JP2004209495A - Scheduling method in consideration of electric power costs in hot rolling - Google Patents
Scheduling method in consideration of electric power costs in hot rolling Download PDFInfo
- Publication number
- JP2004209495A JP2004209495A JP2002380064A JP2002380064A JP2004209495A JP 2004209495 A JP2004209495 A JP 2004209495A JP 2002380064 A JP2002380064 A JP 2002380064A JP 2002380064 A JP2002380064 A JP 2002380064A JP 2004209495 A JP2004209495 A JP 2004209495A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- heating
- slab
- loss
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005098 hot rolling Methods 0.000 title claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims abstract description 105
- 238000010438 heat treatment Methods 0.000 claims abstract description 83
- 238000011156 evaluation Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Control Of Metal Rolling (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、スラブの加熱処理に続いて圧延処理をするようにした熱間圧延において用いられる電力コストを加味したスケジューリング方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特許第2984182号公報
【特許文献2】特開2000−167610号公報
【特許文献3】特公昭63−23846号公報
【0003】
加熱炉と圧延機により構成され、スラブの加熱処理に続いて圧延処理をするようにした熱間圧延においては、多種類の圧延製品を生産する場合、各圧延材(スラブ)の各加熱炉への割り付け、および装入順序と、加熱されたスラブの圧延機による圧延順序の計画立案、即ち熱間圧延におけるスケジューリングが、生産効率や生産コストに大きく影響している。そこで、例えば特許文献1や特許文献2のように、圧延制約と加熱効率を考慮して最適なスラブの圧延順序を決定することが種々提案され、実用に供されている。
【0004】
しかしながら、特許文献1の発明は2〜4時間分のスラブ(80〜150本)を対象に圧延順序を決定するものであり、現実問題として圧延能力を最大にするためには約一日分のスラブ(800〜900本)を対象に先読みしながら圧延順序を決定する必要があるため、このスケジューリング方法では一日を通してみた場合は実用的な最適解が得られないという問題点があった。また、特許文献2の発明は同じ加熱条件を有するスラブのグループ分けを重視してスケジューリングするもので、圧延順を決定後に加熱炉の割り付けを行う方法であり、加熱炉と圧延機の能力の整合性が考慮されておらず最適解にならないという問題点があった。
【0005】
このほか特許文献3には、熱間連続圧延において燃料コストと電力コストの和をミニマムとする操業方法が記載されている。しかしこの方法は、抽出温度、抽出ピッチ、圧延速度などを制御することによりコストミニマムを追求する方法であって、スラブの圧延順をスケジューリングするものではない。このように、従来は電力コストを加味して最適なスラブの圧延順序を決定することができるスケジューリング方法は知られていない。
【0006】
【発明が解決しようとする課題】
本発明は上記のような従来の問題点を解決して、約一日分のスラブを対象に加熱炉と圧延機の能力の同期化や、圧延制約・加熱制約のほか電力コストをも考慮しながら、熱間圧延における処理能力を最大とするスケジューリング方法を提供することを目的として完成されたものである。
【0007】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の電力コストを加味したスケジューリング方法は、スラブの加熱処理に続いて圧延処理をするようにした熱間圧延におけるスケジューリング方法において、スケジューリング対象となる全スラブを、加熱条件・圧延条件によりグループ分けし、加熱速度と圧延速度の速度差が小さいほど高い評価点を与えるという同期化ルールと、加熱処理時におけるグループの前後関係で加熱条件の相違が少ないほど高い評価点を与えるという前後関係ルールとに従って全グループの並び順の一次案を決定し、この一次案に基づいて加熱ロス時間及び圧延ロス時間の評価と、総電力コストの評価とを行い、圧延ロス時間の増加が許容範囲を越えない範囲で総電力コストが最小となる並び順を再度演算し、全グループの並び順を決定することを特徴とするものである。なお、グループの圧延順序を決定した後、更にグループ内の各スラブの圧延順序をスラブ巾、スラブ厚み等の条件を考慮して最適となるように決定することが好ましい。
【0008】
以下に説明するように、本発明によれば約一日分の全スラブを対象として、加熱炉と圧延機の能力の同期化や、圧延制約・加熱制約を考慮し、さらに加熱炉の能力ロス、圧延機の能力ロス、総電力コストを総合的に考慮して、最適のスケジュールを決定することができる。
【0009】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
この実施形態では、約一日分のスラブ(800〜900本)をスケジューリング対象とし、先ずスラブの加熱条件・圧延条件・作業タイミングによりスラブをグループ分けする。加熱条件はスラブの材質で決まるものであり、圧延条件はスラブの巾や厚みで決まるものである。また、作業タイミングは同じ時間帯にスラブが生産されるか否かをチェックするものである。このグループ分けにより、約20〜30のグループが形成される。
【0010】
次いで、得られた各グループの圧延順を最適となるようにするのであるが、本発明ではグループの並び順パターンを、同期化ルールと前後関係ルールの2つのルールに従って評価し、該評価点が最大となるものを最適なスケジュールとする。ここで同期化ルールとは、得られた各グループを加熱速度および圧延速度の早い遅いから更に複数個のカテゴリ別に分類し、該カテゴリ間の加熱速度と圧延速度の速度差が小さいほど高い評価点を与えるルールをいう。
【0011】
前記カテゴリの分類は、以下に示す[数1]、[数2]の式から、それぞれ加熱速度(Vrf)、圧延時間(Vpc)を求め、図1に示すカテゴリの分類指標に基づいてカテゴリ▲1▼からカテゴリ▲4▼のいずれかに分類する。なお、加熱速度、圧延時間のカテゴリ間の境界値は、スラブ材料等に従ってその都度定める。
【0012】
【数1】
【数2】
【0013】
カテゴリに分類した後、同期化ルールにより、カテゴリ間の加熱速度と圧延速度の速度差が小さいほど高い評価点を与える。例えば、圧延速度の遅いカテゴリに属するグループの後には、加熱速度の遅いカテゴリに属するグループを配置する場合は高い評価点とする。具体的には、カテゴリ▲1▼→カテゴリ▲2▼、カテゴリ▲2▼→カテゴリ▲2▼、カテゴリ▲2▼→カテゴリ▲3▼、カテゴリ▲1▼→カテゴリ▲3▼の場合である。 また、圧延速度の早いカテゴリに属するグループの後には、加熱速度の早いカテゴリに属するグループを配置する場合は高い評価点とする。具体的には、カテゴリ▲3▼→カテゴリ▲4▼、カテゴリ▲4▼→カテゴリ▲4▼、カテゴリ▲4▼→カテゴリ▲1▼、カテゴリ▲3▼→カテゴリ▲1▼の場合である。これらカテゴリの前後関係の評価をまとめると表1のとおりである。
【0014】
【表1】
【0015】
次に、前後関係ルールとは、加熱処理時におけるグループの前後関係で加熱条件の相違が少ないほど高い評価点を与えるルールをいう。これは、スラブの材質によって加熱時間、加熱温度等の処理条件が異なるため、前後関係にあるグループの加熱条件の相違が少ないほど効率よく加熱処理できることとなるからである。具体的には、表2に示すように、グループのスラブ材質が同一、若しくは類似する関係に近いほど高い評価点を与える。
【0016】
【表2】
【0017】
例えば、グループ[i]の後に、グループ[j]を並べた場合の評価点(Point[i][j])は、次の[数3]により求められる。
【数3】
【0018】
以上の同期化ルールと前後関係ルールの2つのルールに従って全グループの並び順を評価し、該評価点が最大となるものを最適なスケジュールとして全グループの並び順の一次案を決定する。なお、評価点の最大値の検索はタブサーチ等の検索法により求めることができる。このようにして一次案を決定した後、本発明はさらに加熱ロス時間、圧延ロス時間、電力コストが最小となる並び順を演算する。
【0019】
まず以下の手順の概要を説明する。
最初に、一次案によるスラブの圧延順序に対して、各スラブ固有の必要加熱時間と圧延処理時間を基に、加熱時間と圧延待ち時間を算出する。算出された加熱時間とスラブ固有の必要加熱時間とを比較して加熱ロスを算出する。一方、スラブ固有の圧延処理時間から算出した圧延能力と、圧延待ち時間まで含んでシミュレーションにより算出した圧延能力とを比較して圧延ロスを算出する。そしてこれら加熱ロスと圧延ロスを同一時間軸上に表現することによりロスの発生位置と発生原因となるスラブを特定する。このスラブ情報に基づいて加熱ロス及び圧延ロスがミニマムとなるスケジュールを修正するのであるが、スケジュールごとに電力量を予測して消費電力コストを計算し、消費電力コストをも加味したスケジューリングを行う。以下に具体的な手順を示す。
【0020】
まず、各スラブの必要加熱時間:Tneed(Hr)、圧延機の通板時間:Tidle(Hr)、前スラブ圧延後の最低保証圧延間隔:Tmin idle(Hr)を入力する。ここでスラブの必要加熱時間とは、スラブの材質や巾・厚み等の物性で定まる必然的な加熱時間であり、圧延機の通板時間とは、圧延機の能力で定まる時間である。また、最低保証圧延間隔とは、圧延ロールの冷却に必要な時間である。
【0021】
次に、特定のスラブの圧延時刻を算出する。例えば、図2に示されるように、材料であるスラブAが加熱炉に入るときに、加熱炉内の先頭にスラブBが位置していたとする。なお図2において、Lrf:加熱炉長(m)、Wi:スラブ巾(m)、Wsp:スラブ間隔(m)である。この場合、スラブAの加熱時間(T)は[数4]により求めることができる。即ち、スラブAの加熱時間は、前スラブ圧延後の圧延間隔と圧延時間との和をスラブBからスラブ(A−1)まで積和した値と、スラブ固有の必要加熱時間のうちの大きい方の値とする。
【数4】
【0022】
次に、このようにして算出したスラブAの加熱時間(T)から、スラブA前の圧延間隔時間を算出する。先ず、前記の積和した値よりもスラブ固有の必要加熱時間の方が大きい場合は、[数5]の右側の式で求めた時間をB〜A間にあるスラブのTidle i:前スラブ圧延後の圧延間隔(Hr)に加算する。
【数5】
【0023】
一方、前記の積和した値よりもスラブ固有の必要加熱時間の方が小さい場合は、[数6]の右側の式により、その最小値を圧延間隔時間とする。
【数6】
【0024】
次に、スラブAの加熱完了待ちのために発生する圧延ロス時間:Tloss Aを算出する。この圧延ロス時間は、[数7]に従い、スラブの必要加熱時間と、前スラブ圧延後の圧延間隔と圧延時間との和の差を取ることで求めることができる。
【数7】
【0025】
次に、以上のようにして算出した加熱ロスと圧延ロスを、図3のグラフに示されるように、同一時間軸上に表現する。なお図3中の圧延T/Hは、圧延機の能力を示す。このようにシミュレーションにより得られる加熱時間(図中の上グラフの実線)と実際に必要な加熱時間(図中の上グラフの一点鎖線)、およびシミュレーションにより得られる理論圧延能力(図中の下グラフの破線)と実際に必要な実圧延能力(図中の下グラフの実線)を同一時間軸上に表現することにより、加熱ロスおよび圧延ロスが一目で確認することが可能となる。この結果、現時点でのスケジュールの適否を瞬時に判断することができる。
【0026】
以上のようにしてロスの発生位置と発生原因となるグループを特定した後は、この情報に基づいてスケジュールを修正する。例えば、図3中、ポジションAについては、加熱待ちによる圧延ロスが発生していることがわかるので、この空いている圧延ロス中に適当なグループの圧延を組み込む組替えを実施する。またポジションBについては、加熱ロスを発生させる原因となるグループが特定できたので、これを圧延効率が高いグループに組替えるようにスケジュールを変更する。また、ポジションCについては、加熱ロスが発生している場所が特定できたので、必要加熱時間が長いグループに組替えるようにスケジュールを変更する。
【0027】
このスケジュールの修正に際しては、消費電力コストを考慮する。電力コストの計算は次のようにして行われる。先ずスラブ1本毎の使用電力量は、スラブ重量と圧下率に過去実績から求めた係数を掛けることにより求められる。次に各時間帯の熱間圧延工場の総使用電力量は、その時間帯に圧延されるスラブについての上記使用電力量を積算し、過去実績から求めた係数をかけることによって求められる。その一例を図3の下段に示す。さらに単位電力量当たりの電力単価は昼間と夜間とで異なるため、昼間時間帯と夜間時間帯とのそれぞれの総使用電力量に、それぞれの時間帯の電力単価を掛けることにより、総電力コストが算出できる。
【0028】
この総電力コストは圧延スケジュール毎に瞬時に計算できるので、前記のようにして圧延ロス及び加熱ロスをなくすようにグループの組替えを行う際に、できるだけ総電力コストが低くなるようにスケジューリングを行う。しかし圧延ロス及び加熱ロスがミニマムとなるスケジューリングと、電力コストがミニマムとなるスケジューリングとは必ずしも一致しない。そこで一次案が決定された後は、次のとおりの手順で再演算を行う。
【0029】
▲1▼ 一次案によるスラブの圧延順序に対して、上記のようにして圧延ロス時間、その原因となるグループ、加熱ロス発生の時間帯を求める。
▲2▼ 前後関係ルールで問題なし(表1の○)の範囲内において、グループの順序を入れ替え、圧延ロス時間の評価と、総電力コストの評価とを再度行う。
▲3▼ このグループの並べ替えと評価の繰り返しを制約伝播法などの探索手法を使うことによって行い、圧延ロス時間の増加がオペレータに与えられた許容範囲を越えない範囲で総電力コストがミニマムとなるグループの順を求める。
【0030】
このようにしてグループの最適なスケジューリングが決定された後、更にグループ内の各スラブの圧延順序をスラブ巾、スラブ厚み等の条件を考慮して最適となるように決定することが好ましい。
【0031】
【発明の効果】
以上の説明から明らかなように、本発明は約一日分の全スラブを対象に加熱炉と圧延機の能力の同期化や、圧延制約・加熱制約を考慮し、さらに加熱炉の能力ロス、圧延機の能力ロス、総電力コストを総合的に考慮して、最適のスケジュールを決定することができる利点がある。
【図面の簡単な説明】
【図1】カテゴリの分類指標を示すグラフである。
【図2】加熱炉内のスラブの並びを説明する図である。
【図3】加熱ロスと圧延ロスを同一時間軸上に表現したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a scheduling method that takes into account the power cost used in hot rolling in which a rolling process is performed after a slab heating process.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent No. 2984182 [Patent Document 2] Japanese Patent Application Laid-Open No. 2000-167610 [Patent Document 3] Japanese Patent Publication No. 63-23846 [0003]
In hot rolling, which consists of a heating furnace and a rolling mill, and performs a rolling process following a slab heating process, when producing various types of rolled products, it is necessary to go to each heating furnace for each rolled material (slab). And the order of charging, and the planning of the rolling sequence of the heated slab by the rolling mill, that is, the scheduling in the hot rolling, greatly affect production efficiency and production cost. Accordingly, various proposals have been made to determine an optimal slab rolling order in consideration of rolling constraints and heating efficiency, as in Patent Literature 1 and Patent Literature 2, for example, and they have been put to practical use.
[0004]
However, the invention of Patent Literature 1 determines the rolling order for slabs (80 to 150) for 2 to 4 hours. As a practical matter, in order to maximize the rolling capacity, it takes about one day. Since it is necessary to determine the rolling order while pre-reading the slabs (800 to 900), this scheduling method has a problem that a practical optimum solution cannot be obtained when viewed throughout the day. In addition, the invention of Patent Document 2 is a method of scheduling with emphasis on grouping of slabs having the same heating condition, and a method of allocating heating furnaces after determining a rolling order, and matching the capabilities of the heating furnace and the rolling mill. There is a problem that the optimal solution is not taken into account due to the lack of consideration of the nature.
[0005]
In addition, Patent Document 3 discloses an operation method in which the sum of fuel cost and electric power cost is minimized in hot continuous rolling. However, this method is a method for pursuing the cost minimum by controlling the extraction temperature, the extraction pitch, the rolling speed, and the like, and does not schedule the rolling order of the slab. As described above, conventionally, there is no known scheduling method capable of determining an optimum slab rolling order in consideration of power cost.
[0006]
[Problems to be solved by the invention]
The present invention solves the conventional problems as described above, and aims at synchronizing the capacity of a heating furnace and a rolling mill for a slab for about one day, and considering power costs in addition to rolling constraints and heating constraints. However, it has been completed for the purpose of providing a scheduling method that maximizes the processing capacity in hot rolling.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the scheduling method taking into account the electric power cost of the present invention is a scheduling method in hot rolling in which a rolling process is performed after a slab heating process. Are divided into groups according to heating conditions and rolling conditions, and a synchronization rule that gives a higher evaluation point as the difference between the heating speed and the rolling speed is smaller, and as the difference between the heating conditions in the anteroposterior relationship of the group during the heat treatment becomes smaller, According to the context rule of giving a high evaluation point, a primary plan of the order of all the groups is determined, and based on the primary plan, the heating loss time and the rolling loss time are evaluated, and the total power cost is evaluated. The order in which the total power cost is minimized within the range where the increase in the loss time does not exceed the allowable range is calculated again, and It is characterized in that to determine the sort order. After determining the rolling order of the group, it is preferable that the rolling order of each slab in the group is further determined so as to be optimal in consideration of conditions such as slab width and slab thickness.
[0008]
As described below, according to the present invention, for all slabs for about one day, synchronization of the capacity of the heating furnace and the rolling mill, and consideration of rolling constraints and heating constraints, and further, loss of capacity of the heating furnace The optimal schedule can be determined by comprehensively considering the loss of rolling mill capacity and the total power cost.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In this embodiment, slabs for about one day (800 to 900 slabs) are to be scheduled, and slabs are first grouped according to slab heating conditions, rolling conditions, and work timing. The heating conditions are determined by the material of the slab, and the rolling conditions are determined by the width and thickness of the slab. The work timing is to check whether slabs are produced in the same time zone. By this grouping, about 20 to 30 groups are formed.
[0010]
Then, the obtained rolling order of each group is optimized. In the present invention, the pattern of the group arrangement is evaluated according to two rules, a synchronization rule and a context rule, and the evaluation point is determined. The largest one is the optimal schedule. Here, the synchronization rule means that the obtained groups are further classified into a plurality of categories from the fastest and slowest heating speeds and rolling speeds, and the smaller the difference between the heating speed and the rolling speed between the categories, the higher the evaluation score. A rule that gives
[0011]
In the classification of the category, the heating rate (V rf ) and the rolling time (V pc ) are obtained from the following equations (Equation 1) and (Equation 2), respectively, and based on the category classification index shown in FIG. It is classified into one of the categories (1) to (4). The boundary values between the categories of the heating rate and the rolling time are determined each time according to the slab material and the like.
[0012]
(Equation 1)
(Equation 2)
[0013]
After being classified into categories, a higher evaluation score is given by a synchronization rule as the difference between the heating speed and the rolling speed between the categories is smaller. For example, when a group belonging to a category having a slow heating rate is arranged after a group belonging to a category having a slow rolling rate, a high evaluation score is obtained. Specifically, this is the case of category (1) → category (2), category (2) → category (2), category (2) → category (3), category (1) → category (3). In addition, when a group belonging to a category having a high heating rate is arranged after a group belonging to a category having a high rolling rate, a high evaluation score is obtained. Specifically, this is the case of category (3) → category (4), category (4) → category (4), category (4) → category (1), category (3) → category (1). Table 1 summarizes the evaluation of the context of these categories.
[0014]
[Table 1]
[0015]
Next, the context rule refers to a rule that gives a higher evaluation score as the difference in the heating conditions is smaller in the context of the group during the heat treatment. This is because the processing conditions such as the heating time and the heating temperature are different depending on the material of the slab, so that the smaller the difference in the heating conditions between the groups in the front-back relationship, the more efficient the heat treatment. Specifically, as shown in Table 2, the higher the slab material of the group is, the closer the slab material is to the same or similar relationship.
[0016]
[Table 2]
[0017]
For example, an evaluation point (Point [i] [j]) when the group [j] is arranged after the group [i] is obtained by the following [Equation 3].
[Equation 3]
[0018]
The arrangement order of all groups is evaluated in accordance with the above two rules of the synchronization rule and the context rule, and the primary schedule having the largest evaluation score is determined as an optimal schedule and the primary plan of the arrangement order of all groups is determined. The search for the maximum value of the evaluation points can be obtained by a search method such as a tab search. After determining the primary plan in this way, the present invention further calculates the arrangement order in which the heating loss time, the rolling loss time, and the power cost are minimized.
[0019]
First, the outline of the following procedure will be described.
First, a heating time and a rolling waiting time are calculated based on a required heating time and a rolling processing time unique to each slab with respect to the slab rolling order according to the primary plan. The heating loss is calculated by comparing the calculated heating time with the required heating time unique to the slab. On the other hand, the rolling loss calculated by comparing the rolling capacity calculated from the rolling processing time unique to the slab with the rolling capacity calculated by simulation including the rolling waiting time. Then, by expressing the heating loss and the rolling loss on the same time axis, the position where the loss occurs and the slab that causes the loss are specified. The schedule in which the heating loss and the rolling loss are minimum is corrected based on the slab information. The amount of power consumption is calculated by predicting the amount of power for each schedule, and the scheduling is performed in consideration of the power consumption cost. The specific procedure is shown below.
[0020]
First, the required heating time of each slab: T need (Hr), the threading time of the rolling mill: T idle (Hr), and the minimum guaranteed rolling interval after the previous slab rolling: T min idle (Hr). Here, the required heating time of the slab is an inevitable heating time determined by physical properties of the slab, such as the material and the width and the thickness, and the passing time of the rolling mill is a time determined by the capacity of the rolling mill. The minimum guaranteed rolling interval is the time required for cooling the rolling roll.
[0021]
Next, the rolling time of a specific slab is calculated. For example, as shown in FIG. 2, suppose that slab B is located at the head of the heating furnace when slab A as a material enters the heating furnace. In FIG. 2, Lrf: heating furnace length (m), Wi: slab width (m), Wsp: slab interval (m). In this case, the heating time (T) of the slab A can be obtained by [Equation 4]. That is, the heating time of the slab A is the larger of the sum of the rolling interval after the previous slab rolling and the rolling time summed from the slab B to the slab (A-1) or the required heating time unique to the slab. Value.
(Equation 4)
[0022]
Next, a rolling interval time before the slab A is calculated from the heating time (T) of the slab A calculated as described above. First, when the required heating time unique to the slab is longer than the sum of the above products, the time obtained by the expression on the right side of [Equation 5] is calculated as T idle i of the slab between B and A: the previous slab. It is added to the rolling interval (Hr) after rolling.
(Equation 5)
[0023]
On the other hand, when the required heating time unique to the slab is shorter than the sum of the above products, the minimum value is set as the rolling interval time by the expression on the right side of [Equation 6].
(Equation 6)
[0024]
Next, a rolling loss time: T loss A generated for waiting for the completion of heating of the slab A is calculated. This rolling loss time can be determined by taking the difference between the required heating time of the slab and the sum of the rolling interval and the rolling time after the previous slab rolling according to [Equation 7].
(Equation 7)
[0025]
Next, the heating loss and the rolling loss calculated as described above are expressed on the same time axis as shown in the graph of FIG. The rolling T / H in FIG. 3 indicates the capacity of the rolling mill. Thus, the heating time obtained by simulation (solid line in the upper graph in the figure) and the actually required heating time (dashed line in the upper graph in the figure), and the theoretical rolling capacity obtained by the simulation (lower graph in the figure) By expressing the actual rolling capacity (solid line in the lower graph in the figure) and the actual rolling capacity actually required on the same time axis, the heating loss and the rolling loss can be confirmed at a glance. As a result, the suitability of the schedule at the present time can be instantaneously determined.
[0026]
After specifying the loss occurrence position and the group that causes the loss as described above, the schedule is corrected based on this information. For example, in FIG. 3, it can be seen that a rolling loss has occurred at the position A due to the waiting for heating, and therefore, a rearrangement in which rolling of an appropriate group is incorporated into the vacant rolling loss is performed. As for the position B, since a group that causes a heating loss has been identified, the schedule is changed so that the group is rearranged to a group having higher rolling efficiency. Further, regarding the position C, since the place where the heating loss has occurred can be identified, the schedule is changed so that the group is changed to a group having a long required heating time.
[0027]
In modifying this schedule, the power consumption cost is taken into consideration. The calculation of the power cost is performed as follows. First, the power consumption for each slab is obtained by multiplying the slab weight and the rolling reduction by a coefficient obtained from past results. Next, the total power consumption of the hot rolling mill in each time zone is obtained by integrating the above power consumption of the slab to be rolled in that time zone and multiplying by a coefficient obtained from past results. One example is shown in the lower part of FIG. Furthermore, since the power unit price per unit power differs between daytime and nighttime, the total power consumption in daytime and nighttime is multiplied by the power unit price in each time zone, so that the total power cost is reduced. Can be calculated.
[0028]
Since the total power cost can be calculated instantaneously for each rolling schedule, when the groups are rearranged to eliminate the rolling loss and the heating loss as described above, the scheduling is performed so that the total power cost is reduced as much as possible. However, the scheduling that minimizes the rolling loss and the heating loss does not always match the scheduling that minimizes the power cost. Therefore, after the primary plan is determined, recalculation is performed in the following procedure.
[0029]
{Circle around (1)} With respect to the slab rolling order according to the primary plan, the rolling loss time, the group causing the rolling loss time, and the time zone of the occurrence of the heating loss are determined as described above.
{Circle around (2)} Within the range of no problem in the context rule (o in Table 1), the order of the groups is changed, and the evaluation of the rolling loss time and the evaluation of the total power cost are performed again.
(3) This group is rearranged and evaluated repeatedly by using a search method such as the constraint propagation method, and the total power cost is minimized within a range where the increase in rolling loss time does not exceed the allowable range given to the operator. Find the order of the group.
[0030]
After the optimal scheduling of the group is determined in this way, it is preferable that the rolling order of each slab in the group is further determined so as to be optimal in consideration of conditions such as slab width and slab thickness.
[0031]
【The invention's effect】
As is clear from the above description, the present invention takes into account the synchronization of the heating furnace and the rolling mill capacity for all slabs for about one day, taking into account rolling constraints and heating constraints, and further reducing the heating furnace capacity loss. There is an advantage that an optimal schedule can be determined by comprehensively considering the capacity loss of the rolling mill and the total power cost.
[Brief description of the drawings]
FIG. 1 is a graph showing classification indices of categories.
FIG. 2 is a diagram illustrating an arrangement of slabs in a heating furnace.
FIG. 3 is a graph showing heating loss and rolling loss on the same time axis.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380064A JP4272420B2 (en) | 2002-12-27 | 2002-12-27 | Scheduling method considering power cost in hot rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380064A JP4272420B2 (en) | 2002-12-27 | 2002-12-27 | Scheduling method considering power cost in hot rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004209495A true JP2004209495A (en) | 2004-07-29 |
JP4272420B2 JP4272420B2 (en) | 2009-06-03 |
Family
ID=32816387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002380064A Expired - Fee Related JP4272420B2 (en) | 2002-12-27 | 2002-12-27 | Scheduling method considering power cost in hot rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4272420B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7567852B2 (en) | 2006-02-23 | 2009-07-28 | International Business Machines Corporation | System for determining array sequence of plurality of processing operations |
WO2010131596A1 (en) | 2009-05-13 | 2010-11-18 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Process scheduling system, method and program |
JP2013101461A (en) * | 2011-11-08 | 2013-05-23 | Jfe Steel Corp | Monitoring device for industrial control system |
-
2002
- 2002-12-27 JP JP2002380064A patent/JP4272420B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7567852B2 (en) | 2006-02-23 | 2009-07-28 | International Business Machines Corporation | System for determining array sequence of plurality of processing operations |
US7574281B2 (en) | 2006-02-23 | 2009-08-11 | International Business Machines Corporation | System for determining array sequence of a plurality of processing operations |
KR101020009B1 (en) | 2006-02-23 | 2011-03-09 | 인터내셔널 비지네스 머신즈 코포레이션 | System for determining array sequence of plurality of processing operations |
WO2010131596A1 (en) | 2009-05-13 | 2010-11-18 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Process scheduling system, method and program |
CN102421543A (en) * | 2009-05-13 | 2012-04-18 | 国际商业机器公司 | Processing scheduling system, method, and program |
US9409230B2 (en) | 2009-05-13 | 2016-08-09 | International Business Machines Corporation | Process scheduling system, method, and program |
JP2013101461A (en) * | 2011-11-08 | 2013-05-23 | Jfe Steel Corp | Monitoring device for industrial control system |
Also Published As
Publication number | Publication date |
---|---|
JP4272420B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5808891A (en) | Method for creating a direct hot charge rolling production schedule at a steel plant | |
JP2008080395A (en) | Heating furnace charging order determining method and apparatus for the determination | |
JP4987795B2 (en) | Manufacturing lot knitting apparatus and knitting method for hot rolling mill | |
JP2000167610A (en) | Method for deciding rolling order in hot rolling and device for deciding rolling order | |
JP2009082985A (en) | Method for deciding heating furnace charging order and rolling order, deciding apparatus therefor, steel plate manufacturing method, and program for deciding heating furnace charging order and rolling order | |
JP2004209495A (en) | Scheduling method in consideration of electric power costs in hot rolling | |
JP2007079663A (en) | Production operation planning apparatus and production operation plan evaluation apparatus | |
CN112170500A (en) | Hot continuous rolling production control method for constant-gap structure | |
JP5910573B2 (en) | Method and program for setting furnace speed and furnace temperature of continuous annealing line | |
JP4442356B2 (en) | Scheduling system and scheduling method | |
JP2005059020A (en) | Device for scheduling physical distribution in hot strip mill | |
JPH06304619A (en) | Physical distribution scheduling device for hot rolling plant | |
JPS62196329A (en) | Setting method of steel slab extracting pitch in continuous heating furnace | |
JPH1060537A (en) | Method for deciding charging order of steel slab into continuous type heating furnace and device therefor | |
JPS5858905A (en) | Controlling method for optimum rolling in hot rolling | |
JP2005048202A (en) | Method for manufacturing hot-rolled steel sheet | |
JP4631105B2 (en) | Heating control method for heating furnace | |
JPH0377851B2 (en) | ||
JP3465625B2 (en) | Method for determining width of continuous casting slab | |
CN110490383B (en) | Integrated production heat plan optimization method based on slab clustering | |
JPH09256057A (en) | Method for predicting staying time of steel slab in heating furnace | |
JP5707829B2 (en) | Heating furnace charging order and extraction order / rolling order creation method, and heating furnace charging order and extraction order / rolling order creation device | |
JPH105831A (en) | Method for determining rolling sequence in rolling mill | |
JP3304024B2 (en) | Rolling method in hot rolling process having a plurality of heating furnaces | |
CN116245426A (en) | Construction method of steel rolling integrated slab direct-feeding and direct-loading production plan model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4272420 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |