JP2004207525A - Method for manufacturing photoelectric converter - Google Patents

Method for manufacturing photoelectric converter Download PDF

Info

Publication number
JP2004207525A
JP2004207525A JP2002375531A JP2002375531A JP2004207525A JP 2004207525 A JP2004207525 A JP 2004207525A JP 2002375531 A JP2002375531 A JP 2002375531A JP 2002375531 A JP2002375531 A JP 2002375531A JP 2004207525 A JP2004207525 A JP 2004207525A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
insulating layer
crystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002375531A
Other languages
Japanese (ja)
Inventor
Akiko Setoguchi
晶子 瀬戸口
Makoto Sugawara
信 菅原
Atsuo Kishu
淳雄 旗手
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002375531A priority Critical patent/JP2004207525A/en
Publication of JP2004207525A publication Critical patent/JP2004207525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a photoelectric converter having a high conversion efficiency at a low cost. <P>SOLUTION: In the photoelectric converter, a plurality of semiconductor particles 4 indicating a first conductive type are arranged on a substrate 1, to form a first insulated layer between the semiconductor particles 4 on the substrate 1. Thereafter, a semiconductor layer indicating a second conductive type and an upper electrode are provided on the semiconductor particles 4. After a first insulated layer 3 is formed between the semiconductor particles 4 on a surface of the substrate 1; a second conductive type semiconductor layer 5, a second insulated layer 6, and the upper electrode, are sequentially formed. The second insulated layer 6 is not interposed between the semiconductor particles 4 and the second conductive type semiconductor layer 5, thereby reducing a defect level of an interface of a semiconductor, and the second insulated layer 6 having a smooth surface shape is provided between the second conductive type semiconductor layer 5 and the upper electrode, thereby preventing a disconnection of the upper electrode. As the result, it is possible to provide the photoelectric converter having the high conversion efficiency at the low cost. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光電変換装置の製造方法に関し、特に粒状結晶質半導体を用いた光電変換装置の製造方法に関する。
【0002】
【従来の技術】
従来の粒状結晶質シリコン半導体を用いた光電変換装置を図2および図3に示す。図2は、多数の第一導電型を呈する粒状結晶質シリコン半導体4を導電性の基板1に配設した後、この粒状結晶質シリコン半導体4の間にペースト状の絶縁層6を充填してこの絶縁層を焼結し、粒状結晶質シリコン半導体4と絶縁層6の上にさらに第二導電型の半導体層5を形成した光電変換装置である(例えば特願2002−214399号明細書参照)。
【0003】
この光電変換装置では、ペースト状の絶縁層6の充填方法が工夫されており、粒状結晶質シリコン半導体4が絶縁層6に埋まらず、粒状結晶質シリコン半導体4の開口率が高くなる製造方法になっている。すなわち、ペースト状の絶縁層6を充填する前に粒状結晶質シリコン半導体4の表面のみに選択的に撥液性を有する皮膜を形成することにより、粒状結晶質シリコン半導体4がペースト状の絶縁層6で覆われてしまわないようにする。ここで、開口率とは、光電変換装置を上面から見たとき、粒状結晶質シリコン半導体4の配設面積に対する粒状結晶質シリコン半導体4が絶縁層6に埋まっていない領域の面積比をいう。
【0004】
一方、図3は、多数の第一導電型の粒状結晶質シリコン半導体4を導電性基板1に配設した後、基板1を陽極酸化することによって絶縁性の酸化膜3を形成した光電変換装置の例である(例えば特願2001−97713号明細書参照)。この光電変換装置においては、酸化膜3は基板1を酸化して形成するので酸化膜3が粒状結晶質シリコン半導体4を覆ってしまうことはないという利点がある。
【0005】
なお、本発明にもっとも近い従来技術は上記した出願中の明細書である。
【0006】
【発明が解決しようとする課題】
しかしながら、図2に示す従来の光電変換装置では開口率を高くできるが、完全に開口しきらない部分が残るという問題があった。すなわち、図4に示すように、粒状結晶質シリコン半導体4を基板1上に配設すると、粒状結晶質シリコン半導体4同志がかなり接近した部分7ができる。粒状結晶質シリコン半導体4が接近した部分7にペースト状の絶縁層6を充填すると、いわゆる毛細管現象に類似した表面張力の効果によって粒状結晶質シリコン半導体4同士が接近した部分7にペースト状の絶縁層6が密集してしまう。このため、粒状結晶質シリコン半導体4同志がかなり接近した部分7ではペースト状の絶縁層6が粒状結晶質シリコン半導体4の上に這い上がり、粒状結晶質シリコン半導体5が被覆されるという問題が発生する。なお、図4は図2に示す従来の光電変換装置を上から見た図である。
【0007】
また、ペースト状の絶縁層6を浸透方式で基板1上の粒状結晶質シリコン半導体4間から浸透させると、粒状結晶質シリコン半導体4の開口部分に撥液剤や絶縁層材料が付着することはないという大きな利点はあるが、ペースト状の絶縁層6の注入量を制御するのが困難である。すなわち、注入量が少ないとペースト状の絶縁層6が粒状結晶質シリコン半導体4上へ這い上がることが抑制されて開口率をあげることはできるが、基板1上の絶縁層6が極めて薄くなる、あるいは途切れてしまう等の問題が起こり絶縁不良となる。また、注入量が多いとペースト状の絶縁層6が粒状結晶質シリコン半導体4の上へ這い上がり、開口率が下がるという問題があった。
【0008】
また、図3に示す従来の光電変換装置では、粒状結晶質シリコン半導体4を基板1に配設するときに、粒状結晶質シリコン半導体4の高さの50%以上を溶かす必要があった。図5に示すように、粒状結晶質シリコン半導体4の下部で第二導電型の半導体層5と上部透明電極層(不図示)が薄くなるかまたは断線することを防ぐために、粒状結晶質シリコン半導体4と絶縁層6とのなす角は90度以上にする必要があるからである。粒状結晶質シリコン半導体4の下部に、多少の回り込みで逆テーパー部分にもある程度は成膜されるものの、基本的には成膜されにくくおおむね50%未満の溶かし量では断線する可能性がある。これを防ぐためには粒状結晶質シリコン半導体4の高さの50%以上を溶かす必要があり、このために粒状結晶質シリコン半導体4の表面積が減少、すなわち粒状結晶質シリコン半導体5の開口率が減少することになる。
【0009】
以上のように、基板1上に粒状結晶質シリコン半導体4を多数配設する従来の光電変換装置では、開口率を100%程度にすることは困難であった。開口率の低下は、受光量の低下すなわち変換効率の低下を意味する。また、絶縁層6に含まれる不純物が粒状結晶質シリコン半導体表面を汚染するため、粒状結晶質シリコン半導体4と絶縁層6の界面には欠陥準位が存在し、粒状結晶質シリコン半導体と絶縁層の接触面積の増加、すなわち、開口率が低下すると欠陥準位によるキャリアの再結合が増加して変換効率が低下すると考えられる。
【0010】
本発明は、上記のような従来技術の問題点に鑑みてなされたものであり、基板上に半導体粒子を多数配設してその粒子間に絶縁層を配設した光電変換装置において、半導体粒子と絶縁層との接触面積を極力減少させて絶縁層に起因する半導体界面の欠陥準位を低減し、かつ、第二導電型半導体層と上部電極間に表面形状の滑らかな第二絶縁層を設けることによって上部電極の断線を防ぎ、もって、変換効率の高い光電変換装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る光電変換装置は、少なくとも表面にアルミニウム層を有する基板上に第一導電型を呈する半導体粒子を多数配設し、前記半導体粒子上に第二導電型を呈する半導体層及び上部電極を設けた光電変換装置の製造方法において、前記半導体粒子間のアルミニウム層上に第一絶縁層を形成した後に、前記第二導電型半導体層、第二絶縁層及び上部電極を順次形成したことを特徴とする。
【0012】
上記光電変換装置では、前記第一絶縁層が陽極酸化膜であることが望ましい。
【0013】
また、半導体粒子は結晶シリコンであることが望ましい。
【0014】
また、第二絶縁層は耐熱性高分子材料であり、その表面形状は上部電極層が薄くなったり断線しない程度に滑らかであることが望ましい。
【0015】
また、前記第一導電型半導体粒子と前記第二導電型半導体層の間に、真性半導体層を設けるほうが望ましい。
【0016】
【発明の実施の形態】
以下、図面に基づいて本発明を詳細に説明する。
図1は本発明に係る光電変換装置の一実施形態を示す断面図であり、1は基板、2はアルミニウム−シリコン合金層、3は第一絶縁層、4は半導体粒子、5は半導体粒子4に対して逆の導電型を呈する第二導電型半導体層、6は第二絶縁層である。
【0017】
基板1としては、アルミニウムまたはアルミニウム合金が用いられ、アルミニウム層2の下部に基材として金属、ガラス、セラミック、あるいは樹脂などを設けてもよい。
【0018】
基板1上に、第一導電型の半導体粒子4を多数配設する。この半導体粒子4は、例えばシリコンにp型を呈するホウ素、アルミニウム、もしくはガリウムなど、またはn型を呈するリンやヒ素などが微量含まれているものである。半導体粒子4の形状は球面または多面体のいずれでもよいが、多面体形状のほうが開口面積の増加および反射光の減少の点から有利である。加工の簡便さのため、基板1に半導体粒子4を接合する時点では半導体粒子4の表面形状を滑らかな曲面にしておき、接合後あるいは絶縁体を形成した後にウェットまたはドライのエッチングで表面形状を加工してもよい。
【0019】
半導体粒子4の粒径は0.1〜1mmが望ましく、半導体粒子の充填および接合の能力が加工性の制限となるが、充填および接合の技術が向上すれば粒径はより小さいほうがよい。
【0020】
基板1の表面の第一絶縁層3は陽極酸化法、熱酸化法、あるいは酸化剤による酸化法などで形成されるが、絶縁性を確保するためには陽極酸化法が最適である。すなわち、半導体粒子4をすでに接合した基板1の表面の酸化処理であるから、熱酸化法や酸化剤による酸化法では酸化できる範囲が数ナノメートル程度に限定され十分な絶縁が得られないが、陽極酸化法では1μm以上の十分な厚みの第一絶縁層3を形成することができ1MΩ以上の絶縁抵抗が得られるため、上記効果を確実に得ることができる。
【0021】
陽極酸化法に使用する電解液としては、硫酸、シュウ酸、クロム酸、ホウ酸などの酸性浴、あるいはアルカリ性浴が用いられる。また、酒石酸アンモニウム、ホウ酸アンモニウムなどの緩衝溶液、中性塩、弱酸塩、あるいは弱アルカリ塩は、第一絶縁層3を浸蝕しにくく、しっかりとした第一絶縁層3を作る上で好ましい。また、エチレングリコール溶液や溶融塩法などの非水溶液を電解液とした陽極酸化法も陽極酸化膜3を浸蝕しにくいという点で有利な選択肢である。
【0022】
陽極酸化の温度は室温程度がもっとも一般的であるが、緻密な第一絶縁層3にするために電解液の種類に応じて0℃あるいは90℃程度に設定するが、非水溶液系では200〜300℃に設定するのが好ましい場合もある。いずれも、第一絶縁層3の品質のために高精度に温度制御することが望ましい。
【0023】
第二導電型半導体層5は、半導体粒子4と逆導電型の膜であり、CVD法などで形成される。また、半導体層5は結晶質または非晶質のいずれでもよい。また、膜厚は5〜100nmであるが、膜の導電率および透過率から最適値が選択される。また、半導体粒子4との境界にi型の真性半導体層を形成すると特性が向上して好ましい。
【0024】
第二絶縁層6の材料としてはガラス、または有機もしくは無機の樹脂を用いることができるが、耐熱高分子またはSiを含有する有機無機複合材料であれば絶縁層を比較的低温で形成することが可能となって望ましい。耐熱高分子材料としては、例えばポリイミド、ポリベンゾイミダゾ−ル、ポリアミドイミド等を用いることができ、Siを含有する有機無機複合材料としては、例えばシリコーン樹脂、ポリカルボシラン等を用いることができる。第二絶縁層6の厚みは0.1μm以上であることが必要であり、1μm以上であることが望ましい。また、第二絶縁層6は浸透方式で基板1上の粒状結晶質シリコン半導体4間から浸透させた後に燒結する。また、その表面形状は上部電極の断線を防ぐ程度に滑らかであることが好ましい。
【0025】
上部電極は透明導電性膜として、SnO2、In23、ITO、ZnO、TiO2などの酸化物が用いられる。透明であれば金属薄膜を用いてもよい。
【0026】
上部電極の上に反射防止膜を単層または複数配設すること、または透明導電膜の膜厚を適切に選んで反射防止効果をもたせることにより、さらに変換効率を向上させることができる。上部電極上への透明保護層の形成、フィンガー電極の形成、表面ガラス形状などのモジュール形態への選定などは、従来の光電変換装置と同様に最適化することが望ましい。
【0027】
【実施例】
次に、本発明の光電変換装置について実施例を説明する。
まず、アルミニウム基板1上に平均粒径600μmのp形の粒状結晶質シリコン半導体4を1層密に配設し、615℃に加熱して基板1と粒状結晶質シリコン半導体4を溶着させた。その後、粒状結晶質シリコン半導体を溶着した基板1を570℃で30分間の熱処理を行うことによって基板のAl原子をシリコン半導体中に拡散させた。
【0028】
粒状結晶質シリコン半導体を溶着した基板1を室温の2.5%H2SO4を用いて1A/dm2、20Vで10分間陽極酸化し、基板1の表面の粒状結晶質シリコン半導体間に第一絶縁層3を6μmの厚さで形成した。次に、フッ酸:硝酸=1:40溶液に30秒間浸漬した後、n層20nmをプラズマCVD法で成膜した。その後、有機無機複合材料を塗布し、215℃で焼成して厚さ50um程度の第二絶縁層6を形成した。最後に、スパッタリング法で85nmのITO膜を形成した。これにより8%の変換効率を有する光電変換素子が得られた。
【0029】
また同様に、粒状結晶質シリコン半導体を溶着した基板1を室温の2.5%H2SO4を用いて1A/dm2、20Vで10分間陽極酸化し、基板1の表面の粒状結晶質シリコン半導体間に第一絶縁層3を6μmの厚さで形成した。次に、フッ酸:硝酸=1:40溶液に30秒間浸漬した後、、n層20nmをプラズマCVD法で成膜した。その後、有機無機複合材料を塗布し、215℃で焼成して厚さ50um程度の第二絶縁層6を形成した。最後に、スパッタリング法で85nmのITO膜を形成した。これにより11%の変換効率を有する光電変換素子が得られた。
【0030】
また、p型半導体粒子とn型半導体層の間に、真性半導体層を5nm設け、他の条件を上記光電変換素子と同条件とした光電変換素子において、11.5%の変換効率が得られた。
【0031】
【発明の効果】
以上のように、本発明の光電変換装置によれば、基板表面の半導体粒子間に陽極酸化法によって第一絶縁層を形成したことから、基板と半導体粒子上に成膜する第二導電型半導体層との絶縁性が確保された。また、半導体粒子と第二導電型半導体層の間に第二絶縁層を介さないことによって半導体粒子と第二絶縁層界面に発生する欠陥準位が生じないようにし、かつ、第二導電型半導体層と上部電極間に表面形状の滑らかな第二絶縁層を形成することによって上部電極の断線を防いだ。その結果、半導体粒子と第一絶縁層界面の欠陥準位による開放電圧の低下および短絡電流密度の低下がなく、かつ、表面形状の滑らかな上部電極層を形成できることにより、変換効率の高い光電変換装置が得られる。
【図面の簡単な説明】
【図1】本発明の光電変換装置を示す断面図である。
【図2】従来の光電変換装置を示す断面図である。
【図3】従来の他の光電変換装置を示す断面図である。
【図4】図2に示す従来の光電変換装置を上から見た図である。
【図5】図3に示す従来の光電変換装置の半導体粒子付近を拡大した図である。
【符号の説明】
1・・・・基板
2・・・・アルミニウム・シリコン合金
3・・・・第一絶縁層
4・・・・半導体粒子
5・・・・第二導電型半導体層
6・・・・第二絶縁層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a photoelectric conversion device, and more particularly to a method for manufacturing a photoelectric conversion device using a granular crystalline semiconductor.
[0002]
[Prior art]
FIGS. 2 and 3 show a conventional photoelectric conversion device using a granular crystalline silicon semiconductor. FIG. 2 shows that after a large number of granular crystalline silicon semiconductors 4 exhibiting the first conductivity type are disposed on the conductive substrate 1, a paste-like insulating layer 6 is filled between the granular crystalline silicon semiconductors 4. This is a photoelectric conversion device in which the insulating layer is sintered to form a second conductive type semiconductor layer 5 on the granular crystalline silicon semiconductor 4 and the insulating layer 6 (for example, see Japanese Patent Application No. 2002-214399). .
[0003]
In this photoelectric conversion device, the method of filling the paste-like insulating layer 6 is devised, and the granular crystalline silicon semiconductor 4 is not buried in the insulating layer 6 and the aperture ratio of the granular crystalline silicon semiconductor 4 is increased. Has become. That is, before filling the paste-like insulating layer 6, the film having the liquid repellency is selectively formed only on the surface of the granular crystalline silicon semiconductor 4, so that the granular crystalline silicon semiconductor 4 becomes the paste-like insulating layer. 6 so that it is not covered. Here, the aperture ratio refers to an area ratio of a region where the granular crystalline silicon semiconductor 4 is not buried in the insulating layer 6 to an area where the granular crystalline silicon semiconductor 4 is provided when the photoelectric conversion device is viewed from above.
[0004]
On the other hand, FIG. 3 shows a photoelectric conversion device in which an insulating oxide film 3 is formed by arranging a large number of first-conductivity-type granular crystalline silicon semiconductors 4 on a conductive substrate 1 and then anodizing the substrate 1. (For example, refer to Japanese Patent Application No. 2001-97713). In this photoelectric conversion device, since the oxide film 3 is formed by oxidizing the substrate 1, there is an advantage that the oxide film 3 does not cover the granular crystalline silicon semiconductor 4.
[0005]
The prior art closest to the present invention is the above-mentioned pending specification.
[0006]
[Problems to be solved by the invention]
However, in the conventional photoelectric conversion device shown in FIG. 2, although the aperture ratio can be increased, there is a problem that a portion that is not completely opened remains. That is, as shown in FIG. 4, when the granular crystalline silicon semiconductor 4 is disposed on the substrate 1, a portion 7 where the granular crystalline silicon semiconductors 4 are considerably close to each other is formed. When the portion 7 where the granular crystalline silicon semiconductor 4 approaches is filled with the paste-like insulating layer 6, the paste-like insulation is applied to the portion 7 where the granular crystalline silicon semiconductors 4 approach each other due to a surface tension effect similar to a so-called capillary phenomenon. Layer 6 will be dense. For this reason, in the portion 7 where the granular crystalline silicon semiconductors 4 are very close to each other, the paste-like insulating layer 6 creeps up on the granular crystalline silicon semiconductor 4, and the granular crystalline silicon semiconductor 5 is covered. I do. FIG. 4 is a top view of the conventional photoelectric conversion device shown in FIG.
[0007]
Further, when the paste-like insulating layer 6 is permeated between the granular crystalline silicon semiconductors 4 on the substrate 1 by the infiltration method, the liquid repellent and the insulating layer material do not adhere to the openings of the granular crystalline silicon semiconductor 4. However, it is difficult to control the amount of the paste-like insulating layer 6 to be injected. That is, when the injection amount is small, the paste-like insulating layer 6 is prevented from crawling onto the granular crystalline silicon semiconductor 4 and the aperture ratio can be increased, but the insulating layer 6 on the substrate 1 becomes extremely thin. Alternatively, a problem such as interruption occurs, resulting in insulation failure. Also, when the amount of injection is large, there is a problem that the paste-like insulating layer 6 rises above the granular crystalline silicon semiconductor 4 and the aperture ratio decreases.
[0008]
In addition, in the conventional photoelectric conversion device shown in FIG. 3, when disposing the granular crystalline silicon semiconductor 4 on the substrate 1, it is necessary to melt 50% or more of the height of the granular crystalline silicon semiconductor 4. As shown in FIG. 5, in order to prevent the semiconductor layer 5 of the second conductivity type and the upper transparent electrode layer (not shown) from being thinned or disconnected below the granular crystalline silicon semiconductor 4, This is because the angle between the insulating layer 4 and the insulating layer 6 needs to be 90 degrees or more. Although a certain amount of film is formed under the granular crystalline silicon semiconductor 4 even in the reverse taper portion with a slight wraparound, it is basically difficult to form a film, and there is a possibility of disconnection with a melting amount of approximately less than 50%. In order to prevent this, it is necessary to melt 50% or more of the height of the granular crystalline silicon semiconductor 4, and therefore, the surface area of the granular crystalline silicon semiconductor 4 decreases, that is, the aperture ratio of the granular crystalline silicon semiconductor 5 decreases. Will do.
[0009]
As described above, in the conventional photoelectric conversion device in which many granular crystalline silicon semiconductors 4 are provided on the substrate 1, it is difficult to make the aperture ratio about 100%. A decrease in the aperture ratio means a decrease in the amount of received light, that is, a decrease in conversion efficiency. Further, since impurities contained in the insulating layer 6 contaminate the surface of the granular crystalline silicon semiconductor, a defect level exists at the interface between the granular crystalline silicon semiconductor 4 and the insulating layer 6, and the granular crystalline silicon semiconductor and the insulating layer When the contact area increases, that is, when the aperture ratio decreases, it is considered that the recombination of carriers due to defect levels increases and the conversion efficiency decreases.
[0010]
The present invention has been made in view of the above-described problems of the related art. In a photoelectric conversion device in which a large number of semiconductor particles are arranged on a substrate and an insulating layer is arranged between the particles, the semiconductor particles The defect area of the semiconductor interface caused by the insulating layer is reduced by reducing the contact area between the semiconductor layer and the insulating layer as much as possible, and the second insulating layer having a smooth surface shape is formed between the second conductive semiconductor layer and the upper electrode. It is an object of the present invention to provide a photoelectric conversion device having high conversion efficiency by preventing disconnection of an upper electrode by being provided.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a photoelectric conversion device according to the present invention is provided with a large number of semiconductor particles having the first conductivity type on a substrate having an aluminum layer on at least the surface, and a second conductivity type on the semiconductor particles. In the method for manufacturing a photoelectric conversion device provided with a semiconductor layer and an upper electrode, the second conductive semiconductor layer, the second insulating layer and the upper layer are formed after forming a first insulating layer on an aluminum layer between the semiconductor particles. The electrode is formed sequentially.
[0012]
In the above photoelectric conversion device, it is preferable that the first insulating layer is an anodic oxide film.
[0013]
Further, the semiconductor particles are desirably crystalline silicon.
[0014]
Further, the second insulating layer is made of a heat-resistant polymer material, and its surface shape is desirably smooth so that the upper electrode layer is not thinned or disconnected.
[0015]
Further, it is preferable to provide an intrinsic semiconductor layer between the first conductive type semiconductor particles and the second conductive type semiconductor layer.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing one embodiment of a photoelectric conversion device according to the present invention, wherein 1 is a substrate, 2 is an aluminum-silicon alloy layer, 3 is a first insulating layer, 4 is semiconductor particles, 5 is semiconductor particles 4 The second conductive semiconductor layer 6 has the opposite conductivity type to that of the semiconductor layer 6, and 6 is a second insulating layer.
[0017]
Aluminum or an aluminum alloy is used as the substrate 1, and a metal, glass, ceramic, resin, or the like may be provided as a base material below the aluminum layer 2.
[0018]
A large number of semiconductor particles 4 of the first conductivity type are arranged on a substrate 1. The semiconductor particles 4 include, for example, silicon containing a trace amount of boron, aluminum, gallium, or the like exhibiting p-type, or phosphorus or arsenic exhibiting n-type. The shape of the semiconductor particles 4 may be either spherical or polyhedral, but the polyhedral shape is more advantageous in terms of increasing the opening area and decreasing the reflected light. For the sake of simplicity of processing, the surface shape of the semiconductor particles 4 is set to a smooth curved surface at the time of bonding the semiconductor particles 4 to the substrate 1, and after the bonding or after forming the insulator, the surface shape is wet or dry etched. It may be processed.
[0019]
The particle size of the semiconductor particles 4 is desirably 0.1 to 1 mm, and the filling and bonding ability of the semiconductor particles limits the workability. However, as the filling and bonding techniques are improved, the smaller the particle size, the better.
[0020]
The first insulating layer 3 on the surface of the substrate 1 is formed by an anodic oxidation method, a thermal oxidation method, an oxidation method using an oxidizing agent, or the like, and the anodic oxidation method is optimal for securing insulation. That is, since the surface of the substrate 1 to which the semiconductor particles 4 are already bonded is oxidized, the oxidizable range is limited to about several nanometers by a thermal oxidation method or an oxidation method using an oxidizing agent, and sufficient insulation cannot be obtained. In the anodic oxidation method, the first insulating layer 3 having a sufficient thickness of 1 μm or more can be formed and an insulation resistance of 1 MΩ or more can be obtained, so that the above effects can be reliably obtained.
[0021]
As an electrolytic solution used in the anodic oxidation method, an acidic bath such as sulfuric acid, oxalic acid, chromic acid, boric acid, or an alkaline bath is used. In addition, a buffer solution such as ammonium tartrate or ammonium borate, a neutral salt, a weak acid salt, or a weak alkali salt is preferable in that the first insulating layer 3 is hardly eroded and the first insulating layer 3 is firmly formed. Anodization using an aqueous solution of a non-aqueous solution such as an ethylene glycol solution or a molten salt method as an electrolytic solution is also an advantageous option in that the anodic oxide film 3 is hardly corroded.
[0022]
The temperature of the anodic oxidation is most generally about room temperature, but is set to about 0 ° C. or 90 ° C. depending on the type of the electrolytic solution in order to form the dense first insulating layer 3; It may be preferable to set the temperature to 300 ° C. In any case, it is desirable to control the temperature with high accuracy for the quality of the first insulating layer 3.
[0023]
The second conductivity type semiconductor layer 5 is a film of the opposite conductivity type to the semiconductor particles 4, and is formed by a CVD method or the like. The semiconductor layer 5 may be either crystalline or amorphous. The film thickness is 5 to 100 nm, but an optimum value is selected from the conductivity and the transmittance of the film. Further, it is preferable to form an i-type intrinsic semiconductor layer at the boundary with the semiconductor particles 4 because the characteristics are improved.
[0024]
As a material of the second insulating layer 6, glass or an organic or inorganic resin can be used. However, if an organic-inorganic composite material containing heat-resistant polymer or Si is used, the insulating layer can be formed at a relatively low temperature. It is possible and desirable. As the heat-resistant polymer material, for example, polyimide, polybenzimidazole, polyamideimide, or the like can be used. As the organic-inorganic composite material containing Si, for example, a silicone resin, polycarbosilane, or the like can be used. The thickness of the second insulating layer 6 needs to be 0.1 μm or more, and preferably 1 μm or more. The second insulating layer 6 is sintered after being infiltrated from between the granular crystalline silicon semiconductors 4 on the substrate 1 by a permeation method. Further, it is preferable that the surface shape is smooth enough to prevent disconnection of the upper electrode.
[0025]
For the upper electrode, an oxide such as SnO 2 , In 2 O 3 , ITO, ZnO, or TiO 2 is used as a transparent conductive film. If it is transparent, a metal thin film may be used.
[0026]
By providing a single layer or a plurality of antireflection films on the upper electrode, or by appropriately selecting the thickness of the transparent conductive film to have an antireflection effect, the conversion efficiency can be further improved. It is desirable to optimize the formation of the transparent protective layer on the upper electrode, the formation of the finger electrodes, and the selection of the module form such as the surface glass shape, similarly to the conventional photoelectric conversion device.
[0027]
【Example】
Next, examples of the photoelectric conversion device of the present invention will be described.
First, a p-type granular crystalline silicon semiconductor 4 having an average particle diameter of 600 μm was densely arranged on an aluminum substrate 1 and heated to 615 ° C. to fuse the substrate 1 and the granular crystalline silicon semiconductor 4. Thereafter, the substrate 1 on which the granular crystalline silicon semiconductor was welded was subjected to a heat treatment at 570 ° C. for 30 minutes to diffuse Al atoms of the substrate into the silicon semiconductor.
[0028]
The substrate 1 on which the granular crystalline silicon semiconductor is welded is anodized at 1 A / dm 2 , 20 V for 10 minutes using 2.5% H 2 SO 4 at room temperature, and the anodizing is performed between the granular crystalline silicon semiconductor on the surface of the substrate 1. One insulating layer 3 was formed with a thickness of 6 μm. Next, after being immersed in a hydrofluoric acid: nitric acid = 1: 40 solution for 30 seconds, an n-layer having a thickness of 20 nm was formed by a plasma CVD method. Thereafter, an organic-inorganic composite material was applied and baked at 215 ° C. to form a second insulating layer 6 having a thickness of about 50 μm. Finally, an 85 nm ITO film was formed by a sputtering method. As a result, a photoelectric conversion element having a conversion efficiency of 8% was obtained.
[0029]
Similarly, the substrate 1 on which the granular crystalline silicon semiconductor is deposited is anodized at 1 A / dm 2 , 20 V for 10 minutes using 2.5% H 2 SO 4 at room temperature, and the granular crystalline silicon on the surface of the substrate 1 is removed. The first insulating layer 3 was formed with a thickness of 6 μm between the semiconductors. Next, after being immersed in a hydrofluoric acid: nitric acid = 1: 40 solution for 30 seconds, an n-layer having a thickness of 20 nm was formed by a plasma CVD method. Thereafter, an organic-inorganic composite material was applied and baked at 215 ° C. to form a second insulating layer 6 having a thickness of about 50 μm. Finally, an 85 nm ITO film was formed by a sputtering method. As a result, a photoelectric conversion element having a conversion efficiency of 11% was obtained.
[0030]
Further, in a photoelectric conversion element in which an intrinsic semiconductor layer is provided with a thickness of 5 nm between the p-type semiconductor particles and the n-type semiconductor layer and other conditions are the same as those of the photoelectric conversion element, a conversion efficiency of 11.5% can be obtained. Was.
[0031]
【The invention's effect】
As described above, according to the photoelectric conversion device of the present invention, since the first insulating layer is formed between the semiconductor particles on the substrate surface by the anodic oxidation method, the second conductivity type semiconductor film is formed on the substrate and the semiconductor particles. The insulation with the layer was secured. Further, by not interposing a second insulating layer between the semiconductor particles and the second conductive type semiconductor layer, a defect level generated at the interface between the semiconductor particles and the second insulating layer is prevented from being generated, and the second conductive type semiconductor Disconnection of the upper electrode was prevented by forming a smooth second insulating layer between the layer and the upper electrode. As a result, there is no decrease in open-circuit voltage and decrease in short-circuit current density due to defect levels at the interface between the semiconductor particles and the first insulating layer, and the upper electrode layer having a smooth surface shape can be formed, so that photoelectric conversion with high conversion efficiency is achieved. A device is obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a photoelectric conversion device of the present invention.
FIG. 2 is a cross-sectional view illustrating a conventional photoelectric conversion device.
FIG. 3 is a cross-sectional view showing another conventional photoelectric conversion device.
4 is a diagram of the conventional photoelectric conversion device shown in FIG. 2 as viewed from above.
FIG. 5 is an enlarged view of the vicinity of semiconductor particles of the conventional photoelectric conversion device shown in FIG.
[Explanation of symbols]
1 ... substrate 2 ... aluminum silicon alloy 3 ... first insulating layer 4 ... semiconductor particles 5 ... second conductivity type semiconductor layer 6 ... second insulation layer

Claims (7)

少なくとも表面にアルミニウム層を有する基板上に第一導電型を呈する半導体粒子を多数配設し、前記半導体粒子上に第二導電型を呈する半導体層及び上部電極を設けた光電変換装置の製造方法において、前記半導体粒子間のアルミニウム層上に第一絶縁層を形成した後に、前記第二導電型半導体層、第二絶縁層及び上部電極を順次形成したことを特徴とする光電変換装置の製造方法。In a method for manufacturing a photoelectric conversion device, a large number of semiconductor particles having a first conductivity type are disposed on a substrate having an aluminum layer on at least the surface, and a semiconductor layer having a second conductivity type and an upper electrode are provided on the semiconductor particles. Forming a first insulating layer on the aluminum layer between the semiconductor particles, and then sequentially forming the second conductive semiconductor layer, the second insulating layer, and the upper electrode. 前記第一絶縁層が陽極酸化膜であることを特徴とする請求項1に記載の光電変換装置の製造方法。The method according to claim 1, wherein the first insulating layer is an anodic oxide film. 前記半導体粒子が結晶シリコン粒子であることを特徴とする請求項1または2に記載の光電変換装置の製造方法。3. The method according to claim 1, wherein the semiconductor particles are crystalline silicon particles. 前記第二絶縁層が耐熱性高分子材料であることを特徴とする請求項1〜3のいずれかに記載の光電変換装置の製造方法。The method for manufacturing a photoelectric conversion device according to claim 1, wherein the second insulating layer is a heat-resistant polymer material. 前記第一導電型半導体粒子と前記第二導電型半導体層の間に、真性半導体層を設けたことを特徴とする請求項1〜4のいずれかに記載の光電変換装置の製造方法。The method according to any one of claims 1 to 4, wherein an intrinsic semiconductor layer is provided between the first conductive semiconductor particles and the second conductive semiconductor layer. 前記真性半導体層の膜厚が1〜6nmであることを特徴とする請求項1〜5のいずれかに記載の光電変換装置の製造方法。The method according to claim 1, wherein the intrinsic semiconductor layer has a thickness of 1 to 6 nm. 前記半導体粒子上に前記第二導電型もしくは真性半導体層を直接形成したことを特徴とする請求項1〜6のいずれかに記載の光電変換装置の製造方法。The method of manufacturing a photoelectric conversion device according to claim 1, wherein the second conductivity type or intrinsic semiconductor layer is directly formed on the semiconductor particles.
JP2002375531A 2002-12-25 2002-12-25 Method for manufacturing photoelectric converter Pending JP2004207525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375531A JP2004207525A (en) 2002-12-25 2002-12-25 Method for manufacturing photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375531A JP2004207525A (en) 2002-12-25 2002-12-25 Method for manufacturing photoelectric converter

Publications (1)

Publication Number Publication Date
JP2004207525A true JP2004207525A (en) 2004-07-22

Family

ID=32813238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375531A Pending JP2004207525A (en) 2002-12-25 2002-12-25 Method for manufacturing photoelectric converter

Country Status (1)

Country Link
JP (1) JP2004207525A (en)

Similar Documents

Publication Publication Date Title
CN103329281B (en) Solar cell, manufacturing method thereof, and solar cell module
JP5425349B1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US5181968A (en) Photovoltaic device having an improved collector grid
KR102447430B1 (en) Conversion of metal seed layer for buffer material
US7517465B2 (en) Ultra lightweight photovoltaic device and method for its manufacture
US20010008145A1 (en) Photovoltaic device
JP2023126914A (en) Semiconductor device
CN104934486B (en) Solar cell
TWI472046B (en) Solar cells and their manufacturing methods, with solar modules
CN116544298A (en) Solar cell and method for manufacturing solar cell
JP6021392B2 (en) Method for manufacturing photoelectric conversion device
JP5771759B2 (en) SOLAR CELL, SOLAR CELL MODULE, SOLAR CELL MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING METHOD
TW200939496A (en) Method for providing a series connection in a solar cell system
US10217880B2 (en) Voltage breakdown device for solar cells
JP2017005041A (en) Solar battery, and method of manufacturing solar battery
CN116960252A (en) LED chip and preparation method thereof
TWI415280B (en) Light power device and manufacturing method thereof
JP2004207525A (en) Method for manufacturing photoelectric converter
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2014048343A1 (en) Semiconductor light-emitting device for preventing metal migration
JP2004103958A (en) Solar cell
JP6151566B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP2004152830A (en) Solar cell
JP4212292B2 (en) Solar cell and manufacturing method thereof
JPH09199742A (en) Field effect solar cell