JP2004211424A - Base isolation device and construction method of base isolation structure - Google Patents

Base isolation device and construction method of base isolation structure Download PDF

Info

Publication number
JP2004211424A
JP2004211424A JP2003000127A JP2003000127A JP2004211424A JP 2004211424 A JP2004211424 A JP 2004211424A JP 2003000127 A JP2003000127 A JP 2003000127A JP 2003000127 A JP2003000127 A JP 2003000127A JP 2004211424 A JP2004211424 A JP 2004211424A
Authority
JP
Japan
Prior art keywords
concrete
seismic isolation
isolation device
plate
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003000127A
Other languages
Japanese (ja)
Other versions
JP3695715B2 (en
Inventor
Mitsuo Miyazaki
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Design Inc Japan
Original Assignee
Dynamic Design Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Design Inc Japan filed Critical Dynamic Design Inc Japan
Priority to JP2003000127A priority Critical patent/JP3695715B2/en
Publication of JP2004211424A publication Critical patent/JP2004211424A/en
Application granted granted Critical
Publication of JP3695715B2 publication Critical patent/JP3695715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation device and a construction method of a base isolation structure for realizing a high performance and inexpensive small-scale base isolation building in a short construction period. <P>SOLUTION: A reinforced concrete plate-like foundation board is constructed on the ground, and its upper surface is horizontally finished. At this time, a sliding plate is driven in a flush shape in an upper surface of foundation board concrete. The base isolation device fixed to the concrete upper board side and bar arrangement of an upper board are performed on the upper surface, and concrete of the upper board is placed. When rotating an upper part of the base isolation device after hardening the concrete, a base isolation device body is formed as a screw structure, and thereby gradually projects to the foundation board side, and becomes the base isolation structure by pushing up the upper board. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、免震構造物の中でも戸建て住宅などの比較的小規模な免震建物に適切な免震装置および免震構造物の構築方法に関するものである。
【0002】
【従来の技術】
1995年の阪神淡路大震災以降、大地震時における建物の応答加速度を抑制し、容器としての建物のみでなくその内部収容物を含めて、構造物全体を無損傷で守ろうとする免震構造物が増加しつつある。
戸建て住宅や小規模店舗などの小規模な建物を免震構造とする場合、構造物重量が小さいために大型の積層ゴムでは固有周期の伸長ができず、周期を伸ばすためには平面寸法が小さく細高い積層ゴム形状となるが、それでは十分な変形性能を確保できない。
【0003】
この問題を解決する方法として、建物重量をすべり系支承や転がり系支承に支持させ、重量を支持しない積層ゴム系支承(高減衰ゴムや鉛プラグ入り積層ゴムなど)に復元力と減衰を負担させる方法、あるいはすべり面の摩擦を減衰として利用し、すべり面や転がり面を曲面として重力によるポテンシャルエネルギーを復元力に変換する方法などが実用化されている(例えば、特許文献1参照)。
【0004】
上記のとおり、小規模・軽量の構造物を免震構造化する方法は既に幾通りもの方法が開発されているが、現実には小規模の免震建物は殆ど普及していないのが現状である。
【0005】
【特許文献1】
特開2002−98189号公報
【0006】
【発明が解決しようとする課題】
小規模免震建物が普及しない原因は極めて明白である。それは免震構造を採用しない従来の耐震構造建物に比較して、免震建物の建設費用が高くなるためである。無論、大型免震ビルの費用アップに較べればその絶対額は小さいものの、総工事費自体が小額であるため、その増額比率が非常に大きくなり、大型ビルでは通常数%前後と言われる増額比率が、戸建て住宅免震では優に1割は超え、2割以上の増額となっている事例が多い。
【0007】
このコストアップには次の3つの要因がある。即ち、▲1▼通常の設計に較べて高度な構造設計を行うため、設計費用が高くなること。▲2▼免震装置の費用が追加されること。▲3▼免震装置を挟んで基礎が二重になるため、装置上下の基礎構造体に費用がかかることである。
【0008】
上記▲1▼の設計費用を安くする方法としては、従来は日本建築センター評定および建設大臣認定の特別の許認可審査が必要であったが、建築基準法改正により一般の建築確認申請で処理可能になったこと。また、現実の設計費用を下げる方法として、建物や免震システムを標準化して、個々の建物での個別設計自体を省略ないし簡略化する取り組みなどが行われている。
【0009】
上記▲2▼の免震装置費を安くする方法は、個々のメーカーが取り組んでおり、その普及と共に次第に低コスト化が進んでいくものと期待できるが、装置自体の費用のみでなく、その取り付け工事に要する手間と費用の低減も重要な課題である。
【0010】
また免震建物の建設費増額は、通常免震装置にかかる費用が注目されているが、現実には免震装置費用以上に、二重基礎の建設に大きな費用がかかっており、特に小規模建物の場合には免震装置上下の構造体を如何に低コストで建設できるかどうかが、免震建物低コスト化のカギを握っている。
【0011】
小規模免震建物においては、免震装置の下側の基礎構造体は鉄筋コンクリート造、装置上部建物側の基礎構造体は鉄骨造フレームもしくは鉄筋コンクリ−ト造のいずれかで構築することが一般的である。近年、この免震装置の上部基礎構造体を軽量鉄骨フレームによる極めて軽微な構造体として低コスト化を図っている提案が多いが、小規模建物では構造物全体が軽量であり、風による建物振動が問題となりやすい構造物において、免震装置上部の基礎構造体まで過度の軽量化を図ることは、風振動問題をますます助長することになり推奨できない。
【0012】
本発明は、以上の課題を解決するためになされたもので、免震装置の取り付けと二重基礎構造体の建設を、画期的に低コスト化できる免震装置および免震構造物の構築方法を提供するものである。
【0013】
【課題を解決するための手段】
本発明は次の構成を採用する。
〈構成1〉
地盤側基礎の上面に配置されるすべり板と、上部構造物側に固定され、上記すべり板に対して水平方向に相対移動できるすべり部材とを備えた免震装置において、上記すべり部材を、外周面にねじ切りされた円柱状部材により構成し、上記円柱状部材からなるすべり部材の外周に、内周面に上記すべり部材のねじに合致するねじを有する円筒部材をねじ込ませて配設したことを特徴とする免震装置。
【0014】
構造物の重量を支持し地震時には地盤側基礎との間で水平方向に相対移動できるすべり支承型の免震装置である。
前記円柱状部材からなるすべり部材の外周に、前記円筒部材をねじ込ませて配設したことにより、前記すべり部材に対して前記円筒部材を相対的に回転させて両者の相対的位置を軸方向に移動可能とする。この軸方向移動により、前記円筒部材に固定されるコンクリート上盤を所定の高さまで容易に持ち上げることができる。
【0015】
〈構成2〉
構成1に記載の免震装置において、上記すべり部材の端面と上記すべり板との接触部に、個体潤滑材の滑動材料を配したことを特徴とする免震装置。
【0016】
前記個体潤滑材の滑動材料を配したことにより、前記すべり板に対する前記円柱状部材の水平移動および回転等の滑動をスムーズならしめる効果を奏する。
【0017】
〈構成3〉
構成1又は2に記載の免震装置において、上記すべり板又は上記滑動材料とその上部の上記円柱状部材との間に、ゴム層もしくは積層ゴム体の弾性部材を配設したことを特徴とする免震装置。
【0018】
〈構成4〉
構成1に記載の免震装置において、上記すべり板を硬質平鋼板により構成し、上記すべり部材を転がり部材により構成したことを特徴とする免震装置。
【0019】
前記転がり部材としては、主球体を用いる球体転がり支承を採用し、その保持器を前記円柱状部材と一体化して構成することが好ましい。
【0020】
〈構成5〉
地盤側基礎の上面に配置されるすべり板と、上部構造物側に固定され、前記すべり板に対して水平方向に相対移動できるすべり部材とを備えた免震装置において、前記すべり板を、前記地盤側基礎の上面に配置される下部すべり板と、前記上部構造物側の躯体底面の相対面する位置に配置される上部すべり板とから構成し、前記上部すべり板の平面中央部に透孔を設け、前記透孔の上方に、内周面にねじ切りされた円筒部材を、上部すべり板に固定して配設し、前記円筒部材の内部に、前記透孔の口径よりわずかに小さい外径を有する両面すべり部材と、その上部に、前記透孔とほぼ同径の内部すべり板及びそれと一体化され外周面に前記円筒部材のねじに合致するねじを切った円柱状部材とを配設したことを特徴とする免震装置。
【0021】
前記円柱状部材を前記円筒部材に対して回転させることにより、前記両面すべり部材を前記透孔から押し出す。更に前記円柱状部材の端面に配置した透孔径とほぼ同径の内部すべり板を、上部すべり板と同じ位置にまで押し出すことによって前記透孔を塞ぐことができる。
前記すべり部材を、両端面に個体潤滑材の滑動材料を配した両面すべり部材とすることによって、上下のすべり板のすべり寸法を2分の1=面積は4分の1にすることができるので、すべり板を上下2枚にしてもすべり板面積を半減させる効果を奏する。
【0022】
〈構成6〉
請求項5に記載の免震装置において、前記すべり板を硬質平鋼板とし、前記両面すべり部材を、少なくとも3個の同一直径の球体をその相対位置がずれないように保持した一塊りの球体ころがり支承としたことを特徴とする免震装置。
【0023】
前記両面すべり部材に替えて、3個以上の同一直径の球体をその相対位置がずれないように保持した一塊りの球体ころがり支承とすることにより、すべり部材の摩擦係数が通常0.03〜0.15程度に対して、0.001〜0.005と殆ど摩擦抵抗のない良好な滑動効果を奏する。
【0024】
〈構成7〉
構成1ないし6のいずれかに記載の免震装置において、上記円筒部材の下端に、上記円柱状部材の端面に支承される免震部材を包覆する免震部材保護部を設け、上記免震部材保護部上方の上記円筒部材および上記円柱状部材の横断面を、上記免震部材保護部の横断面よりも小さくしたことを特徴とする免震装置。
【0025】
前記免震部材保護部上方の前記円筒部材および前記円柱状部材の横断面を、前記免震部材保護部の横断面よりも小さくすることにより、免震装置をより低コストにすることができる。
【0026】
〈構成8〉
地震時には地盤に対して水平方向に相対移動できる免震構造物の構築方法であり、先ず地盤上にコンクリートを打設し上面を水平に仕上げてなるコンクリート基礎盤を設け、上記コンクリート基礎盤の上面に、すべり板を、その上面が周囲コンクリートと同一面になるように配置し、上記コンクリート基礎盤の硬化後、上記コンクリート基礎盤の上面に接してコンクリートを打設してなるコンクリート上盤を設け、上記コンクリート上盤内に、請求項1乃至6のいずれかに記載の免震装置のすべり部材、並びにそれらと一体になった上部すべり板を配置し、上記コンクリート上盤のコンクリート硬化後に、上記すべり部材の円柱状部材を円筒部材に対して相対回転させることにより、上記すべり部材の円柱状部材を上記コンクリート上盤の下側に突出させて上記コンクリート上盤と上記コンクリート基礎盤との間に所定の鉛直間隙を設けることを特徴とする免震構造物の構築方法。
【0027】
本発明免震装置の円柱状部材を回転させることにより、ねじの効果により円柱状部材が上盤の下に突出し、その反作用により上盤を基礎盤から持ち上げ、建物全平面に渡ってコンクリート基礎盤とコンクリート上盤との間に免震層を構築できる。この免震層は、両コンクリート盤間に僅かの隙間を構成するので、コンクリート上盤の断熱処理に適した空間構成となっている。
前記すべり板は硬質平鋼板を含み、前記すべり部材は球体転がり部材を含んでいる。
【0028】
〈構成9〉
構成8に記載の免震構造物の構築方法において、上記コンクリート基礎盤および上記免震装置により若干の隙間をもって上記コンクリート基礎盤上に支持されたコンクリート上盤を構成し、上記コンクリート上盤の側面周囲に断熱材料を配置し、上記コンクリート基礎盤および上記コンクリート上盤の上下間隙の周囲全周に渡って帯状に上記断熱材料を充填することを特徴とする免震構造物の構築方法。
【0029】
前記コンクリート上盤の下側空間を断熱層として形成することができる。前記断熱材料としては、ロックウール、セラミックファイバー、発泡ウレタン、発泡スチレンその他の発泡材料等が採用される。
【0030】
〈構成10〉
構成9に記載の免震構造物の構築方法において、上記コンクリート基礎盤上に若干の隙間をもって構築され、かつ側面を断熱材で被覆された上記コンクリート上盤内に、ほぼ全平面に渡って1以上の連続する管体を埋設し、上記管体の内部に空気もしくは水の流体を滞留もしくは循環させることを特徴とする免震構造物の構築方法。
【0031】
前記管体の内部に空気もしくは水の流体を滞留もしくは循環させることによって前記コンクリート上盤を蓄熱体ないし冷暖房床として利用可能とすることができる。
【0032】
〈構成11〉
構成9に記載の免震構造物の構築方法において、上記コンクリート基礎盤上に若干の隙間をもって構築され、かつ側面を断熱材で被覆された上記コンクリート上盤に、その平面の少なくとも2側辺に近い位置にそれぞれ1以上の貫通孔を設け、 上記コンクリート基礎盤と上記コンクリート上盤との間の空間に、上記貫通孔より温風もしくは冷風を循環させることを特徴とする免震構造物の構築方法。
【0033】
前記コンクリート基礎盤と前記コンクリート上盤との間の空間に、前記貫通孔より温風もしくは冷風を循環させることにより、コンクリート上盤の温度調節を行い、蓄熱や冷暖房に利用可能とすることができる。
【0034】
〈概要〉
本発明では小規模・軽量の建物に適切な重量を付加し、建物全体に適切な安定を与える鉄筋コンクリート造による免震装置上下の基礎構造体を経済的に構築する。
先ず、本発明では地盤に接する基礎構造体および装置上側の建物側構造体を共に鉄筋コンクリート造で構成する。そして、その構造体の基本形状を共に平板形状とする。これは、現在の我が国では、鉄筋コンクリートの構造体を構築する場合、鉄筋やコンクリートの材料費よりも型枠工事など手間に要する人工費(労賃)に多くのコストがかかるため、できるだけシンプルな構造体形状が望ましいからである。そのため、本発明では装置上下の構造体を共に平板形状とし、以下、装置下側を「コンクリート基礎盤」、上側を「コンクリート上盤」、両者を一括して「両コンクリート盤」と呼ぶことにする。この平板化により、梁型や立上がり腰壁部を有する布基礎などの複雑な型枠形状を排除している。
【0035】
尚、両コンクリート盤のコンクリート量を低減するために、平板形状から荷重や応力の小さい部分に穴を設けたり、あるいは厚さを薄くする場合もあり得るが、これらを含めて両コンクリート盤の形状を平板形状と呼ぶものとする。
【0036】
そして本発明は、この免震装置上下のコンクリート盤を型枠および支保工なしで構築する方法を提供する。コンクリート基礎盤は地盤上に構築するため、底面の型枠は不要であり、コンクリート基礎盤周囲側面の型枠のみでよい。コンクリート基礎盤内の配筋を行い、基礎盤のコンクリートを打設し、その上面を水平に仕上げる。この時、基礎盤の上面に固定される免震装置のすべり板もしくは転がり支承の転動体を受ける硬質平鋼板を予め基礎盤コンクリート上面と同一高さに設置しておき、コンクリート基礎盤上面を突起物のない水平面=面一(ツライチ)に仕上げる。この条件を満足するために、本発明では、建物重量を支える免震装置は、すべり支承もしくは転がり支承を主対象としている。
【0037】
尚、ここですべり板もしくは硬質平鋼板を周囲コンクリート上面と同一平面で仕上げるのは、万一想定以上に強い地震動に遭遇した場合にはすべり支承もしくは転がり支承がすべり板領域を超えてコンクリート上面まで侵入することを許し、その場合でも再び正規のすべり板もしくは硬質平鋼板上に復帰することを可能としたもので、許容変形量を超える変形が発生する予想を超える地震動に対しても安全な免震構造を実現したものである。
【0038】
次に、このコンクリート基礎盤の上面にビニールシート等の薄い膜状シートを敷くか、砂等の粉体を薄く撒き、この上に上盤コンクリート内の配筋を行なう。この時、コンクリート上磐側に配置されるすべり部材や球体転がり部材、あるいは復元力用の積層ゴム固定用部材などを配置する。その後に、上盤のコンクリートを打設する。要するに、コンクリート基礎盤の上面をコンクリート上盤の底面型枠として利用し、上盤の周囲側面型枠のみを配置して、基礎盤上面で直にコンクリート上盤のコンクリートを打設するのである。
【0039】
コンクリート上盤内に埋め込まれた免震装置は、内側の円柱状部材と外側の円筒部材の二重構造になっており、両者の間にねじが切られている。また内部円柱状部材の上面には、円柱状部材を回転させるための溝もしくは穴が設けられている。外側の円筒部材はコンクリ−ト上盤に固定されているので、内部円柱状部材を回転させると円柱状部材の底部がコンクリート上盤から下方に徐々に突出することになり、下側のコンクリート基礎盤を押しつけるジャッキとして作用し、その反力によりコンクリート上盤を持ち上げることができる。
【0040】
一つのコンクリート上盤内にはその重量に応じて複数個の免震装置が配置されているので、回転による上盤の持ち上げは上盤全体がほぼ水平を保つように少しずつジャッキアップするのがよい。コンクリート基礎盤上面に薄いビニールシートや薄い粉体層を設けたのは、このジャッキアップが容易に行えるようにコンクリート基礎盤と上盤との接触面において付着が生じないようにするためである。
【0041】
上盤コンクリートの厚さは通常180mm乃至250mm程度であるので、免震装置の外筒高さもこの上盤厚さに合わせておく。従って、ねじ回転によるジャッキアップ高さ=コンクリート基礎盤と上盤との隙間は、ねじ部のかみ合い部をある程度残せば、10mm〜150mm程度の範囲で任意の高さに設定することができる。
【0042】
免震装置の内部円柱部材を回転させるためには、円柱部材上部の結合用アタッチメントを用意すれば、高力ボルト接合の締め付けに用いる電動トルクレンチなど既存の回転機具を利用することができる。
【0043】
以上の方法により、型枠を殆ど用いず、しかも油圧ジャッキやエアージャッキなど特別の機械等を用いることなく、「変形性能が大きい」=「安全性能が高い」免震構造物を、容易且つ経済的に建設することができる。
【0044】
また、本発明ではコンクリート基礎盤と上盤の間に、建物全平面に渡って高さ50mm前後の薄い隙間が構成される。そこで、この隙間の全周囲を断熱材で隔離し、外部空気の流入を遮断することにより、建物全平面下に断熱性能に優れた空気層を挟んだ極めて断熱性能の良い建物を構築することが可能となる。この隙間周囲の断熱材を配置することにより、免震装置に対する防塵バリアの機能も併せて実現している。
【0045】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明免震装置の基本タイプである、すべり支承型の免震装置であり、(1)は装置の上面を示す平面図、(2)は縦断面図、(3)はすべり部材中央高さから下を見た平面図、(4)は内部円柱状部材を回転させてすべり部材をコンクリート上盤から突出させた状態の断面図である。
【0046】
図1(2)に示すように、コンクリート基礎盤1の上面にすべり板3を打ち込んだ後、その上にすべり部材4を設置し、コンクリート上盤2を形成するためのコンクリートを打設する。上盤コンクリート2の硬化後に、すべり部材4の上端を回転させることにより、図1(4)に示すように円柱状部材4が下方に突出し、コンクリート上盤2を所定の高さまで持ち上げることができる。
【0047】
図2は、すべり部材先端のすべり滑動部材とねじきり円柱状部材の間に積層ゴム体を介在させ、地震入力が弱い場合には積層ゴム体が変形し、すべり摩擦力以上の地震慣性力が作用するとすべりが発生する弾性すべり支承とした構成3の場合である。免震装置の設置方法、回転によるコンクリート上盤の持ち上げ方法は構成1と全く同様である。
【0048】
図3は、構成4の球体転がり支承を示したものである。1個の主球体をねじ切り円柱状部材が保持しており、その円柱状部材と主球体の摩擦を緩和するために小さな補助球体を多数配置しており、この補助球体が循環することにより主球体が円滑に回転できるシステムを採用している。この主球体を保持している円柱状部材の周囲側面に、構成1、2の免震装置と同様のねじ切りを施しており、円柱状部材の回転によりコンクリート上盤の持ち上げを可能にしている。
【0049】
図4は、構成5に示す上下両面にすべり面を設けたダブル(両面)すべり型免震装置である。上下両面にすべり面を構成するために、コンクリート基礎盤側だけでなく、コンクリート上盤側にもすべり板を設ける必要がある。そのために、図4(2)に示すように、上盤側の上部すべり板の中央部に穴をあけておき、その穴の上部に両面すべり部材、その上に上盤側の内部すべり板とそれと一体化されたねじ切り円柱状部材を配置する。上盤コンクリートの打設完了後に円柱状部材を回転させて両面すべり部材を押し出す。この押し出し高さは、すべり材上部の穴にほぼ等しい直径の内部すべり板が周囲の上盤側の上部すべり板と同一高さになるように保持する必要がある。これは穴部分の内部すべり板の周囲を図4(4)に示すように階段型にかみ合わせることで位置を決定できる。両すべり板の境界部は、沓動時にすべり材がエッジでこすれないようにコーナーの面とりを行っておく。
【0050】
図5は、両面すべり支承に替えて少なくとも3個以上の複数個の同一直径の球体転がり支承を採用する構成6の場合である。装置の配置、回転によるコンクリート上盤の持ち上げ方法は構成5の免震装置と同じである。球体転がり支承を採用することで水平方向の摩擦抵抗を殆どゼロにすることができるので、すべり支承との組み合わせにより建物全体の水平抵抗力を任意の値に調節できる。
【0051】
図6は構成8に示す構築方法の要点を示したものであり、以上の全ての免震装置の場合において、コンクリート基礎盤、免震装置、コンクリート上盤の位置関係と円柱状部材の回転によるコンクリート上盤の持ち上げ後の状態をより明確に示したものである。コンクリート基礎盤の上面には上盤コンクリートの付着を切るために、図6(2)に示すようにビニールシートや薄い砂層などを施す。また図6(4)には、コンクリート上盤端部において、側面に断熱材を配置し、またコンクリート基礎盤と上盤との隙間の周囲にも断熱材を充填し、コンクリート上盤側を外断熱工法で熱的に保護する構成9の構築方法を示している。
【0052】
図7は、構成1ないし6に示した免震装置をより低コストにするために、円柱状部材断面を先端に取り付けている免震装置の平面よりも小さくする構成7の免震装置を例示したものである。図7は構成1のすべり型免震装置を示しているが、構成2〜6の他の装置も全て先端免震部材の保護部内に収容しておくことで同様の構成とすることができる。
【0053】
図8(1)は、免震構造住宅における免震基礎の全体断面構成、図8(2)は、免震装置の全体配置図の一例を示したものである。本例では、構成1のすべり型免震装置9体で建物全重量を支持し、復元力には建物重量を支持しない小型積層ゴム4体を採用した例である。
【0054】
図9は、コンクリート基礎盤およびコンクリート上盤をより経済的に建設するために、建物重量を支持しないコンクリート部分に穴を設けるかもしくはコンリート盤厚さを低減する場合を例示したものである。
【0055】
図10、図11は、復元用装置として小型積層ゴムをコンクリート基礎盤および上盤間に取り付ける方法を例示したものである。この取り付け方法は、特願2002−099728において提案されている既存の方法であるが、本発明免震装置と組合わせることにより復元力を有する免震システムを構成することができる。図10(1)〜(3)は積層ゴムの取り付け前の状態、図11(1)〜(3)は取り付け後の状態である。この方法では、建物完成後においていつでもコンクリート上盤の上から積層ゴム体を取り出し、交換、再設置することが可能である。
【0056】
本発明の免震構造物の構築方法を採用すれば、建物全平面に渡ってコンクリート基礎盤とコンクリート上盤との間に僅かの隙間を有する空間が構成される。そこで、構成9に示すように、コンクリート上盤の側面全周囲にロックウール、セラミックファイバー、発泡ウレタン、発泡スチレン等の発泡材料等の断熱材料で覆うことにより、建物の側面も全底面も完全に断熱された高断熱建物を構築することができる。このコンクリート基礎盤と上盤間の空気層への外気の流入を遮断するためには、この隙間の全周囲に上盤側面に配したと同様の断熱材料を配置し、この隙間空間をシールする。この部分の断熱材料の配置要領を図6の(4)に示している。
【0057】
更に構成10に示すように、コンクリート上盤工事の配筋作業時に上盤内に空洞の管を配置しておくことにより、上盤内に連続した空洞管を構成することができる。この管には、中空ボイドスラブに使用されているワインディングパイプや薄肉鋼管、給排水設備用の配管、あるいは塩ビ管などのプラスチック系パイプやダンボール紙製のパイプ等を使用することができる。これが図6および図12に示す22である。この連続する配管内に冷風・温風あるいは冷水や温水などの流体を滞留ないし循環させることによって、コンクリート上盤を蓄熱体として利用し、また快適な冷暖房床を実現することができる。
【0058】
このコンクリート上盤と免震層としての上盤下の空間を熱的に利用するもう一つの方法は、構成11に示すように、コンクリート上盤の平面の少なくとも2側辺に近い位置にそれぞれ1以上の貫通孔を設け、コンクリート基礎盤と上盤との間の空間にこの貫通孔より温風もしくは冷風等を循環させることである。図13に示すように、この上盤の穴位置は平面上相対面する位置が好ましい。一方の穴より温風もしくは冷風を吹き込み、対面の穴より吹き出させることにより、この隙間空間内に温・冷風を循環させ、これによりコンクリート上盤の温度調節を行なうと同時に蓄熱させることができ、快適な床暖房や建物全体の冷暖房に有効利用することができる。
【0059】
図14は、断熱層として利用するコンクリート上盤下の免震層空間の地震時の状態を示している。地震時にはコンクリート上盤と基礎盤が水平方向に相対移動するので、図14(3)に示すように免震層空間が外気に繋がる場合が発生する。しかし、これは大地震時において瞬間的に発生する現象であり、地震後には再び図14(1)のような密閉空間に復帰するので、建物の断熱性能に問題は生じない。
【0060】
【発明の効果】
本発明の免震装置を採用すると、戸建て住宅や小規模建築物に適した高性能の免震構造基礎躯体(基礎・免震装置およびその上部の装置取り付け部躯体)を鉄筋コンクリート造により型枠を殆ど用いずに建設することが可能となる。本発明は、以下のような効果と長所を有している。
1)型枠を殆ど用いず、且つ支保工なしで、コンクリート基礎盤およびコンクリート上盤を構築できるので、免震建物の建設費用が大きく削減できる。
2)コンクリート基礎盤と上盤との隙間を、油圧ジャッキ・エアージャッキ等のジャッキや支保工を用いずに構築することができる。
3)型枠工事および支保工工事がなくなるので、工期が大きく短縮できる。
4)本発明の免震装置でのねじ回転によるジャッキアップは上盤コンクリートの硬化した後ならばいつ行ってもよい。従って、上盤コンクリート打設後3日程度で上部建物の建て方を開始し、上盤コンクリートの強度が充分発現した時点でジャッキアップすることが可能となり、コンクリート強度発現を待ったり、型枠解体の日数を必要としないため、工事期間を著しく短縮できる。
5)コンクリート用型枠材が殆ど不要となるので、省資源で地球環境にも優しい工事方法である。
6)免震装置の上部躯体がコンクリート盤として構成されるので、装置上部の躯体重量が大きくなり、住宅や小規模建物が軽量であるための弱点、即ち風による振動問題が解決される。
7)すべり支承のすべり板、転がり支承の転動体受け平板(硬質平鋼板)と周囲躯体のコンクリ−ト表面が面一に同一レベルで構成されるので、すべり部材や転動体の可動領域が大きく上昇し、免震構造物としての潜在的安全性能が飛躍的に向上する。
8)復元力および場合によっては減衰をも担う小型積層ゴムが、完成後の建物内から自由に交換可能となっているので、万一耐久性に問題が生じた場合は容易に交換できる。従って、建物全体の耐久性能に対する不安が解消され、長期性能・長期使用に対する安心感、信頼感が飛躍的に高まっている。
9)コンクリート基礎盤と上盤間の間隙=空間高さを任意に設定でき、しかも50mm前後の非常に低い隙間に設定できるため、上部免震建物の1階床高さを地盤面に対してあまり高くならないようにでき、しかもその周囲を断熱材料で容易に隔離できるので、上部建物の断熱性能を飛躍的に向上させることができる。
10)コンクリート上盤を蓄熱体として利用することができ、床暖房や床冷房など多様な熱的利用が可能となる。
【0061】
以上のとおり、本発明により、戸建て住宅や小規模建物の軽量構造物を高性能免震構造物として建設することが、しかも飛躍的な低コストと短工期で実現することが可能となった。また、建物床部に該当するコンクリート上盤の断熱性能を外断熱工法により飛躍的に高めることもできるので、地球環境にも優しい省資源・省エネルギー型の免震住宅にもなっている。本発明により、これまで普及が進展しなかった小規模免震建物の普及が、しかも高性能免震という形での普及が加速され、安全な住宅・都市・社会の建設に大きく貢献するものと期待される。
【図面の簡単な説明】
【図1】本発明のすべり支承型免震装置の実施例を示す図で、(1)は装置上面の平面図、(2)は縦断面図、(3)は免震装置の中央高さ位置から見た平面図、(4)は円柱状部材を回転させてすべり部材を突出させた状態の断面図である。
【図2】本発明の弾性すべり支承型免震装置の実施例を示す図で、(1)は上面の平面図、(2)は縦断面図、(3)は免震装置の中央高さ位置から見た平面図、(4)は円柱状部材を回転させてすべり部材を突出させた状態の断面図である。
【図3】本発明の球体転がり支承型免震装置(主球体タイプ)の実施例を示す図で、(1)は上面の平面図、(2)は縦断面図、(3)は免震装置の中央高さ位置から見た平面図、(4)は円柱状部材を回転させて主球体部分を突出させた状態の断面図である。
【図4】本発明の両面すべり型免震装置の実施例を示す図で、(1)は上面の平面図、(2)は縦断面図、(3)は免震装置の中央高さ位置から見た平面図、(4)は円柱状部材を回転させて両面すべり部材を突出させた状態の断面図である。
【図5】本発明の球体転がり支承型免震装置(複数球体タイプ)の実施例を示す図で、(1)は上面の平面図、(2)は縦断面図、(3)は免震装置の中央高さ位置から見た平面図、(4)は円柱状部材の回転後の状態を示す断面図である。
【図6】本発明のねじ式ジャッキアップの前後を示す図で、上盤コンクリートの断熱処理方法も併せて示しており、(1)は装置上面の平面図、(2)は免震装置の回転前の状態を示す縦断面図、(3)は免震装置の中央部の横断面図、(4)は円柱状部材の回転後の状態を示す縦断面図である。
【図7】本発明の円柱状部材断面を先端免震部材より小さくした免震装置の実施例を示す図で、(1)は縦断面図、(2)は円柱状部材の回転後の状態を示す縦断面図である。
【図8】本発明の免震層全体の構成説明図で、(1)は免震層周りの躯体断面図 、(2)は免震装置配置例の平面図である。
【図9】免震層上下躯体のコンクリート削減部分の例示を示す平面図である。
【図10】復元力を担う積層ゴム体の取り付け方法(積層ゴム体設置前の状況)の実施例を示す図で、(1)は上盤側の上部蓋部の平面図、(2)は断面図、(3)は基礎盤側装置底部の受け金物の平面図である。
【図11】復元力を担う積層ゴム体の取り付け方法(積層ゴム体設置完了後の状況)の実施例を示す図で、(1)は上盤側の上部蓋部の平面図、(2)は縦断面図、(3)は基礎盤側装置底部の受け金物の平面図である。
【図12】本発明のコンクリート上盤内配管による床冷暖房躯体の構成を示す図で、(1)は断面図、(2)は上盤内配管の配置図、(3)は(1)のA部の拡大図である。
【図13】本発明の免震層空間内に温冷風を循環させるコンクリート上盤の利用方法を示す図で、(1)はコンクリート基礎盤・免震層空間・上盤の躯体断面図、(2)は上盤に設ける空気循環用孔の配置例の平面図である。
【図14】免震層の断熱空間の地震時における状態説明図で、(1)は平常時における正常な状態、(2)は地震時に上盤が外側に出た瞬間の状態図、(3)は地震時に上盤が内側に移動し断熱空間と外気が繋がった瞬間の状態図である。
【符号の説明】
1 :地盤側のコンクリート基礎盤
11:穴もしくはコンクリート薄板部
12:基礎盤と上盤間の接触部の付着防止処理(ビニールシート、粉体薄層など)
2 :建物側のコンクリート上盤
21:コンクリート上盤側面の断熱材
22:コンクリート上盤内に打ち込む配管
23:免震層空間への空気注入孔および排出孔
3 :コンクリート基礎盤側のすべり板もしくは硬質平鋼板
32:コンクリート上盤側のすべり板もしくは硬質平鋼板
33a、33b:スタッドボルト
4 :円柱状部材(側面ねじ切り)
41:すべり材
42:回転用具挿入用窪み
43:積層ゴム体もしくはゴム層
44:球体転がり支承(主球型)
45:補助球体
46:球体転がり支承(複数球型)
47:両面すべり部材
48:上盤側の上部すべり板透孔部の内部すべり板もしくは内部硬質平鋼板
51:円筒部材(内面ねじ切り)
52:内蔵免震部材保護部
6 :ねじ切り部
7 :コンクリート基礎盤と上盤との間隙、クリアランス
71:間隙用防塵兼断熱材
8 :復元力用免震装置
81:積層ゴム取り付け金物(基礎盤側)
82:積層ゴム取り付け金物(上盤側)
83:積層ゴム体
84:取り付けボルト
9 :上部建物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic isolation device and a method of constructing a seismic isolation structure suitable for relatively small-scale seismic isolation buildings such as detached houses among seismic isolation structures.
[0002]
[Prior art]
Since the Great Hanshin-Awaji Earthquake of 1995, seismic isolation structures have been developed to suppress the response acceleration of buildings during a large earthquake, and to protect the entire structure without damage, including not only the building as a container but also its internal contents. Increasing.
When a small building such as a detached house or a small store has a seismic isolation structure, the natural period cannot be extended with large laminated rubber due to the small weight of the structure. Although it has a narrow and high laminated rubber shape, it cannot secure sufficient deformation performance.
[0003]
As a method of solving this problem, the building weight is supported by a sliding bearing or a rolling bearing, and the restoring force and damping are borne by a laminated rubber bearing that does not support the weight (such as a high-damping rubber or a laminated rubber with a lead plug). A method has been put to practical use, for example, a method in which friction of a slip surface is used as damping, and a slip surface or a rolling surface is used as a curved surface to convert potential energy due to gravity into a restoring force (for example, see Patent Document 1).
[0004]
As described above, many methods have already been developed to convert small, lightweight structures into seismic isolation structures.However, in reality, small-scale seismic isolation buildings are hardly popular. is there.
[0005]
[Patent Document 1]
JP-A-2002-98189
[0006]
[Problems to be solved by the invention]
The reason why small-scale seismic isolation buildings are not widely used is quite obvious. This is because the construction cost of a seismic isolation building is higher than that of a conventional seismic building without a seismic isolation structure. Of course, although the absolute amount is small compared to the increase in the cost of a large seismic isolation building, the total construction cost itself is small, so the rate of increase is very large, and the rate of increase is usually around several percent for large buildings. However, there are many cases where the seismic isolation of detached houses exceeds 10%, and the increase is more than 20%.
[0007]
This cost increase has the following three factors. That is, (1) the design cost is high because a high-level structural design is performed as compared with a normal design. (2) Additional costs for seismic isolation devices. (3) Since the foundation is doubled with the seismic isolation device in between, the foundation structure above and below the device is expensive.
[0008]
In order to reduce the design cost in the above (1), special approval and approval examinations were required in the past, which were evaluated by the Japan Building Center and approved by the Minister of Construction. That has become. In addition, as a method of reducing actual design costs, efforts are being made to standardize buildings and seismic isolation systems to omit or simplify individual designs in individual buildings.
[0009]
The method of reducing the cost of the seismic isolation device in (2) above is being worked on by individual manufacturers, and it can be expected that the cost will gradually decrease as its use spreads, but not only the cost of the device itself, but also its installation Reduction of labor and cost required for construction is also an important issue.
[0010]
As for the increase in construction costs for seismic isolation buildings, the cost of seismic isolation equipment is usually attracting attention.However, in reality, construction of double foundations is more expensive than the cost of seismic isolation equipment. In the case of a building, how low-cost the structures above and below the seismic isolation device can be built is the key to reducing the cost of a seismic isolation building.
[0011]
In the case of small-scale seismic isolation buildings, the foundation structure below the seismic isolation device is generally made of reinforced concrete, and the foundation structure on the upper building side is usually made of either a steel frame or reinforced concrete. It is. In recent years, many proposals have been made to reduce the cost of the upper base structure of this seismic isolation device as an extremely light structure using a lightweight steel frame. However, in small buildings, the entire structure is lightweight, and It is not recommended to reduce the weight of the base structure above the seismic isolation device excessively in structures where the problem is likely to cause problems.
[0012]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the construction of a seismic isolation device and a seismic isolation structure capable of dramatically reducing the cost of mounting a seismic isolation device and constructing a double foundation structure. It provides a method.
[0013]
[Means for Solving the Problems]
The present invention employs the following configuration.
<Configuration 1>
In a seismic isolation device including a slide plate disposed on an upper surface of a ground-side foundation and a slide member fixed to an upper structure side and capable of relatively moving in a horizontal direction with respect to the slide plate, the slip member includes an outer periphery. It is configured by a cylindrical member threaded on the surface, and a cylindrical member having a screw corresponding to the screw of the slide member is screwed on an inner peripheral surface of an outer periphery of the slide member formed of the cylindrical member. Characteristic seismic isolation device.
[0014]
This is a sliding bearing type seismic isolation device that supports the weight of the structure and can move in the horizontal direction relative to the ground foundation during an earthquake.
By arranging the cylindrical member by screwing it around the outer periphery of the sliding member composed of the columnar member, the cylindrical member is relatively rotated with respect to the sliding member, and the relative positions of the two are axially changed. Can be moved. By this axial movement, the concrete upper plate fixed to the cylindrical member can be easily lifted to a predetermined height.
[0015]
<Configuration 2>
The seismic isolation device according to configuration 1, wherein a sliding material of a solid lubricant is disposed at a contact portion between an end surface of the slide member and the slide plate.
[0016]
The provision of the sliding material of the solid lubricant has an effect of smoothing the sliding such as horizontal movement and rotation of the columnar member with respect to the slide plate.
[0017]
<Configuration 3>
The seismic isolation device according to the configuration 1 or 2, wherein an elastic member of a rubber layer or a laminated rubber body is disposed between the slide plate or the sliding material and the columnar member on the sliding material. Seismic isolation device.
[0018]
<Configuration 4>
2. The seismic isolation device according to Configuration 1, wherein the sliding plate is formed of a hard flat steel plate, and the sliding member is formed of a rolling member.
[0019]
It is preferable that a spherical rolling bearing using a main sphere is adopted as the rolling member, and that the retainer is integrated with the columnar member.
[0020]
<Configuration 5>
In a seismic isolation device including a slide plate disposed on an upper surface of a ground-side foundation, and a slide member fixed to an upper structure side and capable of relatively moving in a horizontal direction with respect to the slide plate, the slide plate includes: A lower slide plate disposed on the upper surface of the ground-side foundation; and an upper slide plate disposed at a position facing the bottom of the skeleton on the upper structure side, and a through hole is formed in a plane central portion of the upper slide plate. A cylindrical member threaded to the inner peripheral surface is fixedly disposed on an upper slide plate above the through hole, and an outer diameter slightly smaller than the diameter of the through hole is provided inside the cylindrical member. A sliding member having a double-sided sliding member, and an internal sliding plate having substantially the same diameter as the through-hole and a columnar member which is integrated with the internal sliding plate and has a threaded thread matching the screw of the cylindrical member on the outer peripheral surface thereof are disposed on the upper surface thereof. A seismic isolation device, characterized in that:
[0021]
By rotating the cylindrical member with respect to the cylindrical member, the double-sided sliding member is extruded from the through hole. Further, the through-hole can be closed by extruding an internal slide plate having substantially the same diameter as the diameter of the through-hole disposed on the end face of the columnar member to the same position as the upper slide plate.
Since the sliding member is a double-sided sliding member in which the sliding material of the solid lubricant is disposed on both end surfaces, the sliding dimension of the upper and lower sliding plates can be reduced to == the area can be reduced to 4. Also, even if the number of the sliding plates is two, the effect of halving the sliding plate area can be obtained.
[0022]
<Configuration 6>
The seismic isolation device according to claim 5, wherein the sliding plate is a hard flat steel plate, and the double-sided sliding member holds at least three spheres having the same diameter so that their relative positions do not shift. A seismic isolation device characterized as a bearing.
[0023]
In place of the double-sided sliding member, a frictional coefficient of the sliding member is usually 0.03 to 0 by using a mass of spherical rolling bearings holding three or more spheres of the same diameter so that their relative positions do not shift. A good sliding effect with little frictional resistance of 0.001 to 0.005 for about .15 is achieved.
[0024]
<Configuration 7>
7. The seismic isolation device according to any one of the constitutions 1 to 6, further comprising: a seismic isolation member protecting portion for covering a seismic isolation member supported on an end surface of the cylindrical member at a lower end of the cylindrical member. A seismic isolation device wherein a cross section of the cylindrical member and the columnar member above the member protection part is smaller than a cross section of the seismic isolation member protection part.
[0025]
By making the cross sections of the cylindrical member and the columnar member above the seismic isolation member protection section smaller than the cross section of the seismic isolation member protection section, the cost of the seismic isolation device can be reduced.
[0026]
<Configuration 8>
This is a method of building a seismic isolation structure that can move relative to the ground in the horizontal direction during an earthquake. First, a concrete foundation is cast on the ground and the upper surface is finished horizontally. Then, a sliding plate is arranged such that the upper surface thereof is flush with the surrounding concrete, and after the concrete foundation plate is hardened, a concrete upper plate is formed by placing concrete in contact with the upper surface of the concrete foundation plate. A slip member of the seismic isolation device according to any one of claims 1 to 6 and an upper slip plate integrated therewith are arranged in the concrete upper board, and after the concrete hardening of the concrete upper board, By rotating the cylindrical member of the sliding member relative to the cylindrical member, the cylindrical member of the sliding member is moved below the concrete upper plate. Method for constructing a seismic isolation structure and providing a predetermined vertical gap between the protruding allowed by the concrete upper plate and the concrete foundation plate on.
[0027]
By rotating the cylindrical member of the seismic isolation device of the present invention, the cylindrical member protrudes below the upper plate due to the effect of the screw, and the upper plate is lifted from the base plate by the reaction, and the concrete base plate is spread over the entire plane of the building. A seismic isolation layer can be constructed between the building and the concrete base. Since the seismic isolation layer forms a small gap between the two concrete boards, it has a space configuration suitable for heat insulation treatment of the concrete upper board.
The sliding plate includes a hard flat steel plate, and the sliding member includes a spherical rolling member.
[0028]
<Configuration 9>
In the construction method of a base-isolated structure according to configuration 8, the concrete base plate and the concrete base plate supported on the concrete base plate with a small gap by the seismic isolation device are formed, and a side surface of the concrete base plate is provided. A method of constructing a seismic isolation structure, comprising disposing a heat insulating material around the perimeter, and filling the heat insulating material in a belt shape over the entire circumference of the concrete foundation board and the vertical gap between the concrete upper board.
[0029]
The lower space of the concrete upper board can be formed as a heat insulating layer. As the heat insulating material, rock wool, ceramic fiber, urethane foam, styrene foam, other foam materials, and the like are employed.
[0030]
<Configuration 10>
In the method of constructing a seismic isolation structure according to the ninth aspect, the concrete base plate which is constructed with a small gap on the concrete base plate and whose side surface is covered with a heat insulating material, is disposed over substantially the entire surface in the concrete base plate. A method for constructing a seismic isolation structure, comprising embedding the above-mentioned continuous pipe and retaining or circulating air or water fluid inside the pipe.
[0031]
By retaining or circulating a fluid of air or water inside the pipe, the concrete upper plate can be used as a heat storage unit or a cooling / heating floor.
[0032]
<Configuration 11>
In the method of constructing a seismic isolation structure according to Configuration 9, the concrete upper board constructed with a small gap on the concrete foundation board and covered with a heat insulating material on at least two sides of the plane is provided. Construction of a seismic isolation structure characterized by providing at least one through hole at each of close positions, and circulating warm air or cold air from the through hole in a space between the concrete foundation and the concrete upper. Method.
[0033]
By circulating warm air or cold air from the through hole in the space between the concrete foundation and the concrete upper, the temperature of the concrete upper can be adjusted, and it can be used for heat storage and cooling and heating. .
[0034]
<Overview>
In the present invention, an appropriate weight is added to a small-sized and lightweight building, and a foundation structure above and below the seismic isolation device made of a reinforced concrete structure that provides appropriate stability to the whole building is economically constructed.
First, in the present invention, both the foundation structure in contact with the ground and the building-side structure above the device are made of reinforced concrete. Then, the basic shape of the structure is a flat plate shape. This is because, in Japan, when constructing a reinforced concrete structure, the cost of labor (labor) required for labor such as formwork is higher than the cost of material for reinforced concrete and concrete. This is because a shape is desirable. Therefore, in the present invention, both the upper and lower structures of the apparatus are formed into a flat plate shape. Hereinafter, the lower side of the apparatus is referred to as a “concrete foundation panel”, the upper side is referred to as a “concrete upper panel”, and both are collectively referred to as “both concrete boards”. I do. By this flattening, complicated form shapes such as a beam shape and a cloth foundation having a rising waist wall are eliminated.
[0035]
In order to reduce the amount of concrete on both concrete boards, holes may be provided in the portions where the load and stress are small, or the thickness may be reduced from the flat plate shape. Is called a flat plate shape.
[0036]
And this invention provides the method of constructing the concrete board above and below this seismic isolation device without a formwork and a support. Since the concrete foundation is built on the ground, the formwork on the bottom is unnecessary, and only the formwork on the side surface around the concrete foundation is sufficient. Arrange the reinforcement in the concrete foundation board, pour the concrete of the foundation board, and finish the upper surface horizontally. At this time, a hard flat steel plate that receives the sliding plate of the seismic isolation device or the rolling element of the rolling bearing fixed to the upper surface of the foundation board is installed in advance at the same height as the concrete surface of the foundation board, and the upper surface of the concrete foundation board is projected. Finish with a flat horizontal surface without any objects. In order to satisfy this condition, in the present invention, the seismic isolation device for supporting the building weight is mainly intended for a sliding bearing or a rolling bearing.
[0037]
It should be noted here that the sliding plate or hard flat steel plate is finished on the same plane as the surrounding concrete upper surface in case of unexpectedly strong earthquake motion, if the sliding or rolling bearing extends beyond the sliding plate area to the concrete upper surface. Intrusion is allowed, and even in that case, it is possible to return to the normal slide plate or hard flat steel plate again. This realizes a seismic structure.
[0038]
Next, a thin film-like sheet such as a vinyl sheet is laid on the upper surface of the concrete foundation board, or powder such as sand is thinly scattered, and reinforcement in the upper concrete is placed thereon. At this time, a sliding member, a spherical rolling member, a laminated rubber fixing member for restoring force, and the like are arranged on the upper side of the concrete. After that, concrete for the upper part is poured. In short, the upper surface of the concrete foundation is used as the bottom formwork of the concrete upper foundation, only the peripheral side formwork of the upper foundation is arranged, and the concrete of the concrete upper foundation is poured directly on the upper surface of the foundation foundation.
[0039]
The seismic isolation device embedded in the concrete base has a double structure of an inner cylindrical member and an outer cylindrical member, and a thread is cut between the two. A groove or a hole for rotating the columnar member is provided on the upper surface of the internal columnar member. Since the outer cylindrical member is fixed to the concrete upper plate, when the inner cylindrical member is rotated, the bottom of the cylindrical member gradually protrudes downward from the concrete upper plate, and the lower concrete foundation It acts as a jack that presses the board, and the reaction force can lift the concrete upper board.
[0040]
Since multiple seismic isolation devices are arranged in one concrete upper wall according to its weight, lifting the upper wall by rotation should jack up little by little so that the entire upper wall stays almost horizontal. Good. The reason why the thin vinyl sheet or the thin powder layer is provided on the upper surface of the concrete foundation board is to prevent adhesion at the contact surface between the concrete foundation board and the upper board so that the jack-up can be easily performed.
[0041]
Since the thickness of the upper concrete is usually about 180 mm to 250 mm, the height of the outer cylinder of the seismic isolation device is also adjusted to the thickness of the upper concrete. Therefore, the jack-up height due to the screw rotation = the gap between the concrete foundation board and the upper board can be set to an arbitrary height in the range of about 10 mm to 150 mm if the meshing portion of the screw part is left to some extent.
[0042]
In order to rotate the internal cylindrical member of the seismic isolation device, an existing rotating device such as an electric torque wrench used for tightening high-strength bolts can be used by preparing a coupling attachment on the upper part of the cylindrical member.
[0043]
By the above method, it is possible to easily and economically use a seismically isolated structure with "large deformation performance" = "high safety performance" without using any formwork and using special machinery such as hydraulic jacks and air jacks. Can be constructed
[0044]
In the present invention, a thin gap having a height of about 50 mm is formed between the concrete foundation board and the upper board over the entire plane of the building. Therefore, by isolating the entire perimeter of this gap with heat insulating material and blocking the inflow of external air, it is possible to construct a building with excellent heat insulation performance with an air layer with excellent heat insulation performance sandwiched under the entire plane of the building. It becomes possible. By arranging the heat insulating material around the gap, the function of a dustproof barrier for the seismic isolation device is also realized.
[0045]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic type of the seismic isolation device of the present invention, which is a slip-support type seismic isolation device. (1) is a plan view showing the upper surface of the device, (2) is a longitudinal sectional view, and (3) is a slip. FIG. 4 (4) is a cross-sectional view of the state in which the inner cylindrical member is rotated to make the sliding member protrude from the concrete upper plate, as viewed from below the member center height.
[0046]
As shown in FIG. 1 (2), after a sliding plate 3 is driven into the upper surface of the concrete foundation 1, a sliding member 4 is installed thereon, and concrete for forming the concrete upper plate 2 is poured. By rotating the upper end of the sliding member 4 after the upper concrete 2 is hardened, the columnar member 4 protrudes downward as shown in FIG. 1 (4), and the concrete upper plate 2 can be raised to a predetermined height. .
[0047]
Fig. 2 shows that a laminated rubber body is interposed between the sliding sliding member at the tip of the sliding member and the torsion columnar member, and when the earthquake input is weak, the laminated rubber body is deformed and the seismic inertia force greater than the sliding friction force is generated. This is the case of Configuration 3 which is an elastic slide bearing in which a slip occurs when acting. The method of installing the seismic isolation device and the method of lifting the concrete upper plate by rotation are exactly the same as those in Configuration 1.
[0048]
FIG. 3 shows a spherical rolling bearing of configuration 4. One main sphere is held by a threaded cylindrical member, and a large number of small auxiliary spheres are arranged to alleviate the friction between the cylindrical member and the main sphere. Has a system that can rotate smoothly. The peripheral side surface of the columnar member holding the main sphere is subjected to thread cutting similar to that of the seismic isolation device of Configurations 1 and 2, and the rotation of the columnar member allows the concrete upper plate to be lifted.
[0049]
FIG. 4 shows a double (double-sided) slip-type seismic isolation device having a slip surface on both upper and lower surfaces as shown in Configuration 5. In order to form a sliding surface on both the upper and lower surfaces, it is necessary to provide a sliding plate not only on the concrete base plate side but also on the concrete upper plate side. For this purpose, as shown in FIG. 4 (2), a hole is made in the center of the upper sliding plate on the upper panel side, a double-sided sliding member is provided on the upper portion of the hole, and an internal sliding plate on the upper panel side is further provided thereon. The threaded columnar member integrated therewith is arranged. After the placement of the upper concrete is completed, the cylindrical member is rotated to extrude the double-sided sliding member. This extrusion height must be maintained such that the internal slide plate having a diameter substantially equal to the hole in the upper portion of the slide material is at the same height as the upper slide plate on the upper side of the surrounding plate. As shown in FIG. 4D, the position can be determined by engaging the periphery of the internal sliding plate in the hole portion in a stepwise manner. The boundary between the two sliding plates is chamfered at the corner so that the sliding material does not rub at the edges when the shoe is moved.
[0050]
FIG. 5 shows the case of the configuration 6 in which at least three or more sphere rolling bearings having the same diameter are employed in place of the double-sided sliding bearing. The method of lifting the concrete upper plate by the arrangement and rotation of the device is the same as that of the seismic isolation device of Configuration 5. By adopting a spherical rolling bearing, the frictional resistance in the horizontal direction can be made almost zero, so that the horizontal resistance of the whole building can be adjusted to an arbitrary value by combining with the sliding bearing.
[0051]
FIG. 6 shows the main points of the construction method shown in the configuration 8. In the case of all the above seismic isolation devices, the positional relationship between the concrete foundation, the seismic isolation device, and the upper concrete floor and the rotation of the columnar member are used. This shows the state of the concrete upper panel after lifting more clearly. As shown in FIG. 6 (2), a vinyl sheet or a thin sand layer is applied to the upper surface of the concrete foundation board in order to cut off the adhesion of the upper concrete. In addition, FIG. 6 (4) shows that, at the edge of the concrete upper plate, a heat insulating material is disposed on the side surface, and the heat insulating material is also filled around the gap between the concrete foundation plate and the upper plate, and the concrete upper plate side is exposed. The construction method of the structure 9 protected thermally by the heat insulation method is shown.
[0052]
FIG. 7 illustrates an example of the seismic isolation device having the configuration 7 in which the cross section of the columnar member is smaller than the plane of the seismic isolation device attached to the tip in order to lower the cost of the seismic isolation device shown in the configurations 1 to 6. It was done. FIG. 7 shows the sliding type seismic isolation device of the configuration 1. However, the same configuration can be achieved by storing all the other devices of the configurations 2 to 6 in the protection part of the tip seismic isolation member.
[0053]
FIG. 8A shows an example of an overall sectional configuration of a base isolation base in a base-isolated structure house, and FIG. 8B shows an example of an overall layout of a base isolation device. This example is an example in which nine sliding-type seismic isolation devices having the configuration 1 support the entire weight of the building, and four small laminated rubber members that do not support the weight of the building are used for the restoring force.
[0054]
FIG. 9 illustrates a case where holes are provided in a concrete portion that does not support the weight of a building or the thickness of a concrete board is reduced in order to construct a concrete foundation board and a concrete top board more economically.
[0055]
10 and 11 illustrate a method of attaching a small laminated rubber between a concrete foundation board and an upper board as a restoration device. This mounting method is an existing method proposed in Japanese Patent Application No. 2002-099728, but a seismic isolation system having a restoring force can be configured by combining with the seismic isolation device of the present invention. FIGS. 10 (1) to (3) show the state before mounting the laminated rubber, and FIGS. 11 (1) to (3) show the state after mounting. With this method, it is possible to take out the laminated rubber body from the top of the concrete at any time after the completion of the building, and to replace and replace it.
[0056]
If the method of constructing a seismic isolation structure of the present invention is adopted, a space having a slight gap between the concrete foundation and the concrete upper floor is formed over the entire plane of the building. Therefore, as shown in Configuration 9, by covering the entire side surface of the concrete upper wall with a heat insulating material such as rock wool, ceramic fiber, urethane foam, foamed material such as foamed styrene, etc., both the side surface and the entire bottom surface of the building are completely completed. An insulated high-insulated building can be constructed. In order to block the inflow of outside air into the air layer between the concrete foundation board and the upper panel, the same heat insulating material as that arranged on the side of the upper panel is arranged around the entire gap, and the gap space is sealed. . The arrangement of the heat insulating material in this portion is shown in (4) of FIG.
[0057]
Further, as shown in Configuration 10, by arranging hollow pipes in the upper panel at the time of reinforcing work in the concrete upper panel construction, a continuous hollow pipe can be formed in the upper panel. As this pipe, a winding pipe or a thin steel pipe used for a hollow void slab, a pipe for a water supply / drainage facility, a plastic pipe such as a PVC pipe, a pipe made of corrugated paper, or the like can be used. This is 22 shown in FIG. 6 and FIG. By accumulating or circulating a fluid such as cold or hot air or cold or hot water in the continuous pipe, the concrete upper plate can be used as a heat storage body and a comfortable cooling and heating floor can be realized.
[0058]
Another method of thermally utilizing the space under the upper plate as the concrete upper plate and the seismic isolation layer is that, as shown in Configuration 11, each of the concrete plates is placed at a position near at least two sides of the plane of the concrete upper plate. The above-mentioned through-hole is provided, and warm air or cold air is circulated from the through-hole in the space between the concrete foundation panel and the upper panel. As shown in FIG. 13, the hole position of the upper plate is preferably a position facing the plane. By blowing hot or cold air from one of the holes and blowing it out from the facing hole, hot and cold air can be circulated in this gap space, thereby controlling the temperature of the concrete upper wall and storing heat at the same time. It can be effectively used for comfortable floor heating and cooling / heating of the whole building.
[0059]
FIG. 14 shows the state of a seismic isolation layer space below a concrete upper plate used as a heat insulating layer during an earthquake. In the event of an earthquake, the upper concrete floor and the foundation board move relative to each other in the horizontal direction, so that the seismic isolation layer space may be connected to the outside air as shown in FIG. However, this is a phenomenon that occurs instantaneously in the event of a large earthquake, and returns to a closed space as shown in FIG. 14A after the earthquake, so that there is no problem in the heat insulation performance of the building.
[0060]
【The invention's effect】
When the seismic isolation device of the present invention is adopted, a high-performance seismic isolation structure base frame (base / seismic isolation device and its upper part mounting unit frame) suitable for detached houses and small buildings is formed by reinforced concrete. It can be constructed with little use. The present invention has the following effects and advantages.
1) Since the concrete foundation panel and the concrete upper panel can be constructed with little use of the formwork and without any support work, the construction cost of the seismic isolation building can be greatly reduced.
2) The gap between the concrete foundation panel and the upper panel can be constructed without using jacks such as hydraulic jacks and air jacks or supports.
3) Since there is no need for formwork and support work, the construction period can be greatly reduced.
4) The jack-up by the screw rotation in the seismic isolation device of the present invention may be performed any time after the upper concrete has hardened. Therefore, it is possible to start the construction of the upper building about 3 days after placing the upper concrete, and to jack up when the strength of the upper concrete is sufficiently developed. Since the number of days is not required, the construction period can be significantly reduced.
5) Since almost no concrete form material is required, the construction method is resource-saving and environmentally friendly.
6) Since the upper frame of the seismic isolation device is configured as a concrete plate, the weight of the frame at the upper portion of the device is increased, and the weak point of light weight of houses and small buildings, that is, the problem of vibration due to wind is solved.
7) Since the sliding plate of the sliding bearing, the rolling element receiving flat plate (hard flat steel plate) of the rolling bearing and the concrete surface of the surrounding frame are formed at the same level, the movable area of the sliding member and the rolling element is large. As a result, the potential safety performance as a seismic isolation structure is dramatically improved.
8) Since the small laminated rubber, which also plays a role of restoring force and, in some cases, damping, can be freely replaced from within the completed building, it can be easily replaced in the event of a problem with durability. Therefore, the anxiety about the durability performance of the whole building is eliminated, and the sense of security and reliability for long-term performance and long-term use is dramatically increased.
9) The gap between the concrete foundation and the upper board = the height of the space can be set arbitrarily and the gap can be set very low, around 50 mm. Since the height can be prevented from being too high, and the periphery thereof can be easily isolated by the heat insulating material, the heat insulating performance of the upper building can be remarkably improved.
10) The upper concrete floor can be used as a heat storage body, and various thermal uses such as floor heating and floor cooling can be performed.
[0061]
As described above, according to the present invention, it is possible to construct a lightweight structure such as a detached house or a small building as a high-performance seismic isolation structure, and at a remarkable low cost and a short construction period. In addition, since the heat insulation performance of the concrete upper floor corresponding to the building floor can be dramatically improved by the external heat insulation method, it is also a resource- and energy-saving seismic isolation house that is friendly to the global environment. According to the present invention, the spread of small-scale seismic isolation buildings, which have not spread so far, will be accelerated in the form of high-performance seismic isolation, and will greatly contribute to the construction of safe houses, cities, and society. Be expected.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of a sliding bearing type seismic isolation device according to the present invention, wherein (1) is a plan view of an upper surface of the device, (2) is a longitudinal sectional view, and (3) is a center height of the seismic isolation device. FIG. 4 is a plan view as viewed from the position, and FIG. 4D is a cross-sectional view of a state in which the columnar member is rotated to project the sliding member.
FIG. 2 is a view showing an embodiment of an elastic sliding bearing type seismic isolation device of the present invention, wherein (1) is a plan view of an upper surface, (2) is a longitudinal sectional view, and (3) is a center height of the seismic isolation device. FIG. 4 is a plan view as viewed from the position, and FIG. 4D is a cross-sectional view of a state in which the columnar member is rotated to project the sliding member.
FIG. 3 is a view showing an embodiment of a spherical rolling bearing type seismic isolation device (main sphere type) of the present invention, wherein (1) is a plan view of an upper surface, (2) is a longitudinal sectional view, and (3) is a seismic isolation. FIG. 4 is a plan view of the apparatus as viewed from a center height position, and FIG. 4D is a cross-sectional view of a state in which a columnar member is rotated to project a main sphere portion.
FIG. 4 is a view showing an embodiment of the double-sided sliding type seismic isolation device of the present invention, wherein (1) is a plan view of an upper surface, (2) is a longitudinal sectional view, and (3) is a central height position of the seismic isolation device. (4) is a cross-sectional view of a state in which the columnar member is rotated to project the double-sided sliding member.
FIG. 5 is a view showing an embodiment of a spherical rolling bearing type seismic isolation device (multiple sphere type) of the present invention, wherein (1) is a plan view of the upper surface, (2) is a longitudinal sectional view, and (3) is a seismic isolation. FIG. 4 is a plan view of the apparatus as viewed from a center height position, and FIG. 4D is a cross-sectional view illustrating a state after rotation of a columnar member.
FIG. 6 is a view showing before and after the screw type jack-up of the present invention, and also shows a method of heat-insulating the upper concrete, (1) is a plan view of the upper surface of the device, and (2) is a diagram of the seismic isolation device. FIG. 4 is a longitudinal sectional view showing a state before rotation, (3) is a transverse sectional view of a central portion of the seismic isolation device, and (4) is a longitudinal sectional view showing a state after rotation of a columnar member.
FIG. 7 is a view showing an embodiment of the seismic isolation device according to the present invention in which the cross section of the columnar member is made smaller than the tip seismic isolation member, (1) is a longitudinal sectional view, and (2) is a state after rotation of the columnar member. FIG.
FIGS. 8A and 8B are explanatory diagrams of the entire structure of the seismic isolation layer of the present invention, wherein FIG. 8A is a cross-sectional view of a frame around the seismic isolation layer, and FIG.
FIG. 9 is a plan view showing an example of a concrete reduction portion of the upper and lower skeletons of the seismic isolation layer.
FIG. 10 is a view showing an embodiment of a method of mounting a laminated rubber body that bears a restoring force (a state before the installation of the laminated rubber body), wherein (1) is a plan view of an upper lid portion on the upper panel side, and (2) is a plan view. Sectional drawing, (3) is a top view of the receiving hardware of the base board side apparatus bottom part.
FIG. 11 is a view showing an embodiment of a method of mounting a laminated rubber body which bears a restoring force (a state after the completion of the installation of the laminated rubber body), wherein (1) is a plan view of an upper lid part on the upper panel side, and (2). Is a longitudinal sectional view, and (3) is a plan view of a receiving metal fitting at the bottom of the device on the base board side.
12A and 12B are diagrams showing a configuration of a floor cooling / heating frame using a pipe in a concrete upper panel according to the present invention, wherein (1) is a cross-sectional view, (2) is a layout view of the pipe in the upper panel, and (3) is a drawing of (1) It is an enlarged view of A part.
FIG. 13 is a view showing a method of using a concrete upper board for circulating hot and cold air in the seismic isolation layer space according to the present invention, wherein (1) is a sectional view of a concrete foundation board, a seismic isolation layer space, and an upper board; 2) is a plan view of an arrangement example of air circulation holes provided in the upper panel.
14A and 14B are explanatory diagrams of a state of an adiabatic space of a base-isolated layer at the time of an earthquake, where (1) is a normal state in normal times, (2) is a state diagram at a moment when an upper panel comes out outside during an earthquake, (3) ) Is a state diagram at the moment when the upper wall moves inward during the earthquake and the insulated space is connected to the outside air.
[Explanation of symbols]
1: Concrete foundation on the ground side
11: Hole or concrete thin plate
12: Adhesion prevention treatment at the contact part between the base plate and upper plate (vinyl sheet, powder thin layer, etc.)
2: Concrete upper panel on the building side
21: Insulation material on the side of concrete upper wall
22: Piping driven into concrete upper panel
23: Air injection hole and discharge hole to seismic isolation layer space
3: Slip plate or hard flat steel plate on the concrete foundation board side
32: Sliding plate or hard flat steel plate on the upper side of concrete
33a, 33b: Stud bolt
4: Cylindrical member (side thread cutting)
41: Sliding material
42: Depression for inserting rotation tool
43: Laminated rubber body or rubber layer
44: Ball rolling bearing (main ball type)
45: Auxiliary sphere
46: Ball rolling bearing (multi-ball type)
47: Double-sided sliding member
48: Internal slide plate or internal hard flat steel plate in the upper slide plate through-hole on the upper side
51: cylindrical member (internal thread cutting)
52: Built-in seismic isolation member protection section
6: Threaded part
7: Clearance and clearance between concrete foundation board and upper board
71: Dustproof and heat insulating material for gap
8: Seismic isolation device for restoring force
81: Laminated rubber mounting hardware (base board side)
82: Laminated rubber mounting hardware (upper panel side)
83: Laminated rubber body
84: Mounting bolt
9: Upper building

Claims (11)

地盤側基礎の上面に配置されるすべり板と、上部構造物側に固定され、前記すべり板に対して水平方向に相対移動できるすべり部材とを備えた免震装置において、
前記すべり部材を、外周面にねじ切りされた円柱状部材により構成し、
前記円柱状部材からなるすべり部材の外周に、内周面に前記すべり部材のねじに合致するねじを有する円筒部材をねじ込ませて配設したことを特徴とする免震装置。
In a seismic isolation device including a slide plate arranged on the upper surface of the ground-side foundation and a slide member fixed to the upper structure side and capable of moving relative to the slide plate in a horizontal direction,
The sliding member, constituted by a cylindrical member threaded on the outer peripheral surface,
A seismic isolation device characterized in that a cylindrical member having a screw corresponding to the screw of the slide member is screwed into an inner peripheral surface of an outer periphery of the slide member formed of the columnar member.
請求項1に記載の免震装置において、
前記すべり部材の端面と前記すべり板との接触部に、個体潤滑材の滑動材料を配したことを特徴とする免震装置。
The seismic isolation device according to claim 1,
A seismic isolation device, wherein a sliding material of a solid lubricant is disposed at a contact portion between the end surface of the sliding member and the sliding plate.
請求項1又は2に記載の免震装置において、
前記すべり板又は前記滑動材料とその上部の前記円柱状部材との間に、ゴム層もしくは積層ゴム体の弾性部材を配設したことを特徴とする免震装置。
The seismic isolation device according to claim 1 or 2,
A seismic isolation device wherein an elastic member of a rubber layer or a laminated rubber body is disposed between the slide plate or the sliding material and the columnar member on the sliding member.
請求項1に記載の免震装置において、
前記すべり板を硬質平鋼板により構成し、
前記すべり部材を転がり部材により構成したことを特徴とする免震装置。
The seismic isolation device according to claim 1,
The slide plate is constituted by a hard flat steel plate,
A seismic isolation device characterized in that the sliding member is constituted by a rolling member.
地盤側基礎の上面に配置されるすべり板と、上部構造物側に固定され、前記すべり板に対して水平方向に相対移動できるすべり部材とを備えた免震装置において、
前記すべり板を、前記地盤側基礎の上面に配置される下部すべり板と、前記上部構造物側の躯体底面の相対面する位置に配置される上部すべり板とから構成し、
前記上部すべり板の平面中央部に透孔を設け、
前記透孔の上方に、内周面にねじ切りされた円筒部材を、上部すべり板に固定して配設し、
前記円筒部材の内部に、前記透孔の口径よりわずかに小さい外径を有する両面すべり部材と、その上部に、前記透孔とほぼ同径の内部すべり板及びそれと一体化され外周面に前記円筒部材のねじに合致するねじを切った円柱状部材とを配設したことを特徴とする免震装置。
In a seismic isolation device including a slide plate arranged on the upper surface of the ground-side foundation and a slide member fixed to the upper structure side and capable of moving relative to the slide plate in a horizontal direction,
The slip plate, comprising a lower slip plate disposed on the upper surface of the ground-side foundation, an upper slip plate disposed at a position facing the skeleton bottom surface of the upper structure side,
Providing a through hole in the center of the plane of the upper slide plate,
Above the through-hole, a cylindrical member threaded on the inner peripheral surface is fixedly disposed on the upper slide plate and disposed.
Inside the cylindrical member, a double-sided sliding member having an outer diameter slightly smaller than the diameter of the through-hole, and an inner sliding plate having substantially the same diameter as the through-hole on the upper part thereof, and the cylindrical member integrated with the inner sliding plate on the outer peripheral surface. A seismic isolation device comprising a threaded columnar member that matches the thread of the member.
請求項5に記載の免震装置において、
前記すべり板を硬質平鋼板とし、
前記両面すべり部材を、少なくとも3個の同一直径の球体をその相対位置がずれないように保持した一塊りの球体ころがり支承としたことを特徴とする免震装置。
The seismic isolation device according to claim 5,
The slide plate is a hard flat steel plate,
A seismic isolation device characterized in that the double-sided sliding member is a mass of spherical rolling bearings holding at least three spheres of the same diameter so that their relative positions do not shift.
請求項1ないし6のいずれかに記載の免震装置において、前記円筒部材の下端に、前記円柱状部材の端面に支承される免震部材を包覆する免震部材保護部を設け、
前記免震部材保護部上方の前記円筒部材および前記円柱状部材の横断面を、前記免震部材保護部の横断面よりも小さくしたことを特徴とする免震装置。
The seismic isolation device according to any one of claims 1 to 6, wherein a lower end of the cylindrical member is provided with a seismic isolation member protecting portion that covers the seismic isolation member supported on an end surface of the columnar member,
The cross-section of the cylindrical member and the columnar member above the seismic isolation member protection unit is smaller than the cross-section of the seismic isolation member protection unit.
地震時には地盤に対して水平方向に相対移動できる免震構造物の構築方法であり、
先ず地盤上にコンクリートを打設し上面を水平に仕上げてなるコンクリート基礎盤を設け、
前記コンクリート基礎盤の上面に、すべり板を、その上面が周囲コンクリートと同一面になるように配置し、
前記コンクリート基礎盤の硬化後、前記コンクリート基礎盤の上面に接してコンクリートを打設してなるコンクリート上盤を設け、
前記コンクリート上盤内に、請求項1乃至6のいずれかに記載の免震装置のすべり部材、並びにそれらと一体になった上部すべり板を配置し、
前記コンクリート上盤のコンクリート硬化後に、前記すべり部材の円柱状部材を円筒部材に対して相対回転させることにより、前記すべり部材の円柱状部材を前記コンクリート上盤の下側に突出させて前記コンクリート上盤と前記コンクリート基礎盤との間に所定の鉛直間隙を設けることを特徴とする免震構造物の構築方法。
This is a method of building seismic isolation structures that can move horizontally relative to the ground during an earthquake.
First, concrete is cast on the ground, and a concrete foundation is created by finishing the upper surface horizontally.
On the upper surface of the concrete foundation board, a sliding plate is arranged such that the upper surface thereof is flush with the surrounding concrete,
After hardening of the concrete foundation board, providing a concrete upper board made by casting concrete in contact with the upper surface of the concrete foundation board,
A slip member of the seismic isolation device according to any one of claims 1 to 6, and an upper slip plate integrated therewith are arranged in the concrete upper plate,
After hardening the concrete on the concrete base, the columnar member of the slide member is rotated relative to the cylindrical member so that the columnar member of the slide member protrudes below the concrete base, and the concrete A method for constructing a base-isolated structure, wherein a predetermined vertical gap is provided between a board and the concrete foundation board.
請求項8に記載の免震構造物の構築方法において、
前記コンクリート基礎盤および前記免震装置により若干の隙間をもって前記コンクリート基礎盤上に支持されたコンクリート上盤を構成し、
前記コンクリート上盤の側面周囲に断熱材料を配置し、
前記コンクリート基礎盤および前記コンクリート上盤の上下間隙の周囲全周に渡って帯状に前記断熱材料を充填することを特徴とする免震構造物の構築方法。
The method for constructing a base-isolated structure according to claim 8,
Comprising a concrete upper board supported on the concrete base board with a slight gap by the concrete base board and the seismic isolation device,
Arranging a heat insulating material around the side of the concrete upper board,
A method of constructing a seismic isolation structure, characterized in that the heat insulating material is filled in a belt shape over the entire circumference of a vertical gap between the concrete foundation board and the concrete upper board.
請求項9に記載の免震構造物の構築方法において、
前記コンクリート基礎盤上に若干の隙間をもって構築され、かつ側面を断熱材で被覆された前記コンクリート上盤内に、ほぼ全平面に渡って1以上の連続する管体を埋設し、
前記管体の内部に空気もしくは水の流体を滞留もしくは循環させることを特徴とする免震構造物の構築方法。
The method for constructing a base-isolated structure according to claim 9,
At least one continuous pipe body is buried over almost the entire plane in the concrete upper board, which is constructed with a small gap on the concrete base board and is covered with a heat insulating material on a side surface,
A method of constructing a seismic isolation structure, characterized by retaining or circulating a fluid of air or water inside the pipe.
請求項9に記載の免震構造物の構築方法において、
前記コンクリート基礎盤上に若干の隙間をもって構築され、かつ側面を断熱材で被覆された前記コンクリート上盤に、その平面の少なくとも2側辺に近い位置にそれぞれ1以上の貫通孔を設け、
前記コンクリート基礎盤と前記コンクリート上盤との間の空間に、前記貫通孔より温風もしくは冷風を循環させることを特徴とする免震構造物の構築方法。
The method for constructing a base-isolated structure according to claim 9,
The concrete upper plate, which is constructed with a small gap on the concrete base plate, and whose side surface is covered with a heat insulating material, is provided with at least one through hole at a position near at least two sides of the plane,
A method for constructing a seismic isolation structure, comprising circulating hot or cold air from the through hole in a space between the concrete foundation and the concrete upper.
JP2003000127A 2003-01-06 2003-01-06 Seismic isolation device and construction method of seismic isolation structure Expired - Fee Related JP3695715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000127A JP3695715B2 (en) 2003-01-06 2003-01-06 Seismic isolation device and construction method of seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000127A JP3695715B2 (en) 2003-01-06 2003-01-06 Seismic isolation device and construction method of seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2004211424A true JP2004211424A (en) 2004-07-29
JP3695715B2 JP3695715B2 (en) 2005-09-14

Family

ID=32818544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000127A Expired - Fee Related JP3695715B2 (en) 2003-01-06 2003-01-06 Seismic isolation device and construction method of seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3695715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063910A (en) * 2006-09-11 2008-03-21 Tokyu Construction Co Ltd Thermal insulation method for detached vibration-isolated building, heat accumulating method for detached vibration-isolated building and construction method for detached vibration-isolated building
CN110644619A (en) * 2019-09-21 2020-01-03 青岛理工大学 Assembly type limiting reinforced steel-wood frosted sleeve combined node
CN115405006A (en) * 2022-08-25 2022-11-29 华北水利水电大学 Shock insulation structure between assembled concrete structure layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063910A (en) * 2006-09-11 2008-03-21 Tokyu Construction Co Ltd Thermal insulation method for detached vibration-isolated building, heat accumulating method for detached vibration-isolated building and construction method for detached vibration-isolated building
CN110644619A (en) * 2019-09-21 2020-01-03 青岛理工大学 Assembly type limiting reinforced steel-wood frosted sleeve combined node
US10876282B1 (en) 2019-09-21 2020-12-29 Qingdao university of technology Fabricated limiting-reinforced steel-wood frosted sleeve composite joint
CN115405006A (en) * 2022-08-25 2022-11-29 华北水利水电大学 Shock insulation structure between assembled concrete structure layer
CN115405006B (en) * 2022-08-25 2023-08-11 华北水利水电大学 Assembled concrete structure layer interval earthquake structure

Also Published As

Publication number Publication date
JP3695715B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
CN101413302B (en) Friction energy-dissipating type close rib composite wall board
US4336674A (en) Underground structure for residential and business use
Salomovich et al. Thermal Insulation Of The Foundation Walls Of Buildings And Calculation Of Its Thickness
JP2004211424A (en) Base isolation device and construction method of base isolation structure
JP5834223B2 (en) Seismic isolation structure and material with plastic colloid of heavy structure
CN107119814B (en) With lead pipe-coarse sand energy-dissipating and shock-absorbing key external thermal insulation linear type combined wall and the practice
Kanitkar et al. Seismic performance of conventional multi-storey buildings with open ground floors for vehicular parking
CN107165303B (en) External heat preservation type cross-shaped composite wall with lead pipe-coarse sand energy dissipation and shock absorption keys and manufacturing method
Shu et al. Rotational viscoelastic dampers for steel buckling-restrained braced frames: Concept, validation, and evaluation
JP2010248894A (en) Construction method and device for earthquake avoidance sliding foundation
JP3589296B2 (en) Construction method of seismic isolation structure
JP6416239B2 (en) Concrete slab forming method and supporting element
JP4957955B2 (en) Seismic Isolated Building Construction Act
JP3087019B2 (en) Ship bottom insulation base and construction method thereof, and wooden house having the ship bottom insulation foundation
KR200278301Y1 (en) Floor structure of residential building using steel grid
JP3677706B2 (en) Seismic isolation and control structure
CN107119815A (en) Assembled in-line heat-preserving wall and the practice with lead pipe coarse sand energy-dissipating and shock-absorbing key
CN217759368U (en) Mass damping system based on substructure
RU2440464C1 (en) Anti-heaving foundation of building with basement
JPH09177372A (en) Seismic isolator of building
CN215716236U (en) Novel energy-dissipation and shock-absorption wall structure
CN215630793U (en) Assembled power consumption structure
CN209924257U (en) Building energy-saving anti-seismic external wall panel
JP3407728B2 (en) Seismic reinforcement structure of existing structures
RU2374394C1 (en) Spatial foundation platform on sliding layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Ref document number: 3695715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150708

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees