JP2004209354A - Method for manufacturing catalyst for exhaust gas treatment - Google Patents

Method for manufacturing catalyst for exhaust gas treatment Download PDF

Info

Publication number
JP2004209354A
JP2004209354A JP2002380443A JP2002380443A JP2004209354A JP 2004209354 A JP2004209354 A JP 2004209354A JP 2002380443 A JP2002380443 A JP 2002380443A JP 2002380443 A JP2002380443 A JP 2002380443A JP 2004209354 A JP2004209354 A JP 2004209354A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
powder
gas treatment
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380443A
Other languages
Japanese (ja)
Other versions
JP4084658B2 (en
Inventor
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002380443A priority Critical patent/JP4084658B2/en
Publication of JP2004209354A publication Critical patent/JP2004209354A/en
Application granted granted Critical
Publication of JP4084658B2 publication Critical patent/JP4084658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst for exhaust gas treatment remarkably excellent in initial performance (catalytic activity at starting of exhaust gas treatment) and capable of maintaining the catalytic activity at the high state for a long period of time, in a method for newly preparing the catalyst by crushing a used catalyst for exhaust gas treatment of titanium-vanadium system having deteriorated catalytic activity and molding the obtained powder. <P>SOLUTION: The method for obtaining the catalyst for exhaust gas treatment comprises molding and calcining the powder of the catalyst containing a titanium based oxide and a vanadium based oxide. The powder of the catalyst used for the exhaust gas treatment and having the deteriorated activity is used as at least a part of the powder for newly preparing the catalyst. The vanadium content in the powder is adjusted so as to be 1.1 times or more the vanadium content of the deteriorated catalyst before use. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス処理用触媒の製造方法に関し、詳しくは、排ガス処理に使用して活性の低下した触媒の再利用を含めた排ガス処理用触媒の製造方法に関する。特に、排ガス中のダイオキシン類などの毒性有機ハロゲン化合物を除去する有機ハロゲン化合物除去用触媒や、排ガス中の窒素酸化物(NOx)を除去するための脱硝触媒として優れた排ガス処理用触媒の製造方法に関する。
【0002】
【従来の技術】
石炭や重油を燃焼させたときの排ガスやゴミ焼却炉から排出される排ガス等のダストを多く含む排ガスを処理する触媒においては、例えば、上記ダストに由来するアルカリ金属、アルカリ土類金属および重金属類等の成分による触媒表面のマスキング(触媒の表層部に強固に付着し、細孔を閉塞して排ガスの触媒中での拡散が阻害されること。)や、活性成分であるバナジウムの処理時の高熱による凝集等が原因となり、触媒活性が劣化(低下)する。近年、廃棄物の低減やリサイクルの観念から、これら劣化した触媒を再生して再利用する触媒の製造方法が種々提案されている。
【0003】
従来、このような劣化した触媒を再生して再利用する方法としては、使用済み触媒を粉砕して粉体状にし、再度、混練り成形し必要に応じて焼成することによって、被毒されていないFreshな面を形成させて触媒活性を回復させ、再利用する方法が知られている(例えば、特許文献1参照。)。この方法は、安価という点で好適な方法であるが、基本的には被毒物資が触媒中に残存する上、前述したバナジウムの凝集の問題に対しても有効な方法ではないので、初期性能(排ガス処理開始時点での触媒活性等)についてはある程度回復するものの、その後は比較的早い段階で活性劣化し所望の活性を長期間維持することができない等の耐久性に乏しいという問題があった。
【0004】
一方、現在実用化されている排ガス中の窒素酸化物(NOx)除去方法としては、アンモニアまたは尿素などの固体還元剤を用いて排ガス中の窒素酸化物を脱硝触媒上で接触還元し、無害な窒素と水とに分解する選択的触媒還元(SCR)法が一般的である。これに用いられる脱硝触媒としては、チタン系酸化物とバナジウム系酸化物とを必須としてなる、チタン−バナジウム系触媒などが知られている(例えば、特許文献2および特許文献3参照。)。
また、産業廃棄物や都市廃棄物を処理する焼却施設から発生する排ガス中には、ダイオキシン類、PCB、クロロフェノールなどの極微量の毒性有機ハロゲン化合物が含まれており、特にダイオキシン類は微量であってもきわめて有毒であり、人体に重大な影響を及ぼすため、その除去技術が広く開発されて、実用化が進められている。中でも、触媒分解法は有効な技術のひとつであり、一般的にチタン、バナジウム、タングステンおよびモリブデンなどの酸化物を含有する触媒、なかでもチタン−バナジウム系触媒がよく用いられている。
【0005】
【特許文献1】
特公昭62−57382号公報
【0006】
【特許文献2】
特開平10−235206号公報
【0007】
【特許文献3】
特公昭62−14339号公報
【0008】
【発明が解決しようとする課題】
そこで、本発明の解決しようとする課題は、触媒活性の劣化した使用済みのチタン−バナジウム系の排ガス処理用触媒を粉砕し、得られた粉体を成形することにより、新たに触媒を調製する方法において、初期性能(排ガス処理開始時の触媒活性)に非常に優れ、かつ、その後も長期間触媒活性を高い状態で維持し得る排ガス処理触媒を製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討を行った。その過程において、触媒活性成分であるバナジウムの含有率(重量%)に着目し、新たに製造した触媒におけるバナジウム含有率(重量%)を、排ガス処理に使用する前(触媒活性が劣化する前)の触媒のバナジウム含有率(重量%)に対して特定の割合で増加させるようにすれば、初期性能をより高くできることに加え、その後も長期間優れた触媒活性を容易に維持させることができることを見出し、上記課題を一挙に解決し得ることを確認して、本発明を完成するに至った。
【0010】
すなわち、本発明にかかる排ガス処理触媒の製造方法は、
チタン系酸化物およびバナジウム系酸化物を含む触媒の粉体を成形し焼成することによって排ガス処理用触媒を得る方法において、前記粉体としてその少なくとも一部に排ガス処理に使用され活性の劣化した触媒の粉体を用いることとし、かつ、前記粉体におけるバナジウム含有率を前記劣化した触媒の使用前におけるバナジウム含有率の1.1倍以上となるように調整しておくことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明にかかる排ガス処理触媒の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
本発明にかかる排ガス処理触媒の製造方法は、チタン系酸化物およびバナジウム系酸化物を含む触媒(以下、「チタン−バナジウム系触媒」と称することがある。)の粉体を成形し焼成することによって排ガス処理用触媒を得る方法において、前記粉体としてその少なくとも一部に排ガス処理に使用され活性の劣化した触媒の粉体を用いることとし、かつ、前記粉体におけるバナジウム含有率(重量%)を前記劣化した触媒の使用前におけるバナジウム含有率(重量%)の1.1倍以上となるように調整しておくようにする。
【0012】
以下、本発明を実施する上での排ガス処理触媒の一般的な製造方法を説明するとともに、本発明の製造方法の特徴である、成形に用いる触媒材料の粉体におけるバナジウム含有率の調整についても詳細に説明する。
本発明の製造方法は、一般的には、排ガス処理に使用し触媒活性の劣化したチタン−バナジウム系触媒を粉砕する粉砕工程と、粉砕により得られた粉体を少なくとも一部用いて成形する成形工程とを備える方法であることが好ましいが、必要に応じて他の工程を備えていてもよい。具体的には、上記成形工程を行い所定の形状の触媒を得た後、さらに、該触媒を焼成する焼成工程を経て、排ガス処理触媒を得る製造方法である。また、焼成工程の前に、所定の温度、所定の時間で乾燥させる乾燥工程を備えていてもよい。
【0013】
粉砕工程において、粉砕の対象となる触媒活性の劣化したチタン−バナジウム系触媒(以下、「劣化触媒」と称することがある。)としては、排ガス処理に使用されたチタン−バナジウム系触媒であればよく、特に限定はされない。
上記排ガス処理における排ガスとしては、例えば、石炭焚ボイラの排ガス、重油焚ボイラの排ガスおよびゴミ焼却炉の排ガス等の一般にダストを多く含む排ガスが挙げられ、具体的には、例えば、窒素酸化物を含む排ガスや有機ハロゲン化合物を含む排ガスが挙げられる。窒素酸化物を含む排ガスを処理する場合は、通常、アンモニア等の還元剤の存在下で、排ガス中の窒素酸化物(NO)を除去処理するようにする。
【0014】
上記劣化触媒としては、具体的には、処理する排ガス中のダストに含まれるアルカリ金属(NaおよびK等)、アルカリ土類金属(CaおよびMg等)および重金属類(Fe、Pb、Zn、As、PおよびSe等)等の被毒成分により、触媒表面がマスキング(詳しくは、触媒の表層部に被毒成分が強固に付着し、例えば細孔を閉塞して排ガスの触媒中でのガス拡散が阻害され、著しく触媒活性が低下すること。)されてなるものであれば、本発明がより有効に適用できるため好ましい。また、250℃以上の高温での排ガス処理に用いられたものも同様に好ましく、より好ましくは300℃以上である。前述したように、高温下の排ガス処理に用いられた触媒においては、活性成分であるバナジウムが凝集粒子化してしまい、触媒活性が低下したものとなるため、本発明が有効に適用できる。
【0015】
劣化触媒において、上記被毒成分であるアルカリ金属、アルカリ土類金属および重金属類の付着量は、ガス流れ方向で分布があるが、例えば、該劣化触媒の重量に対して0.01〜5重量%であることが好ましく、より好ましくは0.01〜2重量%、さらに好ましくは0.01〜1重量%である。上記範囲内であれば本発明がより有効に適用できる。
粉砕工程での劣化触媒の粉砕方法としては、特に限定はされないが、例えば、ハンマーミル、ローラミル、ボールミルおよび気流粉砕機などを用いた粉砕方法が採用できる。
【0016】
粉砕により得られた劣化触媒の粉体については、平均粒子径が100μm以下であることが好ましく、より好ましくは50μm以下、さらに好ましくは30μm以下である。平均粒子径が200μmより大きいと、成形後の強度が低下するおそれがある。
粉砕工程において粉砕の対象とする触媒(すなわち、再利用の対象とする触媒)は、前述の通り、チタン系酸化物とバナジウム系酸化物を必須に含むチタン−バナジウム系触媒であるが、上記チタン系酸化物は、チタンを必須金属元素として含む酸化物であり、具体的には、チタンの酸化物(単一酸化物)であっても、チタンと他の金属元素とを含む複合酸化物であってもよい。
【0017】
複合酸化物であるチタン系酸化物としては、例えば、チタニア−シリカ複合酸化物、チタニア−シリカ−ジルコニア複合酸化物、チタニア−ジルコニア複合酸化物、チタニア−アルミナ複合酸化物などが挙げられる。
上記チタン−バナジウム系触媒においては、チタン系酸化物の含有量が、30〜99.9重量%であることが好ましく、より好ましくは50〜99.9重量%、さらに好ましくは70〜99.9重量%であり、バナジウム系酸化物の含有量が、0.1〜25重量%であることが好ましく、より好ましくは0.1〜20重量%、さらに好ましくは0.1〜20重量%である。
【0018】
本発明においては、上記チタン−バナジウム系触媒は、チタン系酸化物やバナジウム系酸化物以外の他の金属酸化物を含んでいてもよく、例えば、タングステン、モリブデン、銅、鉄、クロム、マンガン、亜鉛、セリウムおよびスズなどからなる群より選ばれる少なくとも1種の元素を含有する酸化物が挙げられる。これらの中でも、タングステン、モリブデンが好適である。
成形工程では、粉砕工程により得られた粉体を少なくとも一部用いて、所望の触媒形状に成形する。
上記成形は、粉砕工程により得られた粉体(必要に応じて成形助剤等の他の成分を含む)を必須とする触媒材料を、押出し成形機などを用いて所望の形状とし、触媒成形材料のみからなる成形体を得るようにする一体成形であってもよいし、また、所望の形状を有する担体(例えば、非吸水性の耐熱基材など)上に、粉砕工程により得られた粉体(必要に応じて成形助剤等の他の成分を含む)を必須とする触媒材料を塗布して、コートする担持成形であってもよい。担持成形の場合に用い得る担体は、通常、担持触媒を得る際に用いられる材質からなるものであれば特に限定はされないが、上記非吸水性の耐熱基材としては、例えば、ステンレス鋼などの金属や、コージェライト、ムライトおよびSiC等のセラミックス、並びに、繊維状セラミックスを紙状素材に抄造したセラミックペーパーなどを、ハニカム状、板状、網状、円柱状、円筒状、波板(コルゲート)状、パイプ状、ドーナツ状、格子状、プレート状(波状プレートを複数積み重ねて隣合うプレート同士の間に空間を設けるようにしてなる形状)あるいは波状等の形状に加工したものを挙げられる。
【0019】
触媒形状については、特に限定はされず、例えば、板状、波板状、網状、ハニカム状、ペレット状、円柱状、円筒状(パイプ状)などの形状が採用できる。粒状や棒状、球状、リング状、円柱状などをなす微小な触媒を成形し、容器に充填したり堆積させたりした状態で使用することもできる。
成形工程においては、劣化触媒を粉砕して得られた粉体を必須として用いて成形するが、この劣化触媒を粉砕して得られた粉体のみを用いて成形することに限らず、例えば、劣化触媒を粉砕して得られた粉体に、未使用触媒(新品触媒、Fresh触媒)を粉砕して得られた粉体を適当な比率で混合し、この混合粉体を成形することであってもよいし、あるいは、劣化触媒を粉砕して得られた粉体や上記混合粉体に、新たな触媒活性成分を添加して成形することであってもよい。未使用触媒の使用や、新たな触媒活性成分の添加等によって、劣化触媒を再利用した触媒であってもより高い触媒活性を有するものを調製できる。
【0020】
劣化触媒の粉体と未使用触媒の粉体との混合粉体を用いて成形する場合の形態としては、特に限定されないが、例えば、次の3つが挙げられる。すなわち、▲1▼劣化触媒の粉体と未使用触媒の粉体とを混合し、成形助剤を加えて混練りし、成形する形態、▲2▼劣化触媒の粉体と、未使用触媒のチタン系酸化物の粉体を混合した後、未使用触媒の活性成分を含む溶液を成形助剤等と共に加えて、混練りし、成形する形態、▲3▼上記▲1▼と▲2▼を組み合わせた方法、すなわち、劣化触媒の粉体と、未使用触媒の担体成分の粉体と、未使用触媒の粉体とを混合した後、未使用触媒の活性成分を含む溶液を成形助剤等と共に加えて、混練りし、成形する形態、である。これら▲1▼〜▲3▼の中でも、▲2▼および▲3▼が好ましい。未使用触媒の活性成分を液状で添加した方が成形性が良いためである。
【0021】
劣化触媒の粉体と未使用触媒の粉体とを混合して成形に用いる場合、この混合粉体中、劣化触媒の粉体の配合割合は、70重量%以下であることが好ましく、より好ましくは50重量%以下、さらに好ましくは30重量%以下である。
成形工程においては、必要に応じて、触媒成形の材料となる劣化触媒の粉体等に、ガラス繊維や無機および有機のバインダー等の成形助剤などを添加して成形してもよい。これらは、通常触媒成形に使用される配合量の範囲で用いればよい。
本発明の製造方法においては、成形工程において用いる触媒材料となる粉体において、活性成分であるバナジウムの含有率(重量%)を所定の範囲に調整するようにしている。詳しくは、直前の排ガス処理に使用する前におけるバナジウム含有率(劣化触媒の直前の排ガス処理使用前におけるバナジウム含有率)に対し、成形に用いる触媒材料の粉体におけるバナジウム含有率が、1.1倍以上となるようにしており、好ましくは1.2倍以上、より好ましくは1.5倍以上である。成形に用いる触媒材料の粉体におけるバナジウム含有率が、上記範囲内であることによって、前述した課題を用意に解決することができる。また、該含有率が1.1倍未満であると、初期性能はある程度回復するが耐久性(触媒活性の持続性など)が低下するおそれがある。
【0022】
上記調整に用い得るバナジウム元素を含む化合物としては、例えば、バナジウム元素の酸化物、水酸化物、アンモニウム塩、シュウ酸塩および硫酸塩などが挙げられる。
なお、成形に際し、前述のように、新品触媒(未使用触媒、Fresh触媒)の粉体をも混合して用いる場合などにおいては、混合粉体における(混合後の粉体全体における)バナジウムの含有率が、上記所定の範囲を満たすよう調整しておくようにする。
本発明の製造方法においては、粉砕工程および成形工程の後に、必要に応じて焼成工程を含むようにする。
【0023】
焼成工程を行う場合、焼成温度は、通常の触媒製造において設定される範囲に設定することができるが、例えば、350〜600℃であることが好ましく、より好ましくは350〜550℃、さらに好ましくは350〜500℃である。焼成温度は、低すぎると、触媒強度が低下するおそれがあり、高すぎると、活性成分のシンタリングや触媒比表面積の低下を引き起こし、触媒活性が低下するおそれがある。
成形工程後の成形体について、上記焼成工程を行う前に予め乾燥させておく乾燥工程を行ってもよい。
【0024】
乾燥条件については特に限定はされず、後の焼成工程の条件等を考慮して適宜設定すればよいが、乾燥温度は、20〜120℃であることが好ましく、より好ましくは20〜100℃、さらに好ましくは20〜80℃である。
本発明の製造方法により得られた排ガス処理触媒は、石炭焚ボイラーや重油焚ボイラーから排出される排ガスや、産業廃棄物や都市廃棄物などを焼却により排出される焼却炉排ガスの処理において好適に用いられる。処理する排ガスの組成については特に制限はないが、前述したように、本発明により得られる排ガス処理触媒は、窒素酸化物を除去する脱硝触媒として、あるいは、有機ハロゲン化合物を除去する有機ハロゲン化合物除去用触媒として、有効に用いることができる。
【0025】
本発明の製造方法により得られた排ガス処理触媒を、有機ハロゲン化合物除去用触媒として用いる場合、処理する排ガスの組成については、有機ハロゲン化合物を含むものであれば特に制限はないが、特にダイオキシン類(ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちから選ばれた少なくとも1種)やPCBを含む排ガスが好適である。本発明により得られた排ガス処理触媒を用いて有機ハロゲン化合物を除去するには、排ガスを130〜350℃の温度、好ましくは150〜250℃の温度で、該触媒に接触させ流通させることが望ましい。
【0026】
本発明の製造方法により得られた排ガス処理触媒を、脱硝触媒として用いる場合、該触媒をアンモニアや尿素などの還元剤の存在下で、排ガスと接触させ、排ガス中の窒素酸化物を還元除去するようにする。この際の処理条件については、特に制限はなく、この種の反応に一般的に用いられている処理条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよいが、温度は、130〜650℃であることが好ましい。処理時の排ガス温度が130℃より低いと、脱硝効率が低下するおそれがあり、650℃を超えると、活性成分のシンタリングや触媒の比表面積が低下する等の問題が生じるおそれがある。
【0027】
【実施例】
以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「リットル」を単に「L」と記すことがある。
[参考例1]
市販の酸化チタン粉体(DT−51(商品名)、ミレニアム社製)18.4kgに、メタバナジン酸アンモニウム0.26kgおよびシュウ酸0.31kgを水4Lに溶解させた溶液と、パラタングステン酸アンモニウム1.57kgおよびモノエタノールアミン0.63kgを水3.5Lに溶解させた溶液とを加えてよく混合し、成形助剤と共に適量の水を加えつつ、ニーダーで混錬りした後、押出成形機で外形80mm角、目開き5.0mm、肉厚1.0mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、空気雰囲気下450℃で5時間処理し、焼成して触媒A−1を得た。
【0028】
この触媒の組成は、TiO:V:WO:=92:1:7(酸化物換算重量%)であった。
触媒A−1に石炭焚ボイラ排ガスを流通させ、8000時間曝露試験を行った。曝露条件を下記に示す。
曝露条件:
曝露試験に用いるガス組成
=NO:150〜200ppm、O:2〜3%、HO:7〜10%、SO:400〜600ppm、煤塵:5g/Nm、NH/NO(モル比):0.8
温度=350℃
空間速度(STP)=6,000Hr−1
[参考例2]
まず、チタニア−シリカ複合酸化物(Ti−Si複合酸化物)を次のように調製した。すなわち、20重量%アンモニア水200Lにスノーテックス−20(日産化学(株)製シリカゾル、約20重量%のSiO含有)16kgを加え、撹拌、混合した後、硫酸チタニルの硫酸溶液(TiOとして80g/L、硫酸濃度300g/L)300Lを撹拌下で徐々に滴下供給した。得られたゲルを24時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成して得られた粉体の組成は、TiO:SiO=8.5:1.5(モル比)であった。
【0029】
次に、上記Ti−Si複合酸化物18.4kgに、メタバナジン酸アンモニウム0.26kgおよびシュウ酸0.31kgを水5Lに溶解させた溶液と、パラモリブデン酸アンモニウム1.57kgおよびモノエタノールアミン0.63kgを水6Lに溶解させた溶液とを加えてよく混合し、成形助剤と共に適量の水を加えつつ、ニーダーで混錬りした後、押出成形機で外形80mm角、目開き5.0mm、肉厚1.0mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、空気雰囲気下450℃で5時間処理し、焼成して触媒B−1を得た。
【0030】
この触媒の組成は、Ti−Si複合酸化物:V:WO=92:1:7(酸化物換算重量%)であった。
触媒B−1に石炭焚ボイラ排ガスを流通させ、8000時間曝露試験を行った。曝露条件は、参考例1と同様である。
[実施例1]
参考例1における曝露試験後の触媒A−1をハンマーミルを用いて粉砕し、平均粒子径20μmの粉体を得た。この粉体20kgに、メタバナジン酸アンモニウム0.051kgおよびシュウ酸0.062kgを水6.5Lに溶解させた溶液を加えてよく混合し、成形助剤と共に適量の水を加えつつニーダーで混錬りした後、押出成形機で外形80mm角、目開き4.0mm、肉厚1.0mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、空気雰囲気下450℃で5時間処理し、焼成して触媒A−2を得た。
【0031】
この触媒の組成は、TiO:V:WO:=91.8:1.2:7(酸化物換算重量%)であった。
[実施例2]
実施例1において、参考例1における曝露試験後の触媒A−1の代わりに、参考例2における曝露試験後の触媒B−1を用いた以外は、実施例1と同様にして、触媒B−2を得た。
この触媒の組成は、Ti−Si複合酸化物:V:WO=91.8:1.2:7(酸化物換算重量%)であった。
【0032】
[実施例3]
参考例1における曝露試験後の触媒A−1をハンマーミルにより粉砕して得られた粉体9kgと、市販の酸化チタン粉体10.08kgとを、ニーダーで撹拌し、混合粉体を得た。この混合粉体に、メタバナジン酸アンモニウム0.193kgおよびシュウ酸0.232kgを水3.5Lに溶解させた溶液と、パラタングステン酸アンモニウム0.865kgおよびモノエタノールアミン0.346kgを水3.5Lに溶解させた溶液とを加えてよく混合し、成形助剤と共に適量の水を加えつつニーダーで混錬りした後、押出成形機で外形80mm角、目開き5.0mm、肉厚1.0mm、長さ500mmのハニカム状に成形した。次いで、80℃で乾燥した後、空気雰囲気下450℃で5時間処理し、焼成して触媒A−3を得た。
【0033】
この触媒の組成は、TiO:V:WO:=91.8:1.2:7(酸化物換算重量%)であった。
[実施例4]
実施例3において、参考例1における曝露試験後の触媒A−1の代わりに、参考例2における曝露試験後の触媒B−1を用いた以外は、実施例3と同様にして、触媒B−3を得た。
この触媒の組成は、Ti−Si複合酸化物:V:WO=91.8:1.2:7(酸化物換算重量%)であった。
【0034】
[実施例5]
実施例2において、メタバナジン酸アンモニウムを0.026kg、シュウ酸を0.031kg加えるようにした以外は、実施例2と同様にして、触媒B−4を得た。
この触媒の組成は、Ti−Si複合酸化物:V:WO=91.9:1.1:7(酸化物換算重量%)であった。
[実施例6]
実施例2において、メタバナジン酸アンモニウムを0.129kg、シュウ酸を0.154kg加えるようにした以外は、実施例2と同様にして、触媒B−5を得た。
【0035】
この触媒の組成は、Ti−Si複合酸化物:V:WO=91.5:1.5:7(酸化物換算重量%)であった。
[比較例1]
実施例1において、メタバナジン酸アンモニウムおよびシュウ酸を加えないようにした以外は、実施例1と同様にして、触媒A−4を得た。
この触媒の組成は、TiO:V:WO:=92:1:7(酸化物換算重量%)であった。
[比較例2]
実施例2において、メタバナジン酸アンモニウムおよびシュウ酸を加えないようにした以外は、実施例2と同様にして、触媒B−6を得た。
【0036】
この触媒の組成は、Ti−Si複合酸化物:V:WO=92:1:7(酸化物換算重量%)であった。
[比較例3]
実施例2において、メタバナジン酸アンモニウムを0.013kg、シュウ酸を0.015kg加えるようにした以外は、実施例2と同様にして、触媒B−7を得た。
この触媒の組成は、Ti−Si複合酸化物:V:WO=91.95:1.05:7(酸化物換算重量%)であった。
<窒素酸化物の分解除去処理>
調製した触媒A−1、A−2、A−3、A−4、B−1、B−2、B−3、B−4、B−5およびB−6に、窒素酸化物(NO)を含有するガスを下記の処理条件で流通させて、NOの分解除去処理を行い、初期性能としての脱硝率を測定した。また、石炭焚ボイラ排ガスによる暴露試験を実施した上記各触媒(曝露3000時間後と曝露8000時間後のもの)についても、同様に、下記の処理条件で脱硝率を測定し、長期間使用後の触媒活性を確認した。これらの結果を表1に示す。
【0037】
処理条件:
処理対象となるガス組成
=NO:200ppm、SO:400ppm、O:2%、HO:10%、N:バランス、NH/NO(モル比):1.0
ガス温度=350℃
空間速度(STP)=15,000Hr−1
脱硝率(NO除去率)算出式:
脱硝率(%)=
〔{(反応器入口NO濃度)−(反応器出口NO濃度)}
/(反応器入口NO濃度)〕×100
【0038】
【表1】

Figure 2004209354
【0039】
【発明の効果】
本発明によれば、触媒活性の劣化した使用済みのチタン−バナジウム系の排ガス処理用触媒を粉砕し、得られた粉体を成形することにより、新たに触媒を調製する方法において、初期性能(排ガス処理開始時の触媒活性)に非常に優れ、かつ、その後も長期間触媒活性を高い状態で維持し得る排ガス処理触媒を製造する方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an exhaust gas treatment catalyst, and more particularly, to a method for producing an exhaust gas treatment catalyst including reuse of a catalyst having reduced activity used for exhaust gas treatment. Particularly, a method for producing an exhaust gas treatment catalyst excellent as an organic halogen compound removal catalyst for removing toxic organic halogen compounds such as dioxins in exhaust gas and a denitration catalyst for removing nitrogen oxides (NOx) in exhaust gas. About.
[0002]
[Prior art]
In a catalyst for treating an exhaust gas containing a large amount of dust such as an exhaust gas when burning coal or heavy oil or an exhaust gas discharged from a refuse incinerator, for example, alkali metals, alkaline earth metals and heavy metals derived from the dust are used. Masking of the catalyst surface by components such as (it adheres strongly to the surface layer of the catalyst and closes the pores to hinder the diffusion of exhaust gas in the catalyst.) And during the treatment of vanadium as an active component Catalytic activity deteriorates (decreases) due to aggregation or the like due to high heat. In recent years, from the viewpoint of waste reduction and recycling, various methods for producing a catalyst for regenerating and reusing these deteriorated catalysts have been proposed.
[0003]
Conventionally, as a method of regenerating and reusing such a deteriorated catalyst, poisoning is performed by pulverizing a used catalyst into a powder, kneading and molding again, and firing if necessary. There is known a method of recovering the catalyst activity by forming a fresh surface which is not used, and reusing the catalyst (for example, see Patent Document 1). This method is a preferable method in terms of low cost, but basically, poisonous substances remain in the catalyst and are not effective for the above-mentioned problem of vanadium agglomeration. (Catalyst activity at the start of exhaust gas treatment, etc.) recovers to some extent, but then has a problem of poor durability such that the activity deteriorates at a relatively early stage and the desired activity cannot be maintained for a long period of time. .
[0004]
On the other hand, as a method of removing nitrogen oxides (NOx) in exhaust gas that is currently in practical use, catalytic reduction of nitrogen oxides in exhaust gas on a denitration catalyst using a solid reducing agent such as ammonia or urea is performed. A selective catalytic reduction (SCR) method that decomposes into nitrogen and water is common. As a denitration catalyst used for this, a titanium-vanadium-based catalyst or the like, which essentially includes a titanium-based oxide and a vanadium-based oxide, is known (for example, see Patent Documents 2 and 3).
Exhaust gas generated from incineration facilities that treat industrial and municipal waste also contains trace amounts of toxic organic halogen compounds such as dioxins, PCBs, and chlorophenols. Even so, it is extremely toxic and has a serious effect on the human body. Therefore, its removal technology has been widely developed and put to practical use. Above all, the catalytic decomposition method is one of the effective techniques, and generally a catalyst containing an oxide such as titanium, vanadium, tungsten and molybdenum, particularly a titanium-vanadium catalyst is often used.
[0005]
[Patent Document 1]
JP-B-62-57382
[0006]
[Patent Document 2]
JP-A-10-235206
[0007]
[Patent Document 3]
Japanese Patent Publication No. 62-14339
[0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prepare a new catalyst by pulverizing a used titanium-vanadium-based exhaust gas treatment catalyst having deteriorated catalytic activity and molding the obtained powder. It is an object of the present invention to provide a method for producing an exhaust gas treatment catalyst which is very excellent in initial performance (catalytic activity at the start of exhaust gas treatment) and which can maintain a high catalytic activity for a long time thereafter.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in order to solve the above problems. In the process, paying attention to the content (% by weight) of vanadium, which is a catalytically active component, the vanadium content (% by weight) in a newly manufactured catalyst is used before exhaust gas treatment (before catalyst activity is deteriorated). By increasing the specific ratio with respect to the vanadium content (% by weight) of the catalyst, it is possible not only to improve the initial performance but also to easily maintain excellent catalytic activity for a long time thereafter. The present inventors have found that the above problems can be solved at once, and have completed the present invention.
[0010]
That is, the method for producing an exhaust gas treatment catalyst according to the present invention comprises:
A method of obtaining a catalyst for exhaust gas treatment by molding and firing a catalyst powder containing a titanium-based oxide and a vanadium-based oxide, wherein the powder has at least a part of the catalyst used for exhaust gas treatment and having reduced activity. And the vanadium content in the powder is adjusted so as to be 1.1 times or more the vanadium content before the use of the deteriorated catalyst.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the production method of the exhaust gas treatment catalyst according to the present invention will be described in detail, but the scope of the present invention is not limited to these descriptions, and other than the following examples, as long as the spirit of the present invention is not impaired. Changes can be made as appropriate.
The method for producing an exhaust gas treatment catalyst according to the present invention comprises molding and firing a powder of a catalyst containing a titanium-based oxide and a vanadium-based oxide (hereinafter, may be referred to as “titanium-vanadium-based catalyst”). In the method for obtaining a catalyst for exhaust gas treatment by the method described above, a powder of a catalyst used for exhaust gas treatment and having degraded activity is used as at least a part of the powder, and a vanadium content rate (% by weight) in the powder is used. Is adjusted to be 1.1 times or more the vanadium content (% by weight) before use of the deteriorated catalyst.
[0012]
Hereinafter, a general method for producing an exhaust gas treatment catalyst for carrying out the present invention will be described, and the adjustment of the vanadium content in the powder of the catalyst material used for molding, which is a feature of the production method of the present invention, will also be described. This will be described in detail.
The production method of the present invention generally comprises a pulverizing step of pulverizing a titanium-vanadium-based catalyst having a deteriorated catalytic activity for use in exhaust gas treatment, and a molding step of molding using at least a part of the powder obtained by the pulverization. It is preferable that the method includes a step, but other steps may be provided as necessary. Specifically, it is a production method of obtaining an exhaust gas treatment catalyst through a firing step of firing the catalyst after obtaining a catalyst having a predetermined shape by performing the molding step and further firing the catalyst. Before the firing step, a drying step of drying at a predetermined temperature for a predetermined time may be provided.
[0013]
In the pulverization step, as the titanium-vanadium-based catalyst (hereinafter, sometimes referred to as “deteriorated catalyst”) whose catalytic activity has been degraded to be pulverized, any titanium-vanadium-based catalyst used for exhaust gas treatment may be used. Well, there is no particular limitation.
Examples of the exhaust gas in the exhaust gas treatment include exhaust gas generally containing a large amount of dust, such as an exhaust gas of a coal-fired boiler, an exhaust gas of a heavy oil-fired boiler, and an exhaust gas of a garbage incinerator, and specifically, for example, nitrogen oxides. Exhaust gas or an exhaust gas containing an organic halogen compound. When treating an exhaust gas containing nitrogen oxides, the nitrogen oxides (NO) in the exhaust gas are usually treated in the presence of a reducing agent such as ammonia.X) Is removed.
[0014]
Specific examples of the above deterioration catalyst include alkali metals (such as Na and K), alkaline earth metals (such as Ca and Mg) and heavy metals (Fe, Pb, Zn, As) contained in dust in exhaust gas to be treated. , P and Se, etc.), the catalyst surface is masked (specifically, the poisoning component firmly adheres to the surface layer of the catalyst, for example, closes pores and diffuses exhaust gas in the catalyst. Is inhibited, and the catalytic activity is significantly reduced.), Since the present invention can be more effectively applied. Further, those used for exhaust gas treatment at a high temperature of 250 ° C. or higher are similarly preferable, and more preferably 300 ° C. or higher. As described above, in the catalyst used for the exhaust gas treatment at a high temperature, vanadium as an active component is agglomerated into particles and the catalytic activity is reduced, so that the present invention can be effectively applied.
[0015]
In the deteriorated catalyst, the adhesion amounts of the alkali metals, alkaline earth metals and heavy metals as the poisoning components are distributed in the gas flow direction. %, More preferably 0.01 to 2% by weight, even more preferably 0.01 to 1% by weight. The present invention can be more effectively applied within the above range.
The method of pulverizing the deteriorated catalyst in the pulverization step is not particularly limited, and for example, a pulverization method using a hammer mill, a roller mill, a ball mill, an airflow pulverizer, or the like can be employed.
[0016]
The average particle diameter of the powder of the deteriorated catalyst obtained by the pulverization is preferably 100 μm or less, more preferably 50 μm or less, and further preferably 30 μm or less. If the average particle size is larger than 200 μm, the strength after molding may be reduced.
As described above, the catalyst to be pulverized in the pulverization step (that is, the catalyst to be reused) is a titanium-vanadium-based catalyst essentially containing a titanium-based oxide and a vanadium-based oxide. The system oxide is an oxide containing titanium as an essential metal element. Specifically, even if it is an oxide of titanium (single oxide), it is a composite oxide containing titanium and another metal element. There may be.
[0017]
Examples of the titanium-based oxide that is a composite oxide include a titania-silica composite oxide, a titania-silica-zirconia composite oxide, a titania-zirconia composite oxide, and a titania-alumina composite oxide.
In the titanium-vanadium-based catalyst, the content of the titanium-based oxide is preferably 30 to 99.9% by weight, more preferably 50 to 99.9% by weight, and further preferably 70 to 99.9%. % By weight, and the content of the vanadium-based oxide is preferably 0.1 to 25% by weight, more preferably 0.1 to 20% by weight, and still more preferably 0.1 to 20% by weight. .
[0018]
In the present invention, the titanium-vanadium-based catalyst may include a metal oxide other than a titanium-based oxide or a vanadium-based oxide, for example, tungsten, molybdenum, copper, iron, chromium, manganese, Oxides containing at least one element selected from the group consisting of zinc, cerium, tin, and the like are included. Among these, tungsten and molybdenum are preferred.
In the forming step, the powder obtained in the pulverizing step is used at least in part to form a desired catalyst shape.
In the above-mentioned molding, a catalyst material essentially containing powder obtained by a pulverizing step (including other components such as a molding aid as necessary) is formed into a desired shape using an extruder or the like, and the catalyst is molded. It may be an integral molding so as to obtain a molded body composed of only the material, or may be a powder obtained by a pulverizing step on a carrier having a desired shape (for example, a non-water-absorbing heat-resistant base material). It may be a carrier molding in which a catalyst material including a body (including other components such as a molding aid as necessary) is applied and coated. The carrier that can be used in the case of supported molding is not particularly limited as long as it is made of a material used for obtaining a supported catalyst, but the non-water-absorbing heat-resistant substrate includes, for example, stainless steel. Metals, ceramics such as cordierite, mullite and SiC, and ceramic paper obtained by forming fibrous ceramics into paper-like material, etc., are in the form of honeycomb, plate, net, column, cylinder, corrugated plate (corrugated). , Pipe-shaped, donut-shaped, lattice-shaped, plate-shaped (a shape in which a plurality of corrugated plates are stacked to provide a space between adjacent plates), or processed into a corrugated shape.
[0019]
The shape of the catalyst is not particularly limited, and for example, a shape such as a plate, a corrugated plate, a net, a honeycomb, a pellet, a column, and a cylinder (pipe) can be adopted. It is also possible to form a fine catalyst having a granular shape, a rod shape, a spherical shape, a ring shape, a columnar shape, or the like, and use it in a state filled or deposited in a container.
In the molding step, molding is performed by using powder obtained by pulverizing the deteriorated catalyst as essential, but not limited to molding using only the powder obtained by pulverizing the deteriorated catalyst, for example, The powder obtained by crushing the unused catalyst (new catalyst, fresh catalyst) is mixed with the powder obtained by crushing the deteriorated catalyst at an appropriate ratio, and the mixed powder is formed. Alternatively, a new catalyst active component may be added to a powder obtained by pulverizing a deteriorated catalyst or the above-mentioned mixed powder, followed by molding. By using an unused catalyst or adding a new catalytically active component, a catalyst having higher catalytic activity can be prepared even if a deteriorated catalyst is reused.
[0020]
The form in the case of molding using a mixed powder of the deteriorated catalyst powder and the unused catalyst powder is not particularly limited, but includes, for example, the following three. That is, (1) the powder of the deteriorated catalyst and the powder of the unused catalyst are mixed, a molding aid is added and kneaded, and the mixture is molded. (2) The powder of the deteriorated catalyst and the powder of the unused catalyst are mixed. After mixing the titanium oxide powder, a solution containing an active component of an unused catalyst is added together with a molding aid, etc., and the mixture is kneaded and molded. (3) The above (1) and (2) The combined method, i.e., mixing the powder of the deteriorated catalyst, the powder of the carrier component of the unused catalyst, and the powder of the unused catalyst, then forming a solution containing the active component of the unused catalyst into a molding aid or the like And kneading and molding. Among these (1) to (3), (2) and (3) are preferable. This is because the formability is better when the active component of the unused catalyst is added in a liquid state.
[0021]
When the deteriorated catalyst powder and the unused catalyst powder are mixed and used for molding, the compounding ratio of the deteriorated catalyst powder in the mixed powder is preferably 70% by weight or less, more preferably. Is 50% by weight or less, more preferably 30% by weight or less.
In the molding step, if necessary, a molding aid such as a glass fiber or an inorganic or organic binder may be added to the powder of the deteriorated catalyst, which is a material for forming the catalyst, for molding. These may be used in the range of the amount usually used for catalyst molding.
In the production method of the present invention, the content (% by weight) of the active ingredient, vanadium, in the powder as the catalyst material used in the molding step is adjusted to a predetermined range. More specifically, the vanadium content in the powder of the catalyst material used for molding is 1.1 to the vanadium content before use in the exhaust gas treatment immediately before (the vanadium content before use in the exhaust gas treatment immediately before the deteriorated catalyst). The number is preferably at least 1.2 times, more preferably at least 1.5 times. When the vanadium content in the powder of the catalyst material used for molding is within the above range, the above-mentioned problem can be easily solved. When the content is less than 1.1 times, the initial performance is recovered to some extent, but the durability (such as the persistence of the catalytic activity) may be reduced.
[0022]
Examples of the compound containing a vanadium element that can be used for the above adjustment include an oxide, a hydroxide, an ammonium salt, an oxalate, and a sulfate of the vanadium element.
Note that, as described above, in the case where a powder of a new catalyst (unused catalyst, Fresh catalyst) is also mixed and used in molding, the content of vanadium in the mixed powder (in the whole powder after mixing) is used. The rate is adjusted so as to satisfy the predetermined range.
In the production method of the present invention, after the pulverizing step and the forming step, a baking step is included as necessary.
[0023]
When performing the calcination step, the calcination temperature can be set in a range set in normal catalyst production, but is preferably, for example, 350 to 600 ° C, more preferably 350 to 550 ° C, and still more preferably. 350-500 ° C. If the calcination temperature is too low, the catalyst strength may be reduced, and if it is too high, sintering of the active ingredient or reduction in the specific surface area of the catalyst may be caused, and the catalyst activity may be reduced.
A drying step of preliminarily drying the formed body after the forming step may be performed before the firing step.
[0024]
The drying conditions are not particularly limited, and may be appropriately set in consideration of the conditions of the subsequent baking step, and the like, but the drying temperature is preferably 20 to 120 ° C, more preferably 20 to 100 ° C, More preferably, it is 20 to 80 ° C.
The exhaust gas treatment catalyst obtained by the production method of the present invention is suitable for treating exhaust gas discharged from coal-fired boilers or heavy oil-fired boilers, and incinerator exhaust gas discharged from incineration of industrial waste and municipal waste. Used. Although the composition of the exhaust gas to be treated is not particularly limited, as described above, the exhaust gas treatment catalyst obtained by the present invention is used as a denitration catalyst for removing nitrogen oxides or for removing an organic halogen compound for removing an organic halogen compound. As a catalyst for use.
[0025]
When the exhaust gas treatment catalyst obtained by the production method of the present invention is used as a catalyst for removing an organic halogen compound, the composition of the exhaust gas to be treated is not particularly limited as long as it contains an organic halogen compound. Exhaust gases containing (at least one selected from polyhalogenated dibenzodioxins, polyhalogenated dibenzofurans and polyhalogenated biphenyls) and PCBs are preferred. In order to remove the organic halogen compound using the exhaust gas treatment catalyst obtained by the present invention, it is desirable that the exhaust gas is brought into contact with the catalyst at a temperature of 130 to 350 ° C., preferably 150 to 250 ° C. and allowed to flow. .
[0026]
When the exhaust gas treatment catalyst obtained by the production method of the present invention is used as a denitration catalyst, the catalyst is brought into contact with exhaust gas in the presence of a reducing agent such as ammonia or urea to reduce and remove nitrogen oxides in the exhaust gas. To do. The processing conditions at this time are not particularly limited, and the processing can be carried out under processing conditions generally used for this type of reaction. Specifically, the temperature may be appropriately determined in consideration of the type and properties of the exhaust gas, the required nitrogen oxide decomposition rate, and the like, but the temperature is preferably 130 to 650 ° C. If the temperature of the exhaust gas during the treatment is lower than 130 ° C., the denitration efficiency may decrease. If it exceeds 650 ° C., problems such as sintering of the active ingredient and reduction in the specific surface area of the catalyst may occur.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In the following, “liter” may be simply described as “L” for convenience.
[Reference Example 1]
A solution obtained by dissolving 0.26 kg of ammonium metavanadate and 0.31 kg of oxalic acid in 4 L of water in 18.4 kg of commercially available titanium oxide powder (DT-51 (trade name), manufactured by Millennium), and ammonium paratungstate A solution prepared by dissolving 1.57 kg and 0.63 kg of monoethanolamine in 3.5 L of water was added and mixed well. After kneading with a kneader while adding an appropriate amount of water together with a molding aid, an extruder was used. Was formed into a honeycomb shape having an outer shape of 80 mm square, an aperture of 5.0 mm, a thickness of 1.0 mm, and a length of 500 mm. Next, after drying at 80 ° C., the mixture was treated at 450 ° C. for 5 hours in an air atmosphere and calcined to obtain a catalyst A-1.
[0028]
The composition of this catalyst is TiO2: V2O5: WO3: = 92: 1: 7 (weight% in terms of oxide).
The coal-fired boiler exhaust gas was passed through the catalyst A-1, and an exposure test was performed for 8000 hours. The exposure conditions are shown below.
Exposure conditions:
Gas composition used for exposure test
= NOX: 150 to 200 ppm, O2: 2-3%, H2O: 7 to 10%, SOX: 400 to 600 ppm, dust: 5 g / Nm3, NH3/ NO (molar ratio): 0.8
Temperature = 350 ° C
Space velocity (STP) = 6,000Hr-1
[Reference Example 2]
First, a titania-silica composite oxide (Ti-Si composite oxide) was prepared as follows. That is, Snowtex-20 (silica sol manufactured by Nissan Chemical Co., Ltd., about 20% by weight SiO 22After adding 16 kg, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2)2(80 g / L, sulfuric acid concentration: 300 g / L) was gradually added dropwise with stirring. After leaving the obtained gel for 24 hours, it was filtered, washed with water, and subsequently dried at 150 ° C. for 10 hours. The composition of the powder obtained by firing this at 500 ° C. is TiO 22: SiO2= 8.5: 1.5 (molar ratio).
[0029]
Next, a solution prepared by dissolving 0.26 kg of ammonium metavanadate and 0.31 kg of oxalic acid in 5 L of water in 18.4 kg of the Ti-Si composite oxide, 1.57 kg of ammonium paramolybdate and 0.1% of monoethanolamine. A solution obtained by dissolving 63 kg in 6 L of water was added and mixed well. After kneading with a kneader while adding an appropriate amount of water together with a molding aid, the outer shape was 80 mm square, 5.0 mm opening with an extrusion molding machine. It was formed into a honeycomb shape having a thickness of 1.0 mm and a length of 500 mm. Next, after drying at 80 ° C., the mixture was treated at 450 ° C. for 5 hours in an air atmosphere and calcined to obtain a catalyst B-1.
[0030]
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 92: 1: 7 (weight% in terms of oxide).
The coal-fired boiler exhaust gas was passed through the catalyst B-1, and an exposure test was performed for 8000 hours. Exposure conditions are the same as in Reference Example 1.
[Example 1]
The catalyst A-1 after the exposure test in Reference Example 1 was pulverized using a hammer mill to obtain a powder having an average particle diameter of 20 µm. A solution of 0.051 kg of ammonium metavanadate and 0.062 kg of oxalic acid in 6.5 L of water was added to 20 kg of the powder, mixed well, and kneaded with a kneader while adding an appropriate amount of water together with a molding aid. After that, it was formed into a honeycomb shape having an outer shape of 80 mm square, an aperture of 4.0 mm, a wall thickness of 1.0 mm, and a length of 500 mm using an extruder. Next, after drying at 80 ° C., the mixture was treated at 450 ° C. for 5 hours in an air atmosphere and calcined to obtain a catalyst A-2.
[0031]
The composition of this catalyst is TiO2: V2O5: WO3: = 91.8: 1.2: 7 (weight% in terms of oxide).
[Example 2]
In the same manner as in Example 1, except that the catalyst B-1 after the exposure test in Reference Example 2 was used instead of the catalyst A-1 after the exposure test in Reference Example 1, the catalyst B- 2 was obtained.
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 91.8: 1.2: 7 (weight% in terms of oxide).
[0032]
[Example 3]
9 kg of the powder obtained by pulverizing the catalyst A-1 after the exposure test in Reference Example 1 by a hammer mill and 10.08 kg of a commercially available titanium oxide powder were stirred with a kneader to obtain a mixed powder. . A solution of 0.193 kg of ammonium metavanadate and 0.232 kg of oxalic acid dissolved in 3.5 L of water and 0.865 kg of ammonium paratungstate and 0.346 kg of monoethanolamine were added to 3.5 L of water. The dissolved solution is added and mixed well, and after kneading with a kneader while adding an appropriate amount of water together with a molding aid, the outer shape is 80 mm square, the aperture is 5.0 mm, the wall thickness is 1.0 mm, It was formed into a honeycomb shape having a length of 500 mm. Next, after drying at 80 ° C., the mixture was treated in an air atmosphere at 450 ° C. for 5 hours and calcined to obtain a catalyst A-3.
[0033]
The composition of this catalyst is TiO2: V2O5: WO3: = 91.8: 1.2: 7 (weight% in terms of oxide).
[Example 4]
In Example 3, Catalyst B-1 was used in the same manner as in Example 3 except that Catalyst B-1 after the exposure test in Reference Example 2 was used instead of Catalyst A-1 after the exposure test in Reference Example 1. 3 was obtained.
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 91.8: 1.2: 7 (weight% in terms of oxide).
[0034]
[Example 5]
Catalyst B-4 was obtained in the same manner as in Example 2, except that 0.026 kg of ammonium metavanadate and 0.031 kg of oxalic acid were added.
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 91.9: 1.1: 7 (weight% in terms of oxide).
[Example 6]
A catalyst B-5 was obtained in the same manner as in Example 2, except that 0.129 kg of ammonium metavanadate and 0.154 kg of oxalic acid were added.
[0035]
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 91.5: 1.5: 7 (weight% in terms of oxide).
[Comparative Example 1]
Catalyst A-4 was obtained in the same manner as in Example 1, except that ammonium metavanadate and oxalic acid were not added.
The composition of this catalyst is TiO2: V2O5: WO3: = 92: 1: 7 (weight% in terms of oxide).
[Comparative Example 2]
Catalyst B-6 was obtained in the same manner as in Example 2, except that ammonium metavanadate and oxalic acid were not added.
[0036]
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 92: 1: 7 (weight% in terms of oxide).
[Comparative Example 3]
Catalyst B-7 was obtained in the same manner as in Example 2, except that 0.013 kg of ammonium metavanadate and 0.015 kg of oxalic acid were added.
The composition of this catalyst is Ti-Si composite oxide: V2O5: WO3= 91.95: 1.05: 7 (weight% in terms of oxide).
<Decomposition and removal of nitrogen oxides>
Nitrogen oxide (NO) was added to the prepared catalysts A-1, A-2, A-3, A-4, B-1, B-2, B-3, B-4, B-5 and B-6.X) Is passed under the following processing conditions,XWas decomposed and removed, and the denitration rate as an initial performance was measured. In addition, for each of the above catalysts that were subjected to the exposure test using the exhaust gas from a coal-fired boiler (those after 3000 hours of exposure and after 8000 hours of exposure), similarly, the denitration rate was measured under the following processing conditions, and after long-term use, The catalytic activity was confirmed. Table 1 shows the results.
[0037]
Processing conditions:
Gas composition to be treated
= NOX: 200 ppm, SO2: 400 ppm, O2: 2%, H2O: 10%, N2: Balance, NH3/ NO (molar ratio): 1.0
Gas temperature = 350 ° C
Space velocity (STP) = 15,000Hr-1
DeNOx rate (NOXRemoval rate) Calculation formula:
Denitration rate (%) =
[{(Reactor inlet NOXConcentration)-(Reactor outlet NOXconcentration)}
/ (Reactor inlet NOXConcentration)] x 100
[0038]
[Table 1]
Figure 2004209354
[0039]
【The invention's effect】
According to the present invention, in a method for preparing a new catalyst by crushing a used titanium-vanadium-based exhaust gas treatment catalyst having deteriorated catalytic activity and molding the obtained powder, the initial performance ( It is possible to provide a method for producing an exhaust gas treatment catalyst which is extremely excellent in the catalytic activity at the start of exhaust gas treatment) and can maintain the catalyst activity in a high state for a long time thereafter.

Claims (3)

チタン系酸化物およびバナジウム系酸化物を含む触媒の粉体を成形し焼成することによって排ガス処理用触媒を得る方法において、
前記粉体としてその少なくとも一部に排ガス処理に使用され活性の劣化した触媒の粉体を用いることとし、かつ、前記粉体におけるバナジウム含有率を前記劣化した触媒の使用前におけるバナジウム含有率の1.1倍以上となるように調整しておく、
ことを特徴とする、排ガス処理用触媒の製造方法。
A method for obtaining a catalyst for exhaust gas treatment by molding and firing a powder of a catalyst containing a titanium-based oxide and a vanadium-based oxide,
As the powder, at least a part of the catalyst powder used for exhaust gas treatment and having reduced activity is used, and the vanadium content in the powder is set to 1% of the vanadium content before the use of the deteriorated catalyst. Adjust so that it becomes 1 times or more,
A method for producing an exhaust gas treatment catalyst, comprising:
前記触媒が脱硝触媒である、請求項1に記載の排ガス処理用触媒の製造方法。The method for producing a catalyst for treating exhaust gas according to claim 1, wherein the catalyst is a denitration catalyst. 前記触媒が有機ハロゲン化合物分解触媒である、請求項1に記載の排ガス処理用触媒の製造方法。The method for producing an exhaust gas treatment catalyst according to claim 1, wherein the catalyst is an organic halogen compound decomposition catalyst.
JP2002380443A 2002-12-27 2002-12-27 Method for producing exhaust gas treatment catalyst Expired - Fee Related JP4084658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380443A JP4084658B2 (en) 2002-12-27 2002-12-27 Method for producing exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380443A JP4084658B2 (en) 2002-12-27 2002-12-27 Method for producing exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JP2004209354A true JP2004209354A (en) 2004-07-29
JP4084658B2 JP4084658B2 (en) 2008-04-30

Family

ID=32816671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380443A Expired - Fee Related JP4084658B2 (en) 2002-12-27 2002-12-27 Method for producing exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JP4084658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153000A1 (en) * 2020-01-31 2021-08-05 三菱パワー株式会社 Regenerated denitration catalyst and production method therefor, and denitration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153000A1 (en) * 2020-01-31 2021-08-05 三菱パワー株式会社 Regenerated denitration catalyst and production method therefor, and denitration device
JP2021121423A (en) * 2020-01-31 2021-08-26 三菱パワー株式会社 Regenerated denitration catalyst and method for producing the same
CN113498359A (en) * 2020-01-31 2021-10-12 三菱动力株式会社 Regenerated denitration catalyst, method for producing same, and denitration device
JP7451195B2 (en) 2020-01-31 2024-03-18 三菱重工業株式会社 Manufacturing method of regenerated denitrification catalyst

Also Published As

Publication number Publication date
JP4084658B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
KR100418225B1 (en) Catalyst and process for removing organohalogen compounds
US6716404B2 (en) Process for the purification of exhaust gases
EP1293250B1 (en) Process for removing organohalogen compounds using a titanium, molybdenum and vanadium containing catalyst and process for producing the catalyst
JP2005144299A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP4177661B2 (en) Method for producing exhaust gas treatment catalyst
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP2006320803A (en) Catalyst and method for treating exhaust gas
JP4084658B2 (en) Method for producing exhaust gas treatment catalyst
JP4578624B2 (en) Method for producing exhaust gas treatment catalyst
JP2006116537A (en) Method for treating waste gas
JP3795720B2 (en) Exhaust gas treatment method
JP3739659B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment catalyst manufacturing method
JP2001286733A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JP2006075834A (en) Exhaust gas treatment method and catalyst carrying ceramic filter
JP3920612B2 (en) Exhaust gas treatment method
JP3825216B2 (en) Exhaust gas treatment method and catalyst-carrying ceramic filter
JP2003112047A (en) Waste gas treatment catalyst and method
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2000015100A (en) Exhaust gas treatment catalyst, exhaust gas treatment method and apparatus
JP4002437B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound
JP3868246B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP5038006B2 (en) Exhaust gas treatment catalyst, method for producing the catalyst, and method for treating organic halogen compounds in exhaust gas using the catalyst
JP2001286730A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Ref document number: 4084658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees