が主循環ポンプ(図示せず)にて循環させられる。その冷却水は循環途中で炉心2で加熱されて、原子炉圧力容器1内で高温高圧な蒸気と成る。
【0020】
その蒸気は、主蒸気配管31を通じて発電機を駆動するための発電機駆動用蒸気タービンへ供給され、その発電機駆動用蒸気タービンを駆動するために用いられる。そのように用いられた蒸気は復水化され、復水化された水は給水配管32を通じて原子炉圧力容器1内に戻しいれられて、再度炉心2へ循環させられることを繰り返す。
【0021】
原子炉圧力容器1は、原子炉格納容器3内に気密に格納配備されている。その原子炉格納容器3内には、冷却水が貯留されたサプレッションプール7が装備されている。又、原子炉格納容器3の外側には、冷却水が貯留された復水貯蔵タンク8が配備されている。
【0022】
原子炉注水ポンプ4の吸込口には、注水ポンプ吸込配管9の一端側が接続され、その注水ポンプ吸込配管9の他端はサプレッションプール7の水中に開口して配備されている。その注水ポンプ吸込配管9の途中には、復水吸込配管33の一端が接続され、その他端は復水貯蔵タンク8の水中に開口して配備されている。
【0023】
一方、原子炉注水ポンプ4の吐出口には、注水ポンプ吐出配管10の一端が接続され、その注水ポンプ吐出配管10の他端が原子炉圧力容器1に接続されて原子炉圧力容器1内と連通している。
【0024】
高圧な蒸気をタービン翼に当ててタービン軸を回転駆動する蒸気タービン5が、原子炉注水ポンプ4の駆動機器として採用されている。タービン翼に当てる蒸気を受け入れるための蒸気タービン5の蒸気入口には、蒸気タービン吸気配管11の一端が接続され、その他端は原子炉圧力容器1に接続されて原子炉圧力容器1内と連通している。その蒸気タービン5内でタービンを回転させるために用いられた使用済みの蒸気を排出する蒸気タービン5の蒸気出口には、蒸気タービン排気配管34の一端が接続され、その他端はサプレッションプール7の水面上方に連通して配備されている。
【0025】
電力を受けてモーター回転軸を回転駆動する電動モーター6が、原子炉注水ポンプ4のもう一つの駆動機器として採用されている。その電動モーター6へ電力を給電する非常用の電源設備としては、ディーゼル発電機35が採用されている。ディーゼル発電機35で発生させた電力の送電線は、電動モーター6の受電部に接続されて、その電力で電動モーター6が回転駆動されるようになっている。そのディーゼル発電機35は、通常は停止状態で待機させておき、原子炉隔離事象が生じたなどの原子力プラントが異常な場合や事故に、起動されて発電機能を発揮する。
【0026】
原子炉注水ポンプ4のポンプ軸の端部はポンプケーシングの両側に延長して出されており、そのポンプ軸の一端に電動モーター6のモーター回転軸が接続され、もう一端には蒸気タービン5のタービン軸が接続されている。
【0027】
原子力プラントには、原子炉圧力容器1内の圧力と温度と冷却水の水位と原子炉格納容器3内の圧力を検出する計装装置36が装備されている。原子炉格納容器3内の圧力としては、ドライウェル内の圧力を検出する。これらの検出による各検出信号は計装装置36から制御装置37に通信線を通じて入力されている。その制御装置37には、原子炉格納容器3内の圧力の検出圧力が予め設定した圧力よりも大きいことを示す検出信号、又は原子炉圧力容器1内の水位が予め設定した水位低を示す検出信号と原子炉圧力容器1内の圧力が蒸気タービン5を駆動できる範囲の圧力を示す検出信号とが同時に制御装置37に入力された場合に、蒸気タービン吸気配管11途中に設けた電動式の蒸気入口弁38を開くように、そうでない場合には蒸気入口弁38を閉じるように、蒸気入口弁38の電動駆動装置との間で制御回路が組まれて納めされている。更に、その制御装置37には、原子炉圧力容器1内の圧力が予め設定した圧力低を示す検出信号と前述の水位低を示す検出信号とが制御装置37に入力された場合に電動モーター6にディーゼル発電機35からの電力を供給して電動モーター6を起動するように電動モーター6の制御装置37との間で制御回路が組まれて納めされている。
【0028】
このような、注水系統の設備を備える原子力プラントにあっては、通常の原子力プラントの運転時では、蒸気入口弁38が閉じられているので、原子炉圧力容器1内の蒸気が主蒸気配管31を通じて発電に供せられ、蒸気タービン吸気配管11側には蒸気が供給されない。しかし、主蒸気配管31が破断することで引き起こされることが想定される原子炉隔離事象におちいると、その破断口から高温高圧蒸気が原子炉格納容器3内へ漏洩して、原子炉格納容器3内の圧力が予め設定した圧力よりも高い圧力となって計装装置36で検出される。その検出信号は制御装置37に伝送され、その検出信号を受けた制御装置37は蒸気入口弁38の電動駆動装置に弁を開する指令を発し、蒸気入口弁38は開かれる。高温高圧蒸気が原子炉格納容器3内へ漏洩する量が多いと、原子炉圧力容器1内の水位が低下して水位低の検出信号が計装装置36から出された場合、原子炉圧力容器1内の圧力が蒸気タービンを駆動するに必要な範囲の圧力を示す検出信号が計装装置36から出されていれば、同じく制御装置37は蒸気入口弁38の電動駆動装置に弁を開ける指令を発し、蒸気入口弁38は開かれる。
【0029】
このような状態になると、原子炉圧力容器1内の高温高圧蒸気が蒸気タービン吸気配管11を通じて蒸気タービン24に入り、タービン軸が回転し始める。蒸気タービン24のタービン軸が回転することによって原子炉注水ポンプ4のポンプ軸も回転して原子炉注水ポンプ4が復水貯蔵タンク8やサプレッションプール7の冷却水を注水ポンプ吸込配管9を通じて吸込み、その冷却水を原子炉圧力容器1内に注水する。
【0030】
この注水作用によって炉心2が原子炉圧力容器1内の冷却水水位よりも下に冠水して冷却される状態が維持できる。その注水が続く間にも、原子炉圧力容器1内から蒸気と圧力が原子炉格納容器3内に抜けて、原子炉圧力容器1内の圧力が低下する。その圧力の低下により、蒸気タービン5の蒸気入口圧力が低下して、蒸気タービン5による原子炉注水ポンプ4の駆動力が低下し、原子炉圧力容器1内の冷却水が蒸気となって原子炉格納容器3内に漏洩する量に比べて原子炉圧力容器1内への注水量が減る。このように成ると、原子炉圧力容器内の冷却水の水位が低下して、水位低の検出信号を計装装置36が発する。
【0031】
そのため、原子炉圧力容器1内の圧力低と水位低の両検出信号が計装装置36から発せられて制御装置37に入力される。その両検出信号を受けた制御装置37は電動モーター6に起動の指令信号を発し、ディーゼル発電機35で発電された電力が電動モーター6に給電されて、その電動モーター6が駆動される。事故直後には既にディーゼル発電機35を起動されている。
【0032】
電動モーター6が駆動されることによって、蒸気タービン5に引き続いて電動モーター6が原子炉注水ポンプ4を駆動する。そのため、原子炉注水ポンプ4は引き続いてサプレッションプール7内の冷却水や復水貯蔵タンク8内の冷却水を注水ポンプ吐出配管10を通じて原子炉圧力容器1内に注水する。その注水によって原子炉圧力容器1内の水位が上昇して水位低の検出信号が検出されなくなった場合には、計装装置36が制御装置37に水位低の検出信号を発信しないので、制御装置37は電動モーター6に起動の指令信号をキャンセルして電動モーター6に停止の指令信号を発する。そのため、原子炉注水ポンプ4による注水作用が停止する。しかし、再び原子炉圧力容器1内の水位が低下して水位低の検出信号が検出された場合には、計装装置36が制御装置37に水位低の検出信号を発信するので、原子炉圧力容器1内の圧力低と水位低の両検出信号が計装装置36から制御装置37に入力される。その両検出信号を受けた制御装置37は電動モーター6に起動の指令信号を発し、ディーゼル発電機35で発電された電力が電動モーター6に給電されて、その電動モーター6が駆動される。したがって、再び原子炉注水ポンプ4による原子炉圧力容器1内への注水作用が開始される。
【0033】
このように、本実施例では、蒸気タービン5による原子炉注水ポンプ4の駆動により図4の細実線上を原子炉圧力容器内の圧力の変化に伴い注水流量を変化させながら注水作用を行い、電動モーター6を駆動後は原子炉注水ポンプ4により図4の太実線による曲線のように注水作用を行う。そのため、従来のように配管破断等による漏洩事故直後の原子力圧力容器内圧力の高い時点から原子炉注水ポンプを電動モーターで駆動して注水するのに対して電動モーター6の負荷が少なない。
【0034】
そのため、図5に示す事故直後から電動モーターを駆動する従来例に比べて、電力負荷も図6のように事故直後において低く維持できる。そのため、事故直後に原子力プラントの多数の個所で必要とされるその他の電力負荷に対して十分対応できる余裕が生じる。また、原子炉注水ポンプ4の駆動源を蒸気タービン5から電動モーター6へ切り替えて継続的に原子炉圧力容器内への注水を行うので、事故後における注水による安全確保と電力負荷の低減による経済的効果を生じる。しかも、ディーゼル発電機35の負荷も図7のように軽減される。
【0035】
本実施例のように、事故時における、原子炉注水ポンプ4の通常駆動には当初蒸気タービン5を用いている。しかし、蒸気タービン5の駆動に必要な系統に異常が発生した場合には、事故後当初から電動モーター6を原子炉注水ポンプ4の駆動機器として使用する。そのような異常事態に対応できるように、制御装置37には、手動でディーゼル発電機35と電動モーター6とを起動させる指令信号をディーゼル発電機35と電動モーター6に与える回路も装備されている。このようにすることで、より確実に原子炉圧力容器1内への注水作用が可能になり、非常用炉心冷却系の一部として用いる時にも信頼性が向上する。
【0036】
本実施例は、原子炉圧力容器への注水状況下で蒸気タービン5の入口圧力、即ち原子炉圧力容器内の圧力がタービン駆動可能範囲内、即ち蒸気タービン5を駆動可能な設定圧力以上では、蒸気タービン5の蒸気入口弁38を開とし蒸気タービン5により原子炉注水ポンプ4を駆動する。その蒸気タービン5の入口圧力がタービン駆動可能範囲外、即ち蒸気タービン5を駆動可能な設定圧力未満では、蒸気タービン5の蒸気入口弁38を閉とともに電源設備のディーゼル発電機35から電動モーター6への給電を開始し、原子炉注水ポンプ4を駆動する。その設定圧力は、原子炉注水ポンプ4をどの程度の駆動力で駆動するかで、その駆動力を得られる蒸気タービン5への圧力として予め設定しておけばよい。
【0037】
このように原子炉注水ポンプ4の駆動源を蒸気タービン5の入口圧力に応じて切り替えることで、原子炉圧力容器1への注水が必要となるような事故時において原子炉圧力容器1内が高圧の時には原子炉圧力容器1内の蒸気を利用して原子炉圧力容器1への注水を行うことができ、さらに原子炉圧力容器1内の圧力が下がって蒸気タービン5を駆動できなくなっても原子炉注水ポンプ4の駆動源は非常時に給電可能な電源設備のディーゼル発電機35からの給電に切り替わっており更なる注水が可能となる。
【0038】
つまり原子炉注水ポンプ4の駆動源を切り替えて原子炉圧力容器1内の高圧から低圧までいずれの場合においても炉心2を冠水状態に維持するに必要な注水を可能とすることができる。これにより系統数の削減とそれに伴うポンプ・配管などの機器削減が可能となり、経済性の向上・機器配置の利便性の向上などが期待できる。
【0039】
また、本実施例では、ディーゼル発電機35などのような非常時に給電可能な電源設備の容量を低減することも可能である。非常時のディーゼル発電機35の容量は同時に必要となる最大負荷容量と大きな負荷を投入した際の電圧や周波数の変動率を考慮して決定されるが、本実施例は最大負荷容量と電圧や周波数の変動率の双方に対して利点を持つ。
【0040】
即ち、まず、原子炉注水ポンプ4の駆動が電動モーター6に切り替わる時には原子炉内の圧力が低下しているためポンプ揚程は低くて良い。また、従来の高圧炉心注水系の低圧時の注入量は高圧時の仕様点とポンプの特性から大きな流量になってしまうが、本実施例の原子炉圧力容器への注水系では安全要求による流量に最適化でき高圧炉心注水系より小さな流量でよい。この結果、電動モーター6の駆動による原子炉注水ポンプ4の特性は図4の太線部のようになり、原子炉注水ポンプ4を駆動するのに必要な動力は従来の高圧炉心注水ポンプよりも小さくなる。このようにモーター駆動によるポンプの注水特性が変化することで生じる発電機負荷の変化を図5,図6を用いて説明する。従来の高圧炉心注水ポンプを用いる場合には図5中の高圧炉心注水ポンプの駆動に必要な負荷A(W)とその他の同時起動する機器の積算負荷B(W)を加えたものが最大発電機負荷として発電機容量決定の大きな要素となっていた。これに対し、本発明では前述したように原子炉注水ポンプを電動モーターで駆動するのに必要な動力が従来の高圧炉心注水ポンプに比べて小さくなっているため、図7に示すように原子炉注水ポンプは原子炉注水ポンプと比較して負荷低減(α(W))が可能となる。同時起動するその他の機器は変化する要因は小さいのでB(W)のままとすると、合計発電機負荷はA+B−α(W)となり、原子炉注水ポンプの駆動力が小さくなったことによる負荷低減が可能となる。
【0041】
次に電圧や周波数の変動率については、次のような効果がある。従来の高圧炉心注水系の電動モーターでの原子炉注水ポンプの起動は事故発生直後であるため急速な起動が要求され、従来の電動モーターや原子炉注水ポンプの大きな初動負荷がディーゼル発電機35に加わり、図7の点線のように電圧や周波数の変動率が大きくなってしまう。一方、本実施例の注水系では、事故発生からある程度の時間蒸気タービン5により原子炉注水ポンプ4を駆動し炉心2側への注水を行った後に電動モーター6での駆動に切り替わるため、事故発生直後よりも電動モーター6の起動時間に対する制限が厳しくなく、電動モーター6や原子炉注水ポンプ4の初動負荷を小さく抑えることができ、図8の実線のように電圧や周波数の変動率も小さく抑えることができる。
【0042】
このようにディーゼル発電機35の容量決定の際に特に重要となる、同時に必要となる最大負荷容量と大きな負荷を投入した際の電圧や周波数の変動率の双方を小さく抑えることが可能となり非常用のディーゼル発電機35の容量を低減することが可能になる。
【0043】
又、原子炉注水ポンプ4や蒸気タービン5,電動モーター6の種類によっては蒸気タービン5で原子炉注水ポンプ4を駆動する際には電動モーター6が、電動モーター6で原子炉注水ポンプ4を駆動する際には蒸気タービン5が、それぞれ駆動源としてではなく回転してしまうと慣性負荷が生じてしまい、効率が落ちてしまう。
【0044】
そこで、図8のように電動モーター6,蒸気タービン5,原子炉注水ポンプ4の順番で並んでいるような場合には、電動モーター6と蒸気タービン5の間にクラッチで代表されるような連軸機30を設置し、蒸気タービン5で原子炉注水ポンプ4を駆動する際には連軸機30をはずして電動モーター6の慣性負荷が蒸気タービン5にかからないようにし、電動モーター6駆動に切り替わる際に連軸機30をつないで原子炉注水ポンプ4を駆動する。
【0045】
また、図9のように蒸気タービン5,電動モーター6,原子炉注水ポンプ4を並べる場合には、蒸気タービン5と電動モーター6の間に連軸機30を設置し、電動モーター6で原子炉注水ポンプ4を駆動する際には連軸機30をはずして蒸気タービン5の慣性負荷が電動モーター6にかからないようにし、蒸気タービン5で駆動する際には連軸機30をつないで原子炉注水ポンプ4を駆動する。
【0046】
図10のように電動モーター6,原子炉注水ポンプ4,蒸気タービン5を並べる場合に、電動モーター6と原子炉注水ポンプ4の間に連軸機30を設置し、蒸気タービン5で原子炉注水ポンプ4を駆動する際には連軸機30をはずして電動モーター6の慣性負荷が蒸気タービン5にかからないようにし、電動モーター6での駆動の際には連軸機30をつないで原子炉注水ポンプ4を駆動する。
【0047】
図11のように電動モーター6,原子炉注水ポンプ4,蒸気タービン5を並べる場合に、蒸気タービン5と原子炉注水ポンプ4の間に連軸機30を設置し、電動モーター6で原子炉注水ポンプ4を駆動する際には連軸機30をはずして蒸気タービン5の慣性負荷が電動モーター6にかからないようにし、蒸気タービン5での駆動の際には連軸機30をつないで原子炉注水ポンプ4を駆動する。
【0048】
図12のように電動モーター6,原子炉注水ポンプ4,蒸気タービン5を並べた際に、電動モーター6と原子炉注水ポンプ4,蒸気タービン5と原子炉注水ポンプ4のそれぞれの間に連軸機30を設置する。蒸気タービン5を用いて原子炉注水ポンプ4を駆動する際には、電動モーター6と原子炉注水ポンプ4の間の連軸機30をはずして蒸気タービン5と原子炉注水ポンプ4の間の連軸機30を接続することで、電動モーター6の慣性負荷が蒸気タービン5にかからないようにすることができる。一方、電動モーター6を用いて原子炉注水ポンプ4を駆動する際には、蒸気タービン5と原子炉注水ポンプ4の間の連軸機30をはずして電動モーター6と原子炉注水ポンプ4の間の連軸機30を接続することで、蒸気タービン5の慣性負荷が電動モーター6にかからないようにすることができる。
【0049】
制御装置37による電動モーター6の起動についてのインターロックの具体的条件を述べれば、以下のとおりである。即ち、インターロックに用いる信号の一例としては、原子炉圧力低信号として従来プラントで原子炉隔離時冷却系タービンの作動下限圧力として設定されている1.03MPa[gage] 、原子炉水位低の信号として従来プラントにおいて非常用炉心冷却系の起動などに用いられる信号であるL2やL1.5 が考えられる。これらの信号がともに出ているときには蒸気タービン5では原子炉注水ポンプ4の駆動に必要な動力(圧力)が得られない可能性があり、かつ安全上要求される原子炉圧力容器1内の水位(炉心2を確実に冠水させることを担保する水位)が維持されていないことを示すため電動モーター6を起動して原子炉圧力容器1内へ注水を行う必要がある。
【0050】
一方、原子炉圧力が上述した1.03MPa[gage] よりも高い時には蒸気タービン5による注水が可能であるため電動モーター6の起動は必要なく、また、原子炉水位が低水位の信号を出していなければ水位低下は発生しておらず注水の必要はない。よって、原子炉圧力低と原子炉水位低の2つの信号を合わせて電動モーター6の起動条件とすることで、必要な場合のみ電動モーター6を起動することになり効率がよい。
【0051】
さらに、連軸機30の接続・分離に関しても、自動的に行おうとするならば、その連軸機30の接続・分離を司る駆動機構への指令信号として前述のインターロックの信号が利用できる。例えば、電動モーター6の起動条件と同じ条件で電動モーター6と原子炉注水ポンプ4との間の連軸機30の接続を行い、そうでない場合には、電動モーター6と原子炉注水ポンプ4との間の連軸機30の分離を行う、ようにすればよい。
【0052】
又、連軸機30の接続・分離の制御は、蒸気入口弁38を開く指令信号が制御装置37から出たことを条件に電動モーター6と原子炉注水ポンプ4との間の連軸機30の分離を行い、蒸気タービン5と原子炉注水ポンプ4との間の連軸機30の接続を行い、電動モーター6を起動する指令信号が制御装置37から出たことを条件に電動モーター6と原子炉注水ポンプ4との間の連軸機30の接続を行い、蒸気タービン5と原子炉注水ポンプ4との間の連軸機30の分離を行う、ように組んだ制御回路を制御装置37と連軸機30の接続・分離を司る駆動機構との間に装備して実施しても良い。
【0053】
当然ながら、連軸機30や蒸気タービン5や電動モーター6の制御については手動で行うように構成されていても良い。
【0054】
【発明の効果】
本発明によれば、原子炉圧力容器への原子炉注水ポンプの駆動源を二重に確保することで、より確実に非常時の原子炉注水系を駆動することができるようになり、安全性を高めることが可能となる。
【0055】
また、非常時の原子炉注水系の系統数削減による機器の削減が可能になる。
【0056】
更には、非常時の電力消費量を減らすことが可能であるから、非常時の原子炉注水系の電動モーターに給電するための非常用の電源設備の容量を小さくすることができ、機器の削減による効果と合わせて経済性の向上につながる。
【図面の簡単な説明】
【図1】本発明の実施例による原子炉注水系統の系統図である。
【図2】従来の原子炉隔離時冷却系の原子炉圧力−流量の関係を示す概念図である。
【図3】従来の高圧炉心注水系の原子炉圧力−流量の関係を示す概念図である。
【図4】本発明の実施例による原子炉注水系による原子炉圧力−流量の関係を示す概念図である。
【図5】従来の高圧炉心注水系を用いた場合の発電機負荷の事故後の経過時間との関係を示す概念図である。
【図6】本発明の実施例による原子炉注水系を用いた場合の発電機負荷の事故後の経過時間との関係を示す概念図である。
【図7】本発明の実施例による原子炉注水系の電動モーターの回転数の変化と発電機負荷の時間経過における関係を示す概念図である。
【図8】本発明の実施例における連軸機の装備配置例を示した図である。
【図9】本発明の実施例における連軸機の他の装備配置例を示した図である。
【図10】本発明の実施例における連軸機の一層他の装備配置例を示した図である。
【図11】本発明の実施例における連軸機の更に他の装備配置例を示した図である。
【図12】本発明の実施例における連軸機の一層更に他の装備配置例を示した図である。
【符号の説明】
1…原子炉圧力容器、2…炉心、3…原子炉格納容器、4…原子炉注水ポンプ、5…蒸気タービン、6…電動モーター、7…サプレッションプール、8…復水貯蔵タンク、9…注水ポンプ吸込配管、10…注水ポンプ吐出配管、11…蒸気タービン吸気配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a reactor water injection facility, and in particular, an electric motor powered by a steam turbine driven by steam in a reactor pressure vessel and a power supply facility capable of power supply in an emergency as a drive pump for a water injection pump to the reactor. It relates to a reactor water injection facility characterized by having
[0002]
[Prior art]
The nuclear plant nuclear reactor isolation cooling system injects water into the reactor pressure vessel when the pressure in the reactor pressure vessel is high. In the case of a boiling water nuclear power generation (BWR) plant, a reactor water injection facility that performs the water injection uses a reactor isolation cooling system (RCIC) and a high pressure core water injection system (HPCF) at the same time (for example, Patent Document 1).
[0003]
In the reactor isolation cooling system, a part of the steam generated in the reactor pressure vessel is introduced into the steam turbine via a pipe to drive the steam turbine, and the reactor isolation cooling pump is started by the steam turbine. To do. When the reactor isolation cooling pump is activated, the cooling water in the condensate storage tank and the suppression pool is pumped into the reactor pressure vessel through the piping and injected.
[0004]
The high pressure core water injection system (HPCF) uses a pump driven by an electric motor. The high pressure core water injection pump is driven by the electric motor, and the cooling water in the condensate storage tank and the suppression pool is supplied to the reactor pressure through the pipe. Water is being poured into the container.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-253492 (page 4, item 0013, FIG. 1)
[0006]
[Problems to be solved by the invention]
In nuclear power plants, safety is a priority issue. On the other hand, it is necessary as a real problem to have a certain degree of economy while ensuring safety. Therefore, the development of equipment that achieves both safety and economy is always an issue. Under such circumstances, the problem to be solved by the present invention relates to equipment having a function of pouring water into the reactor pressure vessel when the pressure in the reactor pressure vessel is high.
[0007]
In conventional nuclear power plants, the reactor isolation cooling system cannot obtain sufficient power from the steam turbine to drive the reactor isolation cooling pump when the pressure in the reactor pressure vessel is low. Water can be injected only while the pressure vessel is at a high pressure (the area shown by the oblique lines in FIG. 2). On the other hand, the high-pressure core water injection system is an electric power whose driving force is irrelevant to the pressure drop in the reactor pressure vessel, so water can be injected even when the steam pressure in the reactor pressure vessel is low (Characteristic of curve in Fig. 3) Water).
[0008]
Since both the reactor isolation cooling system and the high-pressure core water injection system are facilities that can inject water into the core at high pressure, if these two systems can be integrated, the system can be reduced and the required equipment is reduced. Therefore, it leads to economic improvement.
[0009]
However, there are the following problems to integrate these two systems into either one as they are. As described above, the reactor isolation cooling system cannot replace the high pressure core injection system because it cannot perform core injection at low pressure. On the other hand, substituting the cooling system for reactor isolation with a high-pressure core water injection system does not cause a significant problem in terms of function, but does not contribute significantly to the economy for the following reasons.
[0010]
That is, in a conventional nuclear power plant, the water injection pump of the high pressure core water injection system is supplied with power from an emergency diesel generator, and during the time when the load on the emergency diesel generator is most concentrated immediately after the accident occurs. Must start. Furthermore, the high pressure core water injection system requires a high head to inject water into the high pressure reactor pressure vessel, and to maintain the core in the reactor pressure vessel in a submerged state, that is, to maintain the core flood. A certain amount of flow must be secured. Therefore, the driving force is very large.
[0011]
For this reason, integrating the core water injection function at high pressure into the high pressure core water injection system that is powered and driven by the emergency diesel generator does not reduce the generator load, and the economic effect of the integration is small.
[0012]
Accordingly, an object of the present invention is to increase the economic effect in terms of reducing the load on the generator when integrating two water injection facilities for injecting water into the core when the pressure in the reactor pressure vessel is high. It is to be.
[0013]
[Means for Solving the Problems]
The basic means of the present invention is to provide a multiplicity by using two facilities, a steam turbine and an electric motor, as the driving source of the reactor water injection pump in order to enhance safety, and the core water injection facility in an emergency. It was made to be able to start more reliably.
[0014]
As a result, even if the conventional reactor isolation cooling system and the high-pressure core water injection system are integrated, the drive source of the reactor water injection pump is multiplicity, leading to equipment reduction while ensuring safety, and the multiple Therefore, the burden on the driving force of the electric motor is reduced, and the capacity of the emergency generator used to supply power to the electric motor can be reduced, so that the economy is improved.
[0015]
Preferably, in addition to the basic means, if the pressure inside the reactor pressure vessel immediately after the accident is high, the reactor water injection pump is activated by a steam turbine, and the pressure in the reactor pressure vessel decreases. When the steam turbine could not be driven, it was necessary to switch to driving by an electric motor fed from an emergency generator.
[0016]
As a result, the conventional reactor isolation cooling system and the high-pressure core water injection system are integrated to reduce equipment, and the capacity of the emergency generator used for power supply to the electric motor can be reduced, thereby improving the economic efficiency.
[0017]
Furthermore, when the reactor water injection pump is driven by either a steam turbine or an electric motor, the rotation of unused equipment becomes a load for the drive source. I was able to get rid of.
[0018]
Further, by providing an interlock related to the activation of the electric motor, the atomic water injection pump may be driven by the electric motor only when necessary at low pressure.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The core 2 loaded with nuclear fuel is submerged in the cooling water in the reactor pressure vessel 1. Cooling water in the reactor pressure vessel 1 is circulated through the core 2 by a main circulation pump (not shown). The cooling water is heated in the reactor core 2 during the circulation, and becomes high-temperature and high-pressure steam in the reactor pressure vessel 1.
[0020]
The steam is supplied to the generator driving steam turbine for driving the generator through the main steam pipe 31, and is used to drive the generator driving steam turbine. The steam thus used is condensed, and the condensed water is returned to the reactor pressure vessel 1 through the water supply pipe 32 and is circulated to the reactor core 2 again.
[0021]
The reactor pressure vessel 1 is stored and deployed in an airtight manner in the reactor containment vessel 3. The reactor containment vessel 3 is equipped with a suppression pool 7 in which cooling water is stored. In addition, a condensate storage tank 8 in which cooling water is stored is disposed outside the reactor containment vessel 3.
[0022]
One end of a water injection pump suction pipe 9 is connected to the suction port of the nuclear reactor water injection pump 4, and the other end of the water injection pump suction pipe 9 is opened to the water in the suppression pool 7. One end of the condensate suction pipe 33 is connected in the middle of the water injection pump suction pipe 9, and the other end is arranged to open into the water of the condensate storage tank 8.
[0023]
On the other hand, one end of a water injection pump discharge pipe 10 is connected to the discharge port of the reactor water injection pump 4, and the other end of the water injection pump discharge pipe 10 is connected to the reactor pressure vessel 1. Communicate.
[0024]
A steam turbine 5 that applies high-pressure steam to turbine blades to rotationally drive the turbine shaft is employed as a drive device for the reactor water injection pump 4. One end of a steam turbine intake pipe 11 is connected to the steam inlet of the steam turbine 5 for receiving steam hitting the turbine blades, and the other end is connected to the reactor pressure vessel 1 to communicate with the inside of the reactor pressure vessel 1. ing. One end of a steam turbine exhaust pipe 34 is connected to the steam outlet of the steam turbine 5 that discharges used steam used for rotating the turbine in the steam turbine 5, and the other end is the water surface of the suppression pool 7. It is deployed in communication upward.
[0025]
An electric motor 6 that receives electric power to rotationally drive the motor rotating shaft is employed as another driving device for the reactor water injection pump 4. As an emergency power supply facility for supplying electric power to the electric motor 6, a diesel generator 35 is employed. A power transmission line of electric power generated by the diesel generator 35 is connected to a power receiving unit of the electric motor 6, and the electric motor 6 is rotationally driven by the electric power. The diesel generator 35 is normally kept in a stand-by state, and is activated when the nuclear power plant is abnormal or an accident such as the occurrence of a nuclear reactor isolation event, and exhibits a power generation function.
[0026]
The end of the pump shaft of the reactor water injection pump 4 is extended to both sides of the pump casing, the motor rotation shaft of the electric motor 6 is connected to one end of the pump shaft, and the steam turbine 5 is connected to the other end. Turbine shaft is connected.
[0027]
The nuclear power plant is equipped with an instrumentation device 36 that detects the pressure and temperature in the reactor pressure vessel 1, the coolant level, and the pressure in the reactor containment vessel 3. As the pressure in the reactor containment vessel 3, the pressure in the dry well is detected. Each detection signal based on these detections is input from the instrumentation device 36 to the control device 37 through a communication line. The control device 37 includes a detection signal indicating that the detected pressure of the pressure in the reactor containment vessel 3 is higher than a preset pressure, or a detection indicating that the water level in the reactor pressure vessel 1 is a preset low water level. When the signal and the detection signal indicating the pressure within the range in which the pressure in the reactor pressure vessel 1 can drive the steam turbine 5 are simultaneously input to the control device 37, the electric steam provided in the middle of the steam turbine intake pipe 11 A control circuit is assembled and housed with the electric drive of the steam inlet valve 38 so as to open the inlet valve 38 and close the steam inlet valve 38 otherwise. Further, the control device 37 receives the electric motor 6 when a detection signal indicating that the pressure in the reactor pressure vessel 1 is low and a detection signal indicating the low water level are input to the control device 37. In addition, a control circuit is assembled with the control device 37 of the electric motor 6 so as to start the electric motor 6 by supplying electric power from the diesel generator 35.
[0028]
In such a nuclear power plant equipped with a water injection system, the steam inlet valve 38 is closed during operation of the normal nuclear power plant, so that the steam in the reactor pressure vessel 1 flows into the main steam pipe 31. Is used for power generation, and steam is not supplied to the steam turbine intake pipe 11 side. However, when a reactor isolation event that is assumed to be caused by the main steam pipe 31 breaking is caused, high-temperature high-pressure steam leaks from the breakage opening into the reactor containment vessel 3, and the reactor containment vessel 3 The internal pressure becomes higher than a preset pressure and is detected by the instrumentation device 36. The detection signal is transmitted to the control device 37, and the control device 37 receiving the detection signal issues a command to open the valve to the electric drive device of the steam inlet valve 38, and the steam inlet valve 38 is opened. If the amount of high-temperature and high-pressure steam leaking into the reactor containment vessel 3 is large, the water level in the reactor pressure vessel 1 is lowered and a low water level detection signal is output from the instrumentation device 36. If the detection signal indicating the pressure within the range required for driving the steam turbine is output from the instrumentation device 36, the control device 37 also instructs the electric drive device of the steam inlet valve 38 to open the valve. And the steam inlet valve 38 is opened.
[0029]
In such a state, the high-temperature high-pressure steam in the reactor pressure vessel 1 enters the steam turbine 24 through the steam turbine intake pipe 11 and the turbine shaft starts to rotate. As the turbine shaft of the steam turbine 24 rotates, the pump shaft of the reactor water injection pump 4 also rotates, and the reactor water injection pump 4 sucks cooling water from the condensate storage tank 8 and the suppression pool 7 through the water injection pump suction pipe 9. The cooling water is poured into the reactor pressure vessel 1.
[0030]
By this water injection operation, the state in which the core 2 is submerged below the cooling water level in the reactor pressure vessel 1 and cooled can be maintained. While the water injection continues, steam and pressure are discharged from the reactor pressure vessel 1 into the reactor containment vessel 3, and the pressure in the reactor pressure vessel 1 is reduced. Due to the decrease in pressure, the steam inlet pressure of the steam turbine 5 decreases, the driving force of the reactor water injection pump 4 by the steam turbine 5 decreases, and the cooling water in the reactor pressure vessel 1 becomes steam to the reactor. Compared to the amount leaking into the containment vessel 3, the amount of water injected into the reactor pressure vessel 1 is reduced. If it becomes like this, the water level of the cooling water in a reactor pressure vessel will fall, and the instrumentation apparatus 36 will emit the detection signal of a low water level.
[0031]
Therefore, both low pressure and low water level detection signals in the reactor pressure vessel 1 are generated from the instrumentation device 36 and input to the control device 37. Upon receiving both detection signals, the control device 37 issues a start command signal to the electric motor 6, and the electric power generated by the diesel generator 35 is supplied to the electric motor 6 to drive the electric motor 6. Immediately after the accident, the diesel generator 35 has already been activated.
[0032]
When the electric motor 6 is driven, the electric motor 6 drives the reactor water injection pump 4 following the steam turbine 5. Therefore, the reactor water injection pump 4 subsequently injects the cooling water in the suppression pool 7 and the cooling water in the condensate storage tank 8 into the reactor pressure vessel 1 through the water injection pump discharge pipe 10. When the water level in the reactor pressure vessel 1 rises due to the water injection and the low water level detection signal is not detected, the instrumentation device 36 does not transmit the low water level detection signal to the control device 37. 37 cancels the start command signal to the electric motor 6 and issues a stop command signal to the electric motor 6. Therefore, the water injection action by the reactor water injection pump 4 is stopped. However, when the water level in the reactor pressure vessel 1 drops again and a low water level detection signal is detected, the instrumentation device 36 transmits a low water level detection signal to the control device 37, so the reactor pressure Both low pressure and low water level detection signals in the container 1 are input from the instrumentation device 36 to the control device 37. Upon receiving both detection signals, the control device 37 issues a start command signal to the electric motor 6, and the electric power generated by the diesel generator 35 is supplied to the electric motor 6 to drive the electric motor 6. Therefore, the water injection action into the reactor pressure vessel 1 by the reactor water injection pump 4 is started again.
[0033]
As described above, in this embodiment, the water injection operation is performed while changing the flow rate of water injection with the change of the pressure in the reactor pressure vessel on the thin solid line in FIG. 4 by driving the reactor water injection pump 4 by the steam turbine 5. After the electric motor 6 is driven, the water injection operation is performed by the reactor water injection pump 4 as shown by the thick solid curve in FIG. For this reason, the load on the electric motor 6 is small compared with the conventional method in which the reactor water injection pump is driven by the electric motor and water is injected from the time when the pressure in the nuclear pressure vessel is high immediately after a leakage accident due to piping breakage or the like.
[0034]
Therefore, compared with the conventional example in which the electric motor is driven immediately after the accident shown in FIG. 5, the power load can be kept low immediately after the accident as shown in FIG. For this reason, there is a margin that can sufficiently cope with other power loads required at many locations in the nuclear power plant immediately after the accident. In addition, since the driving source of the reactor water injection pump 4 is switched from the steam turbine 5 to the electric motor 6 to continuously inject water into the reactor pressure vessel, it is economical to ensure safety by water injection and reduce power load after the accident. Effect. Moreover, the load on the diesel generator 35 is also reduced as shown in FIG.
[0035]
As in this embodiment, the initial steam turbine 5 is used for normal driving of the reactor water injection pump 4 in the event of an accident. However, when an abnormality occurs in the system necessary for driving the steam turbine 5, the electric motor 6 is used as a driving device for the reactor water injection pump 4 from the beginning after the accident. In order to cope with such an abnormal situation, the control device 37 is also equipped with a circuit for manually giving a command signal for starting the diesel generator 35 and the electric motor 6 to the diesel generator 35 and the electric motor 6. . By doing so, water injection into the reactor pressure vessel 1 can be performed more reliably, and reliability is improved even when used as part of an emergency core cooling system.
[0036]
In this embodiment, under the condition of water injection into the reactor pressure vessel, the inlet pressure of the steam turbine 5, that is, the pressure in the reactor pressure vessel is within the turbine driveable range, that is, the set pressure or higher that can drive the steam turbine 5, The steam inlet valve 38 of the steam turbine 5 is opened, and the reactor water injection pump 4 is driven by the steam turbine 5. When the inlet pressure of the steam turbine 5 is out of the turbine driveable range, that is, less than the set pressure at which the steam turbine 5 can be driven, the steam inlet valve 38 of the steam turbine 5 is closed and the power source equipment from the diesel generator 35 to the electric motor 6 is closed. Is started, and the reactor water injection pump 4 is driven. The set pressure may be set in advance as a pressure to the steam turbine 5 that can obtain the driving force depending on how much driving force the reactor water injection pump 4 is driven.
[0037]
In this way, by switching the drive source of the reactor water injection pump 4 according to the inlet pressure of the steam turbine 5, the reactor pressure vessel 1 has a high pressure in the event of water injection into the reactor pressure vessel 1. In this case, water in the reactor pressure vessel 1 can be injected using the steam in the reactor pressure vessel 1, and even if the pressure in the reactor pressure vessel 1 drops and the steam turbine 5 cannot be driven, the atom The driving source of the reactor water injection pump 4 is switched to the power supply from the diesel generator 35 of the power supply facility that can supply power in an emergency, and further water injection is possible.
[0038]
That is, by switching the driving source of the reactor water injection pump 4, water injection necessary for maintaining the reactor core 2 in the submerged state can be made possible in any case from the high pressure to the low pressure in the reactor pressure vessel 1. As a result, it is possible to reduce the number of systems and the equipment such as pumps and piping associated therewith, and it is expected to improve economy and convenience of equipment arrangement.
[0039]
In this embodiment, it is also possible to reduce the capacity of a power supply facility that can supply power in an emergency such as a diesel generator 35. The capacity of the diesel generator 35 at the time of emergency is determined in consideration of the maximum load capacity required at the same time and the fluctuation rate of the voltage and frequency when a large load is applied. In this embodiment, the maximum load capacity and voltage It has an advantage for both the frequency variation rate.
[0040]
That is, first, when the drive of the reactor water injection pump 4 is switched to the electric motor 6, the pump head may be low because the pressure in the reactor is reduced. In addition, the injection amount at low pressure of the conventional high pressure core water injection system becomes a large flow rate due to the specification point at high pressure and the characteristics of the pump, but in the water injection system to the reactor pressure vessel of this embodiment, the flow rate due to safety requirements The flow rate is smaller than that of the high-pressure core water injection system. As a result, the characteristics of the reactor water injection pump 4 driven by the electric motor 6 are as shown by the thick line portion in FIG. 4, and the power required to drive the reactor water injection pump 4 is smaller than that of the conventional high pressure core water injection pump. Become. The change in the generator load caused by the change in the water injection characteristics of the pump driven by the motor will be described with reference to FIGS. When a conventional high-pressure core water injection pump is used, the maximum power generation is obtained by adding the load A (W) required for driving the high-pressure core water injection pump in FIG. 5 and the integrated load B (W) of other simultaneously activated devices. It was a big factor in determining the generator capacity as the machine load. In contrast, in the present invention, as described above, the power necessary for driving the reactor water injection pump with the electric motor is smaller than that of the conventional high pressure core water injection pump. Therefore, as shown in FIG. The water injection pump can reduce the load (α (W)) compared to the reactor water injection pump. Other devices that start up at the same time have little change, so if B (W) is left as it is, the total generator load will be A + B-α (W), and the load will be reduced by reducing the driving force of the reactor water injection pump. Is possible.
[0041]
Next, there are the following effects on the fluctuation rate of voltage and frequency. The start-up of the reactor water injection pump with the conventional high-pressure core water injection electric motor is immediately after the occurrence of the accident, so rapid start-up is required. The large initial load of the conventional electric motor and reactor water injection pump is applied to the diesel generator 35. In addition, the fluctuation rate of the voltage and frequency becomes large as indicated by the dotted line in FIG. On the other hand, in the water injection system of the present embodiment, since the reactor water injection pump 4 is driven by the steam turbine 5 for a certain period of time from the occurrence of the accident and water is injected into the core 2 side, the operation is switched to the drive by the electric motor 6. The start-up time of the electric motor 6 is less severe than immediately after that, and the initial load of the electric motor 6 and the reactor water injection pump 4 can be kept small, and the fluctuation rate of voltage and frequency can be kept small as shown by the solid line in FIG. be able to.
[0042]
As described above, it is particularly important when determining the capacity of the diesel generator 35. It is possible to keep both the maximum load capacity required at the same time and the fluctuation rate of voltage and frequency when a large load is applied. The capacity of the diesel generator 35 can be reduced.
[0043]
Further, depending on the type of the reactor water injection pump 4, the steam turbine 5, and the electric motor 6, when the reactor water injection pump 4 is driven by the steam turbine 5, the electric motor 6 drives the reactor water injection pump 4 by the electric motor 6. In doing so, if the steam turbine 5 rotates rather than as a drive source, an inertial load is generated and efficiency is lowered.
[0044]
Therefore, in the case where the electric motor 6, the steam turbine 5, and the reactor water injection pump 4 are arranged in this order as shown in FIG. 8, a connection represented by a clutch is provided between the electric motor 6 and the steam turbine 5. When the shaft machine 30 is installed and the reactor water injection pump 4 is driven by the steam turbine 5, the linkage machine 30 is removed so that the inertia load of the electric motor 6 is not applied to the steam turbine 5, and the electric motor 6 is switched to drive. At this time, the reactor water injection pump 4 is driven by connecting the linkage 30.
[0045]
Further, when the steam turbine 5, the electric motor 6, and the reactor water injection pump 4 are arranged as shown in FIG. 9, the shaft 30 is installed between the steam turbine 5 and the electric motor 6, and the reactor is operated by the electric motor 6. When the water injection pump 4 is driven, the shaft 30 is removed so that the inertial load of the steam turbine 5 is not applied to the electric motor 6, and when the steam turbine 5 is driven, the shaft 30 is connected to the reactor for water injection. The pump 4 is driven.
[0046]
When the electric motor 6, the reactor water injection pump 4, and the steam turbine 5 are arranged as shown in FIG. 10, the linkage machine 30 is installed between the electric motor 6 and the reactor water injection pump 4. When the pump 4 is driven, the shaft 30 is removed so that the inertial load of the electric motor 6 is not applied to the steam turbine 5, and when the electric motor 6 is driven, the shaft 30 is connected to the reactor for water injection. The pump 4 is driven.
[0047]
When the electric motor 6, the reactor water injection pump 4, and the steam turbine 5 are arranged as shown in FIG. 11, the linkage machine 30 is installed between the steam turbine 5 and the reactor water injection pump 4, and the reactor water injection is performed by the electric motor 6. When the pump 4 is driven, the linkage 30 is removed so that the inertial load of the steam turbine 5 is not applied to the electric motor 6, and when the steam turbine 5 is driven, the linkage 30 is connected to the reactor for water injection. The pump 4 is driven.
[0048]
When the electric motor 6, the reactor water injection pump 4, and the steam turbine 5 are arranged as shown in FIG. 12, the shaft is connected between the electric motor 6 and the reactor water injection pump 4, the steam turbine 5, and the reactor water injection pump 4. Machine 30 is installed. When driving the reactor water injection pump 4 using the steam turbine 5, the linkage 30 between the electric motor 6 and the reactor water injection pump 4 is removed and the connection between the steam turbine 5 and the reactor water injection pump 4 is performed. By connecting the shaft machine 30, the inertial load of the electric motor 6 can be prevented from being applied to the steam turbine 5. On the other hand, when the reactor water injection pump 4 is driven by using the electric motor 6, the shaft 30 between the steam turbine 5 and the reactor water injection pump 4 is removed to connect the electric motor 6 and the reactor water injection pump 4. Thus, the inertial load of the steam turbine 5 can be prevented from being applied to the electric motor 6.
[0049]
The specific conditions of the interlock for starting the electric motor 6 by the control device 37 are as follows. That is, as an example of a signal used for the interlock, a signal indicating that the reactor water level is low is 1.03 MPa [gage], which is set as the lower limit pressure of the cooling system turbine at the time of isolation in the conventional plant as a low reactor pressure signal. As an example, L2 and L1.5 which are signals used for starting an emergency core cooling system in a conventional plant can be considered. When these signals are output together, the steam turbine 5 may not be able to obtain the power (pressure) required for driving the reactor water injection pump 4, and the water level in the reactor pressure vessel 1 required for safety is required. It is necessary to start the electric motor 6 and inject water into the reactor pressure vessel 1 in order to show that (the water level that ensures that the core 2 is flooded reliably) is not maintained.
[0050]
On the other hand, when the reactor pressure is higher than the above-mentioned 1.03 MPa [gage], water injection by the steam turbine 5 is possible, so that the electric motor 6 does not need to be started, and the reactor water level signal is low. If there is no water level drop, water injection is not necessary. Therefore, by combining the two signals of the low reactor pressure and the low reactor water level as the starting condition of the electric motor 6, the electric motor 6 is started only when necessary, which is efficient.
[0051]
Furthermore, if the automatic connection / disconnection of the linkage 30 is to be performed automatically, the interlock signal described above can be used as a command signal to the drive mechanism that controls the connection / disconnection of the linkage 30. For example, the connecting shaft 30 is connected between the electric motor 6 and the reactor water injection pump 4 under the same conditions as the start-up conditions of the electric motor 6, and if not, the electric motor 6 and the reactor water injection pump 4 What is necessary is just to make it isolate | separate the shaft machine 30 between.
[0052]
The connection / separation of the linkage 30 is controlled on the condition that a command signal for opening the steam inlet valve 38 is output from the control device 37. The linkage 30 between the electric motor 6 and the reactor water injection pump 4 is controlled. Are connected, the shaft 30 is connected between the steam turbine 5 and the reactor water injection pump 4, and the command signal for starting the electric motor 6 is output from the control device 37. The control device 37 includes a control circuit configured to connect the shaft 30 to the reactor water injection pump 4 and to separate the shaft 30 from the steam turbine 5 to the reactor water injection pump 4. And a drive mechanism that controls connection / separation of the linkage 30 may be implemented.
[0053]
Of course, the control of the linkage 30, the steam turbine 5, and the electric motor 6 may be performed manually.
[0054]
【The invention's effect】
According to the present invention, it is possible to more reliably drive an emergency reactor water injection system by ensuring a double drive source of a reactor water injection pump to a reactor pressure vessel. Can be increased.
[0055]
In addition, equipment can be reduced by reducing the number of reactor water injection systems in an emergency.
[0056]
Furthermore, since it is possible to reduce the power consumption in an emergency, the capacity of the emergency power supply facility for supplying power to the electric motor for the water injection system in the emergency can be reduced, and the number of equipment can be reduced. Combined with the effects of, it leads to improved economic efficiency.
[Brief description of the drawings]
FIG. 1 is a system diagram of a reactor water injection system according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram showing a relationship between reactor pressure and flow rate in a conventional reactor isolation cooling system.
FIG. 3 is a conceptual diagram showing a relationship between reactor pressure and flow rate in a conventional high-pressure core water injection system.
FIG. 4 is a conceptual diagram showing a relationship between reactor pressure and flow rate by a reactor water injection system according to an embodiment of the present invention.
FIG. 5 is a conceptual diagram showing a relationship with an elapsed time after an accident of a generator load when a conventional high pressure core water injection system is used.
FIG. 6 is a conceptual diagram showing a relationship with an elapsed time after an accident of a generator load when a reactor water injection system according to an embodiment of the present invention is used.
FIG. 7 is a conceptual diagram showing a relationship between a change in the number of revolutions of an electric motor of a reactor water injection system according to an embodiment of the present invention and a lapse of time of a generator load.
FIG. 8 is a view showing an example of arrangement of equipment of a multi-shaft machine in an embodiment of the present invention.
FIG. 9 is a view showing another example of equipment arrangement of the linkage machine in the embodiment of the present invention.
FIG. 10 is a view showing still another example of equipment arrangement of the linkage machine in the embodiment of the present invention.
FIG. 11 is a view showing still another example of equipment arrangement of the linkage machine in the embodiment of the present invention.
FIG. 12 is a view showing still another example of equipment arrangement of the linkage machine in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Core, 3 ... Reactor containment vessel, 4 ... Reactor water injection pump, 5 ... Steam turbine, 6 ... Electric motor, 7 ... Suppression pool, 8 ... Condensate storage tank, 9 ... Water injection Pump suction pipe, 10 ... water injection pump discharge pipe, 11 ... steam turbine intake pipe.

Claims (5)

原子炉圧力容器内と水源とを連通する配管と、
前記配管を通じて前記水源から前記原子炉圧力容器内へ水を圧送するポンプと、
前記原子炉圧力容器内で発生した蒸気が供給され、前記ポンプを駆動する蒸気タービンと、
電源設備からの電力を受け、前記ポンプを駆動する電動モーターと、
を備えた原子炉注水設備。
Piping connecting the reactor pressure vessel and the water source;
A pump for pumping water from the water source into the reactor pressure vessel through the piping;
A steam turbine that is supplied with steam generated in the reactor pressure vessel and drives the pump;
An electric motor that receives power from a power supply facility and drives the pump;
Reactor water injection equipment equipped with.
請求項1において、前記蒸気タービンに供給される前記蒸気の圧力が、前記蒸気タービンを駆動可能な設定圧力以上であるとき電源設備から前記電動モーターへの給電を遮断し、前記蒸気の圧力が前記設定圧力未満のとき前記電源設備から前記電動モーターへの給電を行う制御手段を備えた原子炉注水設備。In Claim 1, when the pressure of the steam supplied to the steam turbine is equal to or higher than a set pressure capable of driving the steam turbine, power supply from power supply equipment is cut off to the electric motor, and the pressure of the steam is Reactor water injection equipment comprising control means for supplying power from the power supply equipment to the electric motor when the pressure is lower than a set pressure. 請求項2において、前記電動モーターおよび前記蒸気タービンのすくなくとも一方と前記ポンプとを連軸機で連結,離脱自在に接続している原子炉注水設備。3. The reactor water injection facility according to claim 2, wherein at least one of the electric motor and the steam turbine and the pump are connected to and detached from each other by a linkage machine. 請求項3において、原子炉圧力低,原子炉水位低、及び前記蒸気タービンと前記ポンプとが離脱、の条件が成立したとき、前記電源設備から前記電動モーターへの給電を行う制御を成す前記制御手段を備えた原子炉注水設備。4. The control according to claim 3, wherein control is performed to supply power to the electric motor from the power supply facility when the conditions of low reactor pressure, low reactor water level, and separation of the steam turbine and the pump are satisfied. Reactor water injection equipment with means. 請求項3において、原子炉圧力低,原子炉水位低,前記蒸気タービンと前記ポンプとが離脱、及び前記電動モーターと前記ポンプとが連結、の条件が成立したとき、前記電源設備から前記電動モーターへの給電を行う制御を成す前記制御手段を備えた原子炉注水設備。4. The electric motor according to claim 3, wherein the conditions of low reactor pressure, low reactor water level, separation of the steam turbine and the pump, and connection of the electric motor and the pump are satisfied from the power supply facility. Reactor water injection equipment provided with the above-mentioned control means which performs control which supplies electric power to.
JP2003001683A 2003-01-08 2003-01-08 Reactor water injection equipment Expired - Fee Related JP4045431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001683A JP4045431B2 (en) 2003-01-08 2003-01-08 Reactor water injection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001683A JP4045431B2 (en) 2003-01-08 2003-01-08 Reactor water injection equipment

Publications (2)

Publication Number Publication Date
JP2004212307A true JP2004212307A (en) 2004-07-29
JP4045431B2 JP4045431B2 (en) 2008-02-13

Family

ID=32819642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001683A Expired - Fee Related JP4045431B2 (en) 2003-01-08 2003-01-08 Reactor water injection equipment

Country Status (1)

Country Link
JP (1) JP4045431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127459A (en) * 2011-12-19 2013-06-27 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for alternative remote spent fuel pool cooling system for light water reactors
JP2014010114A (en) * 2012-07-02 2014-01-20 Mitsubishi Heavy Ind Ltd Auxiliary cooling device and auxiliary cooling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127459A (en) * 2011-12-19 2013-06-27 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for alternative remote spent fuel pool cooling system for light water reactors
US8958521B2 (en) 2011-12-19 2015-02-17 Ge-Hitachi Nuclear Energy Americas, Llc Method and apparatus for an alternative remote spent fuel pool cooling system for light water reactors
JP2014010114A (en) * 2012-07-02 2014-01-20 Mitsubishi Heavy Ind Ltd Auxiliary cooling device and auxiliary cooling method

Also Published As

Publication number Publication date
JP4045431B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US4818475A (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
CN100414087C (en) Electronic control system for starting oiling of fuel system
US4278500A (en) Pressurized water reactor
JP4045431B2 (en) Reactor water injection equipment
JPH09113669A (en) Reactor water injection facility
JPS62217193A (en) Emergency core cooling device
JP3537219B2 (en) Water hammer prevention device for water supply system
JP2002234497A (en) Generating engine for ship and starting method in power source loss
JP2001349975A (en) Nuclear reactor water injection facility using steam turbine drive pump
JP5670778B2 (en) Water jet compressor
JP2736191B2 (en) Reactor core cooling system
JP3061962B2 (en) Steam turbine lubricating oil system
JPH06186391A (en) Nuclear power plant
JP5102602B2 (en) Pump equipment
JPH1018989A (en) Standing-operation control method for drainage pump
JPH05142381A (en) Recirculation pump system with built-in nuclear reactor
JP2001194489A (en) Reactor water supply system
JPS61169796A (en) Supply device for coolant of boiling water type reactor
CN205153038U (en) Water pipe is with supplying liquid device
JP2685948B2 (en) Water supply and condensate pump controller
JPS5945116B2 (en) Emergency reactor cooling system
JP4234275B2 (en) Pump equipment
JPH063491A (en) Equipment for water feeding for nuclear power plant
JP2012127360A (en) Pump installation
JPH049798A (en) Cooling system at nuclear reactor isolation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4045431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees