JP2004209610A - Electrode material for electrical discharge machining - Google Patents

Electrode material for electrical discharge machining Download PDF

Info

Publication number
JP2004209610A
JP2004209610A JP2003000856A JP2003000856A JP2004209610A JP 2004209610 A JP2004209610 A JP 2004209610A JP 2003000856 A JP2003000856 A JP 2003000856A JP 2003000856 A JP2003000856 A JP 2003000856A JP 2004209610 A JP2004209610 A JP 2004209610A
Authority
JP
Japan
Prior art keywords
discharge machining
electric discharge
graphite
electrode material
electrical discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003000856A
Other languages
Japanese (ja)
Inventor
Hiroaki Ogura
浩昭 小倉
Kiyoshi Saito
清 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2003000856A priority Critical patent/JP2004209610A/en
Publication of JP2004209610A publication Critical patent/JP2004209610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost electrode material for electrical discharge machining, which has an advantage of a graphite material as the electrical discharge machining material, overcomes its disadvantage of poor heat radiation, one of the demerits of the graphite material, and also its disadvantage that arcs are easily generated, so that electric discharge machining of difficult-to-cut materials such as a cemented carbide material is enabled. <P>SOLUTION: A carbon base material is impregnated with Al alloy containing 10% or more Si by a HIP method or a melt forging method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超硬合金等の難削材料の放電加工用電極材料に関する。
【0002】
【従来の技術】
従来、放電加工用電極材料として、Cu、カーボン材料である黒鉛、W−Cu、W−Ag、黒鉛−Cu材料等が用いられている。超硬合金等の高融点の難削材料の放電加工用電極材料には、これらの中でも、W−Cu、W−Ag、黒鉛−Cu材料が使用されている。
【0003】
各材料は、それぞれ放電加工用材料としての特徴を有している。各材料のそれぞれの代表的な特徴は次のとおりである。Cuは融点が低いため、高融点の超硬合金材料の放電加工用材料としては適していない。黒鉛材料は、電極材料の機械加工性に優れ、放電加工時の荒加工での加工速度が速いという長所を有する一方で、熱がこもり、アークが発生しやすく放電加工時の仕上げ加工には不向きであるという短所を有している。W−Cu、W−Ag材料は、それ自身の融点が高く、高融点で難削材料である超硬合金材料等の放電加工を行うことができる一方、電極材料の機械加工性があまり良くなく、材料費が高いといった問題を有している。黒鉛−Cu材料は、W−Cu,W−Ag材料に比べて機械加工性に優れるが、仕上げ用放電加工にはあまり適していないという問題を有している。
【0004】
【発明が解決しようとする課題】
本発明は、黒鉛材料の放電加工用材料としての長所を有しつつ、黒鉛材料の短所の一つである熱がこもりやすく、アークが発生しやすいといった短所を克服し、超硬合金材料等の難削材料の放電加工が可能となる低コストの放電加工用電極材料を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記問題点を解決するための本発明の放電加工用電極材料は、Siを10%以上含んだAl合金を含有するカーボン複合材料製のものである。また、Siを10%以上含んだAl合金が、カーボン基材にHIP法又は熔湯鍛造法によって含浸されているものである。また、前記カーボン基材が、平均粒子直径が7μm以下で、平均細孔半径が0.75μm以下の黒鉛材料であるものである。
【0006】
Siを10%以上含んだAl合金は、Siを10%以上含有したものであれば、特に限定されるものではない。Siを10%以上含むことによって、純Alの場合よりも、融点が下がり、カーボン基材への含浸温度を下げることが可能となる。また、純Alを含浸した場合、Alが形成され、空気中で保存することが不可能となるが、Siを10%以上含むAl合金を使用することによって、カーボンとの反応性が低下するとともに、含浸温度が下げることができるために、含浸時にAlの形成が起こらない。また、Siを10%以上含んだAl合金を含浸された黒鉛は、比抵抗が減少し、また熱伝導率が向上するため、電極自身の発熱量が減少するとともに放熱性が向上するため、On−Timeを長くとることができ、加工速度が向上する。さらに、放電加工時に、Si成分が放電面に分散分在し、放電が加工面全域で安定化し、アークの発生を抑制するとともに、ピーク電流を低下するために機能する。
【0007】
本発明に係る放電加工用電極材料は、このSiを10%以上含んだAl合金が、HIP法(熱間等方加圧法)又は熔湯鍛造法で、カーボン基材中に含浸されたものである。なお、ここでいうカーボン基材とは、非晶質の炭素材から黒鉛結晶が発達した黒鉛材料までの材質のものを指し、微粒子系で均質な組織性状を有しているものであることが好ましい。
【0008】
特に、平均粒子直径が8μm以下、好ましくは5μm以下で、平均細孔半径が0.75μm以下、好ましくは0.2〜0.7μmの黒鉛材料が好ましく、合せて、嵩密度が1.8〜1.9Mg/m、熱伝導率が70〜100W/(m・K)であることが好ましい。このような黒鉛材料を使用することによって、Siを10%以上含んだAl合金を含浸した時に、基材の全体に均質に分散されるとともに、全体的に緻密な複合組織を呈することになり、超硬合金材料等の難削材料等の放電加工において、荒加工のみならず、仕上げ加工も行うことが可能となる。
【0009】
Siを10%以上含んだAl合金を含浸することによって、カーボン複合材料は、少なくとも嵩密度2.1Mg/m以上、熱伝導率120W/(m・K)以上とすることが好ましい。これによって、超硬合金材料等の難削材料用の放電加工用の電極材料として好適に使用できる。
【0010】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
【0011】
(実施例1)
嵩密度1.9Mg/m、平均細孔半径0.15μm、曲げ強度119MPa、熱伝導率100W/(m・K)、固有抵抗13.4μΩ・mの黒鉛材料に、Siを12%含有するAl合金を600℃で、熔湯鍛造法により含浸し、嵩密度2.16Mg/m、平均細孔半径0.06μm、曲げ強度169MPa、熱伝導率130W/(m・K)、固有抵抗3.1μΩ・mの複合材料を得た。この材料を、使用して超硬合金材料の放電加工を行った。
【0012】
(実施例2)
嵩密度1.79Mg/m、平均細孔半径0.70μm、曲げ強度78MPa、熱伝導率78W/(m・K)、固有抵抗15.2μΩ・mの黒鉛材料に、Siを12%含有するAl合金を600℃で、熔湯鍛造法により含浸し、嵩密度2.20Mg/m、平均細孔半径0.08μm、曲げ強度148MPa、熱伝導率225W/(m・K)、固有抵抗1.9μΩ・mの複合材料を得た。この材料を、使用して超硬合金材料の放電加工を行った。
【0013】
(比較例1)
嵩密度1.81Mg/m、平均細孔半径1.2μm、曲げ強度71MPa、熱伝導率83W/(m・K)、固有抵抗15.1μΩ・mの黒鉛材料に、Siを12%含有するAl合金を600℃で、熔湯鍛造法により含浸し、嵩密度2.14Mg/m、平均細孔半径0.03μm、曲げ強度143MPa、熱伝導率110W/(m・K)、固有抵抗3.0μΩ・mの複合材料を得た。この材料を、使用して超硬合金材料の放電加工を行った。
【0014】
実施例1及び実施例2の複合材料を放電加工用電極材料として使用した場合、超硬合金材料を放電加工をした場合であっても、アークの発生がなく、従来の黒鉛−Cu材料と同等以上に放電加工を行うことができた。一方、比較例1の複合材料を放電加工用電極材料として使用し、超硬合金材料を放電加工したところ、アークが発生し、電極材料の加工面が不均一消耗を起こし、超硬合金材料の放電加工を行うことができなかった。これは、基材の平均細孔半径が他の実施例1及び2のものに比べ大きく、そのため、Al合金含浸部分に放電が集中したためであると思われる。
【0015】
【発明の効果】
本発明の放電加工用電極材料は以上のように、Siを10%以上含んだAl合金を含有するカーボン複合材料で形成されており、Siを10%以上含むAl合金を含むことで、熱伝導率が高まるとともに、放電加工時に安定した放電が得られことから、超硬合金材料等の難削材料の放電加工用電極材料としても使用が可能となる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material for electric discharge machining of a hard-to-cut material such as a cemented carbide.
[0002]
[Prior art]
Conventionally, Cu, graphite which is a carbon material, W-Cu, W-Ag, graphite-Cu material and the like have been used as electrode materials for electric discharge machining. Among these, W-Cu, W-Ag, and graphite-Cu materials are used as electrode materials for electric discharge machining of hard-to-cut materials having a high melting point such as cemented carbide.
[0003]
Each material has characteristics as a material for electric discharge machining. The representative characteristics of each material are as follows. Since Cu has a low melting point, it is not suitable as a material for electrical discharge machining of a high-melting-point cemented carbide material. Graphite materials have the advantages of excellent machinability of electrode materials and high machining speed in rough machining during electric discharge machining, but they are also not suitable for finishing machining during electric discharge machining because they tend to retain heat and generate arcs. The disadvantage is that W-Cu and W-Ag materials have their own high melting points and can be used for electrical discharge machining of hard metal materials and the like, which are high melting points and difficult-to-cut materials. However, there is a problem that the material cost is high. Graphite-Cu materials have better machinability than W-Cu and W-Ag materials, but have the problem that they are not very suitable for electrical discharge machining for finishing.
[0004]
[Problems to be solved by the invention]
The present invention has the advantages of a graphite material as an electrical discharge machining material, while overcoming one of the disadvantages of the graphite material, that is, the heat is easily retained, and the arc is easily generated. An object of the present invention is to provide a low-cost electrode material for electric discharge machining which enables electric discharge machining of a difficult-to-cut material.
[0005]
[Means for Solving the Problems]
The electrode material for electric discharge machining according to the present invention for solving the above problems is made of a carbon composite material containing an Al alloy containing 10% or more of Si. Further, an Al alloy containing 10% or more of Si is impregnated into a carbon base material by a HIP method or a molten forging method. Further, the carbon substrate is a graphite material having an average particle diameter of 7 μm or less and an average pore radius of 0.75 μm or less.
[0006]
The Al alloy containing 10% or more of Si is not particularly limited as long as it contains 10% or more of Si. By containing 10% or more of Si, the melting point is lower than in the case of pure Al, and it is possible to lower the temperature for impregnating the carbon base material. When pure Al is impregnated, Al 4 C 3 is formed and cannot be stored in the air. However, by using an Al alloy containing 10% or more of Si, reactivity with carbon is reduced. Since the temperature is lowered and the impregnation temperature can be lowered, the formation of Al 4 C 3 does not occur during the impregnation. On the other hand, graphite impregnated with an Al alloy containing 10% or more of Si has a reduced specific resistance and an improved thermal conductivity. -Time can be lengthened, and the processing speed is improved. Further, at the time of electric discharge machining, the Si component is dispersed and distributed on the electric discharge surface, and the electric discharge stabilizes over the entire electric surface, suppresses arcing, and functions to reduce the peak current.
[0007]
The electrode material for electric discharge machining according to the present invention is such that an Al alloy containing 10% or more of Si is impregnated into a carbon base material by a HIP method (hot isostatic pressing method) or a molten forging method. is there. Here, the carbon substrate refers to a material ranging from an amorphous carbon material to a graphite material in which graphite crystals have been developed, and may be a fine particle-based material having a uniform texture. preferable.
[0008]
In particular, a graphite material having an average particle diameter of 8 μm or less, preferably 5 μm or less, and an average pore radius of 0.75 μm or less, preferably 0.2 to 0.7 μm is preferable. It is preferable that the thermal conductivity is 1.9 Mg / m 3 and the thermal conductivity is 70 to 100 W / (m · K). By using such a graphite material, when impregnated with an Al alloy containing 10% or more of Si, it is uniformly dispersed throughout the base material, and exhibits a dense composite structure as a whole, In electric discharge machining of hard-to-cut materials such as cemented carbide materials, not only rough machining but also finishing machining can be performed.
[0009]
By impregnating an Al alloy containing 10% or more of Si, the carbon composite material preferably has at least a bulk density of 2.1 Mg / m 3 or more and a thermal conductivity of 120 W / (m · K) or more. Thereby, it can be suitably used as an electrode material for electric discharge machining for a hard-to-cut material such as a cemented carbide material.
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. Note that the present invention is not limited to the following examples.
[0011]
(Example 1)
A graphite material having a bulk density of 1.9 Mg / m 3 , an average pore radius of 0.15 μm, a bending strength of 119 MPa, a thermal conductivity of 100 W / (m · K), and a specific resistance of 13.4 μΩ · m contains 12% of Si. An Al alloy is impregnated at 600 ° C. by a melt forging method, and has a bulk density of 2.16 Mg / m 3 , an average pore radius of 0.06 μm, a bending strength of 169 MPa, a thermal conductivity of 130 W / (m · K), and a specific resistance of 3 .1 μΩ · m was obtained. Using this material, electric discharge machining of a cemented carbide material was performed.
[0012]
(Example 2)
A graphite material having a bulk density of 1.79 Mg / m 3 , an average pore radius of 0.70 μm, a bending strength of 78 MPa, a thermal conductivity of 78 W / (m · K), and a specific resistance of 15.2 μΩ · m contains 12% of Si. An Al alloy is impregnated at 600 ° C. by a melt forging method, and has a bulk density of 2.20 Mg / m 3 , an average pore radius of 0.08 μm, a bending strength of 148 MPa, a thermal conductivity of 225 W / (m · K), and a specific resistance of 1. A composite material having a thickness of 0.9 μΩ · m was obtained. Using this material, electric discharge machining of a cemented carbide material was performed.
[0013]
(Comparative Example 1)
A graphite material having a bulk density of 1.81 Mg / m 3 , an average pore radius of 1.2 μm, a bending strength of 71 MPa, a thermal conductivity of 83 W / (m · K), and a specific resistance of 15.1 μΩ · m contains 12% of Si. An Al alloy is impregnated at 600 ° C. by a melt forging method, and has a bulk density of 2.14 Mg / m 3 , an average pore radius of 0.03 μm, a bending strength of 143 MPa, a thermal conductivity of 110 W / (m · K), and a specific resistance of 3. A composite material of 0.0 μΩ · m was obtained. Using this material, electric discharge machining of a cemented carbide material was performed.
[0014]
When the composite materials of Example 1 and Example 2 were used as electrode materials for electric discharge machining, no arc was generated even when electric discharge machining was performed on a cemented carbide material, equivalent to a conventional graphite-Cu material. The electric discharge machining was performed as described above. On the other hand, when the composite material of Comparative Example 1 was used as an electrode material for electrical discharge machining and the cemented carbide material was subjected to electrical discharge machining, an arc was generated, the machining surface of the electrode material was unevenly worn, and the Electric discharge machining could not be performed. This is considered to be because the average pore radius of the base material was larger than those of the other Examples 1 and 2, and therefore, the discharge was concentrated on the Al alloy-impregnated portion.
[0015]
【The invention's effect】
As described above, the electrode material for electric discharge machining of the present invention is formed of a carbon composite material containing an Al alloy containing 10% or more of Si. Since the discharge rate is increased and a stable electric discharge is obtained at the time of electric discharge machining, it can be used as an electrode material for electric discharge machining of a difficult-to-cut material such as a cemented carbide material.

Claims (3)

Siを10%以上含んだAl合金を含有するカーボン複合材料製の放電加工用電極材料。An electrode material for electric discharge machining made of a carbon composite material containing an Al alloy containing 10% or more of Si. 前記Siを10%以上含んだAl合金が、カーボン基材にHIP法又は熔湯鍛造法によって含浸されている請求項1に記載の放電加工用電極材料。The electrode material for electric discharge machining according to claim 1, wherein the Al alloy containing 10% or more of Si is impregnated into a carbon base material by a HIP method or a molten forging method. 前記カーボン基材が、平均粒子直径が8μm以下で、平均細孔半径が0.75μm以下の黒鉛材料である請求項2に記載の放電加工用電極材料。The electrode material for electric discharge machining according to claim 2, wherein the carbon base material is a graphite material having an average particle diameter of 8 µm or less and an average pore radius of 0.75 µm or less.
JP2003000856A 2003-01-07 2003-01-07 Electrode material for electrical discharge machining Pending JP2004209610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000856A JP2004209610A (en) 2003-01-07 2003-01-07 Electrode material for electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000856A JP2004209610A (en) 2003-01-07 2003-01-07 Electrode material for electrical discharge machining

Publications (1)

Publication Number Publication Date
JP2004209610A true JP2004209610A (en) 2004-07-29

Family

ID=32819027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000856A Pending JP2004209610A (en) 2003-01-07 2003-01-07 Electrode material for electrical discharge machining

Country Status (1)

Country Link
JP (1) JP2004209610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273207A (en) * 2006-03-31 2007-10-18 Japan Siper Quarts Corp Arc discharging device, quarts glass melting pot manufacturing device and its usage
DE102009048006B3 (en) * 2009-10-02 2011-03-17 Sgl Carbon Se Graphite body impregnated with a light metal alloy, process for its preparation and its use
US8172942B2 (en) 2008-10-17 2012-05-08 Japan Super Quartz Corporation Arc discharge apparatus, apparatus and method for manufacturing vitreous silica glass crucible, and method for pulling up silicon single crystal
WO2015159709A1 (en) * 2014-04-15 2015-10-22 東洋炭素株式会社 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273207A (en) * 2006-03-31 2007-10-18 Japan Siper Quarts Corp Arc discharging device, quarts glass melting pot manufacturing device and its usage
US8172942B2 (en) 2008-10-17 2012-05-08 Japan Super Quartz Corporation Arc discharge apparatus, apparatus and method for manufacturing vitreous silica glass crucible, and method for pulling up silicon single crystal
DE102009048006B3 (en) * 2009-10-02 2011-03-17 Sgl Carbon Se Graphite body impregnated with a light metal alloy, process for its preparation and its use
WO2011039380A1 (en) 2009-10-02 2011-04-07 Sgl Carbon Se Graphite body impregnated with a light metal alloy
CN102549184A (en) * 2009-10-02 2012-07-04 Sgl碳股份公司 Graphite body impregnated with a light metal alloy
WO2015159709A1 (en) * 2014-04-15 2015-10-22 東洋炭素株式会社 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
JP2015212005A (en) * 2014-04-15 2015-11-26 東洋炭素株式会社 Graphite-copper composite electrode material, and electrode for electrical discharge processing using the same
CN106163985A (en) * 2014-04-15 2016-11-23 东洋炭素株式会社 Graphite-copper combination electrode material and the electro-discharge machining electrode using this material
KR20160143828A (en) 2014-04-15 2016-12-14 토요 탄소 가부시키가이샤 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
CN106163985B (en) * 2014-04-15 2019-05-28 东洋炭素株式会社 Graphite-copper combination electrode material and electro-discharge machining electrode using the material
US10357838B2 (en) 2014-04-15 2019-07-23 Toyo Tanso Co., Ltd. Graphite-copper composite electrode material and electrical discharge machining electrode using the material

Similar Documents

Publication Publication Date Title
JP7164906B2 (en) METHOD FOR PREPARATION OF METAL MATERIAL OR METAL COMPOSITE MATERIAL
RU2228824C2 (en) Electrode rod for electric spark surfacing, method for making it and method for applying coating containing superabrasive
KR20070114133A (en) High-heat-conduction composite with graphite grain dispersed and process for producing the same
JP2006001232A (en) Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP2003117732A (en) Wire electrode for cutting by electric discharge machining
JP4733890B2 (en) Method for forming a film containing SiO2 as a main component
KR20170044668A (en) Plain Bearing or Part Thereof, Method for Producing Same and Use of a CuCrZr alloy as a Plain Bearing Material
US4678720A (en) Silver-copper-titanium brazing alloy
JP2004209610A (en) Electrode material for electrical discharge machining
JP2017527692A (en) Target and target manufacturing method
US3255522A (en) Abrasion resistant material bonding process using boron alloys
JPH0196083A (en) Surface-coated cubic boron nitride based material sintered under superhigh pressure to be used for cutting tool
JPH08134635A (en) Aluminum-titanium alloy target materia for dry-process vapor deposition
CN102549184A (en) Graphite body impregnated with a light metal alloy
CN114807724B (en) Wear-resistant composite material prepared by laser 3D printing technology and method
CN115198224B (en) Preparation method of composite ceramic wear-resistant coating with similar hard alloy structure
JP2010007103A (en) Method for producing aluminum member
CN102864450B (en) Method for preparing Al3Zr granule-enhanced high silicon and aluminum-based composite material
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JP4645944B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2018103349A (en) Low-consumable electrode for electrical discharge machining
JP2004358623A (en) Electrode material for electric discharge machining
JP2009043981A (en) Ceramics substrate for electronic component, and method of manufacturing same
TW570990B (en) Silicon substrate or silicon sputtering target and manufacturing method thereof
JP2004042190A (en) Electrode for electric discharge machining