JP2004205975A - Transmissive type electromechanical optical switch element and switch array of the same - Google Patents

Transmissive type electromechanical optical switch element and switch array of the same Download PDF

Info

Publication number
JP2004205975A
JP2004205975A JP2002377423A JP2002377423A JP2004205975A JP 2004205975 A JP2004205975 A JP 2004205975A JP 2002377423 A JP2002377423 A JP 2002377423A JP 2002377423 A JP2002377423 A JP 2002377423A JP 2004205975 A JP2004205975 A JP 2004205975A
Authority
JP
Japan
Prior art keywords
transparent
electrode
optical switch
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377423A
Other languages
Japanese (ja)
Other versions
JP3993088B2 (en
Inventor
Fumihiko Mochizuki
文彦 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002377423A priority Critical patent/JP3993088B2/en
Publication of JP2004205975A publication Critical patent/JP2004205975A/en
Application granted granted Critical
Publication of JP3993088B2 publication Critical patent/JP3993088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmissive type electromechanical optical switch element which has a simple structure and is easily manufactured. <P>SOLUTION: The transmissive type electromechanical optical switch element is composed of a transparent substrate 10 provided with a transparent electrode 14, a tilted thin film transparent beam 12 having a hollow structure, which is at least supported at the both ends on the transparent substrate 10, and a movable electrode 16 provided with in a region near a light transmission region on the thin film transparent beam 12, and the thin film transparent beam 12 is tilted and moved with an electrostatic force when a voltage is applied between the transparent electrode 14 and the movable electrode 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、静電気力により可動薄膜を移動させて、光の透過、遮断を行う透過型電気機械式光変調(MEM)素子およびそのスイッチアレイに関する。
【0002】
【従来技術】
この分野におけいて、シリコン基板上に梁が垂直に動くようにした回折格子光バルブは早くから知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特表平10−510374号公報
【特許文献2】
特開平11−258558号公報
【0004】
特許文献1記載の光ビーム変調器は、次のa〜dから構成されている。
a.各要素が第一の縁及び第二の縁及び光反射平面を有する複数の細長い要素と、前記要素は第一のグループの要素が第二のグループの要素と互いにかみあわされるように前記第一のグループと前記第二のグループにグループ分けされ、かつ前記要素は互いに平行に配列されている。
b.それらの縁で前記第一のグループ及び前記第二のグループの要素を懸架する手段、
c.前記第一のグループに第一のバイアス電圧を印加する手段及び前記反射表面が実質的に同一平面にありかつ入射光ビームを反射する第一の平面内にあるように前記第二のグループに第二のバイアス電圧を印加する手段、
d.第一の平面に平行でありかつ前記入射光ビームを回折する第二の平面に向けて前記平面に垂直な前記第一のグループの前記要素を選択的に偏向させる手段。
【0005】
一方、特許文献2記載の光変調器は、紫外線の平面光源上に、電気機械動作により平面光源からの光を光変調する一次元又は二次元マトリクス状の光変調部を配設し、この光変調部から出射される光に励起される蛍光体を光変調部に対して対向配置し、また光変調部を、導光板上に設けた一方の電極である透明な信号電極と、この信号電極に空隙を挟んで対向する透明な可撓薄膜と、可撓薄膜に設けられ信号電極に対向する他方の電極である走査電極とを具備し、信号電極と走査電極とに電界を印加することで発生した静電気力によって可撓薄膜を撓ませ、可撓薄膜を透過して出射する光を変調するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1記載のものは、構成上反射型であり、したがって光の透過/遮断を行うことができなかった。
また、特許文献2記載のものは、光干渉を用いているため、素子を製作する上での制御が困難であった。特に薄膜梁の形状が光変調器のオン/オフに影響するため、薄膜梁を正確に製作する必要があり、これが困難であった。しかも多層構造になっているのも欠点であった。
本発明はこれらの課題を解決するもので、本発明の目的は、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の透過型電気機械式光スイッチ素子によれば、透明電極を備えた透明基板と、該透明基板上に少なくとも両支持された中空構造の傾斜した薄膜透明梁と、該薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記薄膜透明梁が傾倒移動するようにしたので、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
なお、透明基板上に少なくとも両支持された中空構造の傾斜した薄膜透明梁は、傾斜部の梁と該傾斜部の梁とは材料が異なり高さの異なる複数の柱状部から成る構成であってももちろん良い。
【0008】
請求項2記載の透過型電気機械式光スイッチ素子によれば、透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記柱材が傾倒するようにしたので、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られ、さらに1個の薄膜透明梁に2つの光路を採ることが可能となる。
【0009】
請求項3記載の発明によれば、請求項1又は2記載の透過型電気機械式光スイッチ素子において、前記可動電極を光を反射又は吸収させる膜で構成したので、別途光路を遮る部材を設ける必要がなくなり、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0010】
請求項4記載の発明によれば、請求項3記載の透過型電気機械式光スイッチ素子において、前記光を反射又は吸収させる膜を、金属、金属および誘電体多層反射膜、又は透明電極および誘電体多層膜で構成したので、簡単な構成で丈夫な透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0011】
請求項5記載の発明によれば、請求項1〜4のいずれか1項記載の透過型電気機械式光スイッチ素子において、前記薄膜透明梁をポリイミド、フォトレジスト、ポリカーボネート、ポリエチレン、ポリスチレン、又はその他樹脂、その他有機材料で構成したので、簡単な構成で丈夫な透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0012】
請求項6記載の透過型電気機械式光スイッチ素子の発明は、透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた遮光部材又は反射部材と、該両柱材の一方から前記透明電極へ向けて延設されるアームと、該アームの先端に設けられた非透明電極とで構成され、前記透明電極と前記非透明電極間に電圧が印加されたときの静電気力で前記柱材が傾倒するようにしたので、簡単な構成で変位量の大きい透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0013】
請求項7記載の光スイッチアレイの発明は、請求項1〜6のいずれか1項記載の透過型電気機械式光スイッチ素子を一次元又は二次元に配設したので、シンプルな構成で製造の簡単な光スイッチアレイを得ることができる。
【0014】
請求項8記載の発明は、請求項7記載の光スイッチアレイにおいて、光スイッチアレイの光の入射又は出射側に該光を集光するマイクロレンズアレイを設けたので、マイクロレンズアレイによって集光されるため光の利用効率が高まり、小さな開口面積であっても高効率で明るい変調光が得られるようになる。
また、マイクロレンズアレイを設けない場合に比べて薄膜透明梁の変位量を小さくできるため、薄膜透明梁の駆動エネルギーの低減が可能となる。
【0015】
【発明の実施の形態】
以下、本発明の各実施の形態について図面に基づいて説明する。
〈第1の実施の形態〉
まず、第1の実施の形態について図1に基づいて説明する。
図1は、本発明の第1の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【0016】
図1(a)および(b)において、100は第1の実施の形態に係る透過型電気機械式光スイッチ素子、10は透明基板、12は透明基板上に高さの異なる柱材で両支持された中空構造の傾斜した薄膜透明梁、14は透明基板10の上に設けられた透明電極、16は薄膜透明梁12の上部の光路L(光透過領域)の近傍に設けられた反射ないし遮光電極(可動電極)である。薄膜透明梁12で形成される柱材の一方は透明基板10に対して垂直ではなくて、鋭角(変位量)θ1で傾斜している。
【0017】
図1(a)のように、透明電極14と反射/遮光電極16との間に電圧が印加されないときは、通常、透明梁12が動かないので透明基板10の下方から来る光は透明梁12を透過して上方へ抜ける(光路L参照)。
一方、 図1(b)のように、透明電極14と反射/遮光電極16間に電圧が印加されると、反射/遮光電極16が透明電極14に静電気力で引きつけられ、これに伴って透明梁12が動作して斜め下方に移動して反射/遮光電極16が光路を覆う(光路L参照)。この場合、反射電極であれば光は反射して光路を引き返し、遮光電極16であれば遮光する。
そして、再び透明電極14と反射/遮光電極16間の電圧を無くすと、静電気力が無くなり、透明梁12の弾性復帰力で図1(a)の状態に戻る。この場合の復帰は両柱材で行われるため、従来の片持ち支持のMEMメカシャッタと比べて、復元力が大きくなり、高速可動に適している。
【0018】
斜行梁の製作は、例えば犠牲層(最終的に空隙を形成するために、工程の後で除去される層)を形成するさいにフォトマスクの面の濃度を変えたものを用いて露光することにより犠牲層が傾斜するので、これによって斜行梁が製作できる。本発明によれば膜構成がシンプルとなり製造が容易となる。
なお、斜行梁はここでは両支持の例を示したが、さらに梁の中央付近で支持することも可能である。
また、透明基板上に少なくとも両支持された中空構造の傾斜した薄膜透明梁は、傾斜部の梁と該傾斜部の梁とは材料が異なり高さの異なる複数の柱状部から成る構成であってももちろん良い。
【0019】
光を反射又は吸収させる膜としては、金属薄膜(金、銀、パラジウム、亜鉛、アルミニウム、ニッケル、金属酸化物等)、金属および誘電体多層反射膜、又は透明電極および誘電体多層膜から構成することができる。
また、薄膜透明梁12としては、ポリイミド、フォトレジスト、ポリカーボネート、ポリエチレン、ポリスチレン、その他樹脂、又はその他有機材料から構成することができる。
【0020】
この透過型電気機械式光スイッチ素子100を多数個、一次元又は二次元に配列することにより、シンプルな構成で製造の簡単な光スイッチアレイを得ることができる。
【0021】
〈第1の実施の形態の変形1〉
次に、第1の実施の形態の変形1について図2に基づいて説明する。
図2は、本発明の第1の実施の形態の変形1に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
図2(a)および(b)において、120は第1の実施の形態の変形1に係る透過型電気機械式光スイッチ素子、10は透明基板、12は透明基板上に高さの異なる柱材で両支持された中空構造の傾斜した薄膜透明梁、14は透明基板10の上に設けられた透明電極、16’は薄膜透明梁12の下部(裏部)の光路L(光透過領域)の近傍に設けられた反射ないし遮光電極(可動電極)である。
図2が図1と異なるのは、可動電極16’の取り付け位置が薄膜透明梁12の下部(裏部)である点である。
【0022】
図2(a)のように、透明電極14と反射/遮光電極16との間に電圧が印加されないときは、通常、透明梁12が動かないので透明基板10の下方から来る光は透明梁12を透過して上方へ抜ける(光路L参照)。
一方、 図2(b)のように、透明電極14と反射/遮光電極16間に電圧が印加されると、反射/遮光電極16が透明電極14に静電気力で引きつけられ、これに伴って透明梁12が動作して斜め下方に移動して反射/遮光電極16が光路を覆う(光路L参照)。この場合、反射電極であれば光は反射して光路を引き返し、遮光電極16であれば遮光する。
そして、再び透明電極14と反射/遮光電極16間の電圧を無くすと、静電気力が無くなり、透明梁12の弾性復帰力で図2(a)の状態に戻る。
この変形例1では、可動電極16’が薄膜透明梁12の下部(裏部)にあるので、固定電極14との距離が短くなり、したがって同じ静電界下でも大きな吸引力が発生するため高速可動に適している。
【0023】
〈第1の実施の形態の変形2〉
次に、第1の実施の形態の変形2について図3に基づいて説明する。
図3は、本発明の第1の実施の形態の変形2に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
図3(a)および(b)において、130は第1の実施の形態の変形2に係る透過型電気機械式光スイッチ素子、10は透明基板、12’は透明基板上に高さの異なる柱材で両支持された中空構造の傾斜した薄膜透明梁、14は透明基板10の上に設けられた透明電極、16’は薄膜透明梁12の下部(裏部)の光路L(光透過領域)の近傍に設けられた反射ないし遮光電極(可動電極)である。
図2が図1と異なるのは、光路Lを覆うエリア(反射/遮光電極)16’を狭く形成し、薄膜透明梁12で形成される柱材の傾斜を図1よりさらに傾斜させ、透明基板10に対する鋭角(変位量)θ3(θ3<θ1)を1で傾斜した点である。
【0024】
図3(a)のように、透明電極14と反射/遮光電極16’との間に電圧が印加されないときは、通常、透明梁12が動かないので透明基板10の下方から来る光は透明梁12’を透過して上方へ抜ける(光路L参照)。
一方、 図3(b)のように、透明電極14と反射/遮光電極16’間に電圧が印加されると、反射/遮光電極16’が透明電極14に静電気力で引きつけられ、これに伴って透明梁12が動作して斜め下方に移動して反射/遮光電極16’が光路を覆う(光路L参照)。この場合、反射電極であれば光は反射して光路を引き返し、遮光電極16’であれば遮光する。
そして、再び透明電極14と反射/遮光電極16’間の電圧を無くすと、静電気力が無くなり、透明梁12’の弾性復帰力で図3(a)の状態に戻る。
この変形例2では、薄膜透明梁12’で形成される柱材の傾斜を図1より傾斜させたので、薄膜透明梁12’の動く変位量θ3が図1の透明梁12の動く変位量θ1と比較して小さくて済むので、設計の自由度が大きくなり、マイクロレンズアレイとの組み合わせが可能となる。
【0025】
また、特許文献2記載の平面表示装置に本発明を適用すると、構成および製造がより簡単化される。すなわち、紫外線の平面光源上に、電気機械動作により平面光源からの光を光変調する一次元又は二次元マトリクス状の本発明に係る光変調部を配設する。この光変調部から出射される光に励起される蛍光体を光変調部に対して対向配置する。また、光変調部は、導光板上に設けた一方の電極である透明な信号電極と、この信号電極に空隙を挟んで対向する透明な可撓薄膜と、可撓薄膜に設けられ信号電極に対向する他方の電極である走査電極とを具備し、信号電極と走査電極とに電界を印加することで発生した静電気力によって可撓薄膜を撓ませ、可撓薄膜を透過して出射する光を変調するようにできる。
これにより干渉型および全反射型を使わずに同じものが、透過型で簡単に製造できる。しかも光利用効率が良く、高真空化が不要で、且つ安価なコストで大面積化が可能であり、しかも、高画質の平面表示装置となる。
【0026】
〈第2の実施の形態〉
次に、第2の実施の形態について図4に基づいて説明する。
図4は、本発明の第2の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【0027】
図4(a)および(b)において、200は第2の実施の形態に係る透過型電気機械式光スイッチ素子、40は透明基板、42は透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁、44は透明基板40の上に設けられた透明電極、46は薄膜透明梁42の面の光路L 1、L2(光透過領域)の近傍に設けられた反射ないし遮光電極(可動電極)である。
【0028】
図4(a)のように、透明電極44と反射/遮光電極46との間に電圧が印加されないときは、通常、透明梁42が動かないので透明基板40の下方から来る光は透明梁42を透過して上方へ抜ける(光路L1、L2参照)。
一方、 図4(b)のように、透明電極44と反射/遮光電極46間に電圧が印加されると、反射/遮光電極46が透明電極44に静電気力で引きつけられ、これに伴って透明梁42が動作して斜め下方に移動して反射/遮光電極46が光路を覆う(光路L1、L2参照)。この場合、反射電極であれば光は反射して光路を引き返し、遮光電極46であれば遮光する。
そして、再び透明電極44と反射/遮光電極46間の電圧を無くすと、静電気力が無くなり、透明梁42の弾性復帰力で図4(a)の状態に戻る。この場合の復帰は両柱材で行われるため、従来の片持ち支持のMEMメカシャッタと比べて、復元力が大きくなり、高速可動に適している。
【0029】
〈第3の実施の形態〉
次に、第3の実施の形態について図5に基づいて説明する。
図5は、本発明の第3の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
図5(a)および(b)において、300は第3の実施の形態に係る透過型電気機械式光スイッチ素子、50は透明基板、52は透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁、53は柱材の一方の途中から透明電極56へ向けて延設されるアーム、54は透明基板50の上に設けられた透明電極、56はアーム53の先端に設けられた可動電極である。58は薄膜透明梁52の上段に設けられた反射ないし遮光部材である。第3の実施の形態の特徴は、柱材の一方の途中から延設されるアームに可動電極56を設けることにより、吸引力を大きくすると共に、可動電極56の変位量を増幅できる点である。
【0030】
図5(a)のように、透明電極54と可動電極56との間に電圧が印加されないときは、通常、透明梁52が動かないので透明基板50の下方から来る光は透明梁52を透過して上方へ抜ける(光路L参照)。
一方、図5(b)のように、透明電極54と可動電極56間に電圧が印加されると、可動電極56が透明電極54に静電気力で引きつけられ、これに伴ってアーム53が下方に移動し、この移動量に増幅された移動量で透明梁52の上段に位置する反射/遮光電極58が斜め下方に移動して光路を覆う(光路L参照)。この場合、反射電極であれば光は反射して光路を引き返し、遮光電極であれば遮光する。
そして、再び透明電極55と可動電極56間の電圧を無くすと、静電気力が無くなり、透明梁52の弾性復帰力で図5(a)の状態に戻る。この場合の復帰は両柱材で行われるため、従来の片持ち支持のMEMメカシャッタと比べて、復元力が大きくなり、高速可動に適している。
【0031】
【発明の効果】
以上のように、請求項1記載の透過型電気機械式光スイッチ素子によれば、透明電極を備えた透明基板と、該透明基板上に少なくとも両支持された中空構造の傾斜した薄膜透明梁と、該薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記薄膜透明梁が傾倒移動するようにしたので、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0032】
請求項2記載の透過型電気機械式光スイッチ素子によれば、透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記柱材が傾倒するようにしたので、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られ、さらに1個の薄膜透明梁に2つの光路を採ることが可能となる。
【0033】
請求項3記載の発明によれば、請求項1又は2記載の透過型電気機械式光スイッチ素子において、前記可動電極を光を反射又は吸収させる膜で構成したので、別途光路を遮る部材を設ける必要がなくなり、簡単な構成の透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0034】
請求項4記載の発明によれば、請求項3記載の透過型電気機械式光スイッチ素子において、前記光を反射又は吸収させる膜を、金属、金属および誘電体多層反射膜、又は透明電極および誘電体多層膜で構成したので、簡単な構成で丈夫な透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0035】
請求項5記載の発明によれば、請求項1〜4のいずれか1項記載の透過型電気機械式光スイッチ素子において、前記薄膜透明梁をポリイミド、フォトレジスト、ポリカーボネート、ポリエチレン、ポリスチレン、その他樹脂、又はその他有機材料で構成したので、簡単な構成で丈夫な透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0036】
請求項6記載の透過型電気機械式光スイッチ素子の発明は、透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた遮光部材又は反射部材と、該両柱材の一方から前記透明電極へ向けて延設されるアームと、該アームの先端に設けられた非透明電極とで構成され、前記透明電極と前記非透明電極間に電圧が印加されたときの静電気力で前記柱材が傾倒するようにしたので、簡単な構成で変位量の大きい透過型電気機械式光スイッチ素子であってしかもその製造が簡単な透過型電気機械式光スイッチ素子が得られることとなる。
【0037】
請求項7記載の光スイッチアレイの発明は、請求項1〜6のいずれか1項記載の透過型電気機械式光スイッチ素子を一次元又は二次元に配設したので、シンプルな構成で製造の簡単な光スイッチアレイを得ることができる。
【0038】
請求項8記載の発明によれば、請求項7記載の光スイッチアレイにおいて、光スイッチアレイの光の入射又は出射側に該光を集光するマイクロレンズアレイを設けたので、マイクロレンズアレイによって集光されるため光の利用効率が高まり、小さな開口面積であっても高効率で明るい変調光が得られるようになる。
また、マイクロレンズアレイを設けない場合に比べて薄膜透明梁の変位量を小さくできるため、薄膜透明梁の駆動エネルギーの低減が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【図2】本発明の第1の実施の形態の変形1に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【図3】本発明の第1の実施の形態の変形2に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【図4】本発明の第2の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【図5】本発明の第3の実施の形態に係る透過型電気機械式光スイッチ素子の縦断面図で、(a)は非動作時(電圧無印加時)、(b)は動作時(電圧印加時)である。
【符号の説明】
10、40、50 透明基板
12、12’、42、52 薄膜透明梁
14、44、54 透明電極
16、16’ 反射ないし遮光電極(可動電極)
56 可動電極
58 反射ないし遮光部材
100 第1の実施の形態に係る透過型電気機械式光スイッチ素子
200 第2の実施の形態に係る透過型電気機械式光スイッチ素子
300 第3の実施の形態に係る透過型電気機械式光スイッチ素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmissive electromechanical light modulation (MEM) element that transmits and blocks light by moving a movable thin film by electrostatic force, and a switch array thereof.
[0002]
[Prior art]
In this field, a diffraction grating light valve in which a beam moves vertically on a silicon substrate has been known for a long time (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese National Patent Publication No. 10-510374 [Patent Document 2]
Japanese Patent Laid-Open No. 11-258558 [0004]
The light beam modulator described in Patent Document 1 includes the following a to d.
a. A plurality of elongate elements, each element having a first edge and a second edge and a light reflecting plane; and the elements are arranged in such a way that the first group of elements are interdigitated with the second group of elements. And the second group, and the elements are arranged in parallel to each other.
b. Means for suspending the elements of the first group and the second group at their edges;
c. Means for applying a first bias voltage to the first group and the second group such that the reflective surface is substantially coplanar and in a first plane that reflects the incident light beam; Means for applying a second bias voltage;
d. Means for selectively deflecting the elements of the first group that are parallel to a first plane and perpendicular to the plane toward a second plane that diffracts the incident light beam;
[0005]
On the other hand, the light modulator described in Patent Document 2 has a one-dimensional or two-dimensional matrix-shaped light modulation unit that modulates light from a planar light source by an electromechanical operation on an ultraviolet planar light source. A fluorescent material excited by light emitted from the modulation section is disposed opposite to the light modulation section, and the light modulation section is a transparent signal electrode which is one electrode provided on the light guide plate, and the signal electrode A transparent flexible thin film facing each other with a gap in between, and a scanning electrode which is provided on the flexible thin film and is opposed to the signal electrode, and applying an electric field to the signal electrode and the scanning electrode. The flexible thin film is bent by the generated electrostatic force, and light emitted through the flexible thin film is modulated.
[0006]
[Problems to be solved by the invention]
However, the device described in Patent Document 1 is a reflection type in structure, and therefore cannot transmit / block light.
Moreover, since the thing of patent document 2 uses optical interference, control in manufacturing an element was difficult. In particular, since the shape of the thin film beam affects on / off of the optical modulator, it is necessary to manufacture the thin film beam accurately, which is difficult. In addition, the multilayer structure is a drawback.
The present invention solves these problems, and an object of the present invention is to provide a transmissive electromechanical optical switch element having a simple configuration and easy to manufacture. There is.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, according to the transmission type electromechanical optical switch element according to claim 1, a transparent substrate provided with a transparent electrode, and an inclined thin film transparent having a hollow structure supported at least both on the transparent substrate And a movable electrode provided in a region in the vicinity of the light transmission region on the thin film transparent beam, and the thin film transparent beam by an electrostatic force when a voltage is applied between the transparent electrode and the movable electrode. Therefore, a transmission type electromechanical optical switch element having a simple configuration and easy to manufacture can be obtained.
Note that the inclined thin-film transparent beam supported at least both on the transparent substrate has a structure in which the beam of the inclined portion and the beam of the inclined portion are composed of a plurality of columnar portions having different materials and different heights. Is of course good.
[0008]
According to the transmissive electromechanical optical switch element according to claim 2, a transparent substrate provided with a transparent electrode, a double pillar material which is provided on the transparent substrate and forms a parallelogram with the transparent substrate, and the double pillar material And a movable electrode provided in a region in the vicinity of the light transmission region on at least one of the two pillar members or on the thin film transparent beam, and a voltage between the transparent electrode and the movable electrode. The column member is tilted by the electrostatic force when a sapphire is applied, so that a transmissive electromechanical optical switch element having a simple configuration and simple to manufacture can be obtained. Further, two optical paths can be taken for one thin film transparent beam.
[0009]
According to a third aspect of the present invention, in the transmissive electromechanical optical switch element according to the first or second aspect, since the movable electrode is formed of a film that reflects or absorbs light, a member that blocks the optical path is provided separately. This eliminates the need for a transmissive electromechanical optical switch element having a simple configuration and is simple to manufacture.
[0010]
According to a fourth aspect of the present invention, in the transmissive electromechanical optical switch element according to the third aspect, the film that reflects or absorbs the light is a metal, metal and dielectric multilayer reflective film, or a transparent electrode and a dielectric. Thus, a transmissive electromechanical optical switch element which is strong and simple in construction and easy to manufacture can be obtained.
[0011]
According to the invention described in claim 5, in the transmissive electromechanical optical switch element according to any one of claims 1 to 4, the thin film transparent beam is made of polyimide, photoresist, polycarbonate, polyethylene, polystyrene, or others. Since it is made of resin or other organic material, a transmissive electromechanical optical switch element having a simple structure and strong and easy to manufacture can be obtained.
[0012]
The invention of the transmissive electromechanical optical switch element according to claim 6 includes: a transparent substrate provided with a transparent electrode; a double column member formed on the transparent substrate and forming a parallelogram with the transparent substrate; and the both column members A transparent thin film beam supported by the thin film transparent member, at least one of the two column members, or a light shielding member or a reflection member provided in the vicinity of the light transmission region on the thin film transparent beam, and the transparent electrode from one of the two column members An arm extending toward the arm and a non-transparent electrode provided at the tip of the arm, and the column member is formed by an electrostatic force when a voltage is applied between the transparent electrode and the non-transparent electrode. Since the tilting is performed, a transmissive electromechanical optical switch element having a simple configuration and a large displacement is obtained, and the transmissive electromechanical optical switch element can be easily manufactured.
[0013]
In the invention of the optical switch array according to claim 7, the transmission type electromechanical optical switch element according to any one of claims 1 to 6 is arranged one-dimensionally or two-dimensionally. A simple optical switch array can be obtained.
[0014]
According to an eighth aspect of the present invention, in the optical switch array according to the seventh aspect, since the microlens array for condensing the light is provided on the light incident or emission side of the optical switch array, the light is condensed by the microlens array. Therefore, the light use efficiency is increased, and even with a small opening area, high-efficiency and bright modulated light can be obtained.
Further, since the amount of displacement of the thin film transparent beam can be reduced as compared with the case where no microlens array is provided, the driving energy of the thin film transparent beam can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
<First Embodiment>
First, a first embodiment will be described with reference to FIG.
1A and 1B are longitudinal sectional views of a transmissive electromechanical optical switch element according to a first embodiment of the present invention. FIG. 1A is a non-operating state (when no voltage is applied), and FIG. When voltage is applied).
[0016]
1 (a) and 1 (b), 100 is a transmissive electromechanical optical switch element according to the first embodiment, 10 is a transparent substrate, 12 is both supported on a transparent substrate by pillars having different heights. An inclined thin-film transparent beam having a hollow structure, 14 is a transparent electrode provided on the transparent substrate 10, and 16 is a reflection or light-shielding provided in the vicinity of the optical path L (light transmission region) above the thin-film transparent beam 12. It is an electrode (movable electrode). One of the column members formed by the thin film transparent beam 12 is not perpendicular to the transparent substrate 10 but is inclined at an acute angle (displacement amount) θ1.
[0017]
As shown in FIG. 1A, when no voltage is applied between the transparent electrode 14 and the reflective / light-shielding electrode 16, the transparent beam 12 normally does not move, so that light coming from below the transparent substrate 10 does not move. And passes upward (see optical path L).
On the other hand, as shown in FIG. 1B, when a voltage is applied between the transparent electrode 14 and the reflective / light-shielding electrode 16, the reflective / light-shielding electrode 16 is attracted to the transparent electrode 14 by electrostatic force, and the transparent is accompanied accordingly. The beam 12 operates and moves obliquely downward, and the reflection / shield electrode 16 covers the optical path (see the optical path L). In this case, if the electrode is a reflective electrode, the light is reflected and the optical path is turned back.
When the voltage between the transparent electrode 14 and the reflective / light-shielding electrode 16 is removed again, the electrostatic force disappears and the state of FIG. Since the return in this case is performed with both pillar materials, the restoring force is larger than that of a conventional cantilever-supported MEM mechanical shutter, and it is suitable for high-speed movement.
[0018]
In manufacturing the oblique beam, for example, when forming a sacrificial layer (a layer that is removed after the process in order to finally form a void), exposure is performed using a photomask having a different surface density. As a result, the sacrificial layer is inclined, so that an oblique beam can be manufactured. According to the present invention, the film configuration is simple and the manufacture is facilitated.
Here, the oblique beam is shown as an example of both supports, but it can also be supported near the center of the beam.
In addition, the inclined thin film transparent beam supported at least both on the transparent substrate has a structure in which the beam of the inclined portion and the beam of the inclined portion are made of a plurality of columnar portions having different materials and different heights. Is of course good.
[0019]
The film that reflects or absorbs light is composed of a metal thin film (gold, silver, palladium, zinc, aluminum, nickel, metal oxide, etc.), a metal and dielectric multilayer reflective film, or a transparent electrode and a dielectric multilayer film. be able to.
The thin film transparent beam 12 can be composed of polyimide, photoresist, polycarbonate, polyethylene, polystyrene, other resins, or other organic materials.
[0020]
By arranging a large number of transmissive electromechanical optical switch elements 100 one-dimensionally or two-dimensionally, it is possible to obtain an optical switch array that can be easily manufactured with a simple configuration.
[0021]
<Modification 1 of the first embodiment>
Next, Modification 1 of the first embodiment will be described with reference to FIG.
FIG. 2 is a longitudinal sectional view of a transmissive electromechanical optical switch element according to Modification 1 of the first embodiment of the present invention, where (a) is non-operating (when no voltage is applied), and (b) is During operation (when voltage is applied).
2A and 2B, reference numeral 120 denotes a transmission type electromechanical optical switch element according to the first modification of the first embodiment, 10 denotes a transparent substrate, and 12 denotes a pillar material having a different height on the transparent substrate. The thin-film transparent beam having a hollow structure supported on both sides, 14 is a transparent electrode provided on the transparent substrate 10, and 16 ′ is an optical path L (light transmission region) of the lower part (back part) of the thin-film transparent beam 12. It is a reflection or light shielding electrode (movable electrode) provided in the vicinity.
FIG. 2 differs from FIG. 1 in that the mounting position of the movable electrode 16 ′ is the lower part (back part) of the thin film transparent beam 12.
[0022]
As shown in FIG. 2A, when no voltage is applied between the transparent electrode 14 and the reflective / light-shielding electrode 16, the transparent beam 12 normally does not move, so that light coming from below the transparent substrate 10 does not move. And passes upward (see optical path L).
On the other hand, as shown in FIG. 2B, when a voltage is applied between the transparent electrode 14 and the reflective / light-shielding electrode 16, the reflective / light-shielding electrode 16 is attracted to the transparent electrode 14 by electrostatic force, and accordingly the transparent electrode 14 is transparent. The beam 12 operates and moves obliquely downward, and the reflection / shield electrode 16 covers the optical path (see the optical path L). In this case, if the electrode is a reflective electrode, the light is reflected and the optical path is turned back.
When the voltage between the transparent electrode 14 and the reflection / light-shielding electrode 16 is removed again, the electrostatic force disappears, and the state returns to the state of FIG.
In the first modification, since the movable electrode 16 ′ is at the lower part (back part) of the thin film transparent beam 12, the distance from the fixed electrode 14 is shortened. Suitable for
[0023]
<Modification 2 of the first embodiment>
Next, Modification 2 of the first embodiment will be described with reference to FIG.
FIG. 3 is a longitudinal sectional view of a transmissive electromechanical optical switch element according to Modification 2 of the first embodiment of the present invention, where (a) is non-operating (when no voltage is applied), and (b) is During operation (when voltage is applied).
In FIGS. 3A and 3B, 130 is a transmission type electromechanical optical switch element according to the second modification of the first embodiment, 10 is a transparent substrate, and 12 ′ is a column having a different height on the transparent substrate. An inclined thin-film transparent beam supported by both materials with a material, 14 is a transparent electrode provided on the transparent substrate 10, and 16 ′ is an optical path L (light transmission region) at the lower part (back) of the thin-film transparent beam 12. Is a reflection or light shielding electrode (movable electrode) provided in the vicinity of.
2 differs from FIG. 1 in that an area (reflection / light-shielding electrode) 16 ′ covering the optical path L is narrowly formed, and the column material formed by the thin-film transparent beam 12 is further inclined than in FIG. This is a point where an acute angle (displacement amount) θ3 with respect to 10 is inclined by 1 (θ3 <θ1).
[0024]
As shown in FIG. 3A, when no voltage is applied between the transparent electrode 14 and the reflective / light-shielding electrode 16 ′, the transparent beam 12 normally does not move, so that light coming from below the transparent substrate 10 does not move. It passes through 12 'and exits upward (see optical path L).
On the other hand, as shown in FIG. 3B, when a voltage is applied between the transparent electrode 14 and the reflection / light-shielding electrode 16 ′, the reflection / light-shielding electrode 16 ′ is attracted to the transparent electrode 14 by electrostatic force, and accordingly, Then, the transparent beam 12 operates and moves obliquely downward, and the reflection / shield electrode 16 'covers the optical path (see the optical path L). In this case, if the electrode is a reflection electrode, the light is reflected to return the optical path, and if the electrode is a light shielding electrode 16 ′, the light is shielded.
When the voltage between the transparent electrode 14 and the reflection / light-shielding electrode 16 ′ is removed again, the electrostatic force disappears, and the state returns to the state of FIG. 3A by the elastic return force of the transparent beam 12 ′.
In the second modification, since the inclination of the column formed by the thin film transparent beam 12 ′ is inclined from FIG. 1, the displacement θ3 of the movement of the thin film transparent beam 12 ′ is the displacement θ1 of the movement of the transparent beam 12 of FIG. Therefore, the degree of freedom in design is increased, and a combination with a microlens array becomes possible.
[0025]
Further, when the present invention is applied to the flat display device described in Patent Document 2, the configuration and manufacture are further simplified. That is, a light modulation unit according to the present invention in the form of a one-dimensional or two-dimensional matrix that modulates light from a planar light source by electromechanical operation is disposed on the ultraviolet planar light source. A phosphor excited by the light emitted from the light modulation unit is disposed to face the light modulation unit. The light modulation unit includes a transparent signal electrode, which is one electrode provided on the light guide plate, a transparent flexible thin film facing the signal electrode with a gap, and a signal electrode provided on the flexible thin film. A scanning electrode which is the other electrode facing each other, deflects the flexible thin film by electrostatic force generated by applying an electric field to the signal electrode and the scanning electrode, and transmits light emitted through the flexible thin film. Can be modulated.
Thereby, the same thing can be easily manufactured with a transmission type, without using an interference type and a total reflection type. Moreover, the light utilization efficiency is high, high vacuum is not required, the area can be increased at a low cost, and a high-quality flat display device is obtained.
[0026]
<Second Embodiment>
Next, a second embodiment will be described with reference to FIG.
FIG. 4 is a longitudinal sectional view of a transmissive electromechanical optical switch device according to a second embodiment of the present invention, where (a) is non-operating (when no voltage is applied), and (b) is operating ( When voltage is applied).
[0027]
4A and 4B, reference numeral 200 denotes a transmission type electromechanical optical switch element according to the second embodiment, reference numeral 40 denotes a transparent substrate, and reference numeral 42 denotes a parallelogram formed on the transparent substrate. And the thin film transparent beam supported by the both column materials, 44 is a transparent electrode provided on the transparent substrate 40, 46 is the optical path L1, L2 (light transmission region of the surface of the thin film transparent beam 42) ) Is a reflection or light shielding electrode (movable electrode) provided in the vicinity.
[0028]
As shown in FIG. 4A, when no voltage is applied between the transparent electrode 44 and the reflection / light-shielding electrode 46, the transparent beam 42 normally does not move, so that light coming from below the transparent substrate 40 does not move. And passes upward (see optical paths L1 and L2).
On the other hand, as shown in FIG. 4B, when a voltage is applied between the transparent electrode 44 and the reflection / light-shielding electrode 46, the reflection / light-shielding electrode 46 is attracted to the transparent electrode 44 by electrostatic force, and the transparent is accompanied accordingly. The beam 42 operates and moves obliquely downward so that the reflection / shield electrode 46 covers the optical path (see the optical paths L1 and L2). In this case, if the electrode is a reflective electrode, the light is reflected and the optical path is turned back.
When the voltage between the transparent electrode 44 and the reflection / light-shielding electrode 46 is removed again, the electrostatic force disappears, and the state shown in FIG. Since the return in this case is performed with both pillar materials, the restoring force is larger than that of a conventional cantilever-supported MEM mechanical shutter, and it is suitable for high-speed movement.
[0029]
<Third Embodiment>
Next, a third embodiment will be described with reference to FIG.
FIG. 5 is a longitudinal sectional view of a transmissive electromechanical optical switch device according to a third embodiment of the present invention, where (a) is non-operating (when no voltage is applied), and (b) is operating ( When voltage is applied).
5 (a) and 5 (b), 300 is a transmission type electromechanical optical switch element according to the third embodiment, 50 is a transparent substrate, 52 is a parallelogram formed on the transparent substrate. And a thin film transparent beam supported by the two column members, 53 is an arm extending from one half of the column member toward the transparent electrode 56, and 54 is provided on the transparent substrate 50. A transparent electrode 56 is a movable electrode provided at the tip of the arm 53. Reference numeral 58 denotes a reflection or light shielding member provided on the upper stage of the thin film transparent beam 52. The feature of the third embodiment is that by providing the movable electrode 56 on the arm extending from one half of the column member, the suction force can be increased and the displacement amount of the movable electrode 56 can be amplified. .
[0030]
As shown in FIG. 5A, when no voltage is applied between the transparent electrode 54 and the movable electrode 56, the transparent beam 52 normally does not move, so light coming from below the transparent substrate 50 passes through the transparent beam 52. And exits upward (see optical path L).
On the other hand, as shown in FIG. 5B, when a voltage is applied between the transparent electrode 54 and the movable electrode 56, the movable electrode 56 is attracted to the transparent electrode 54 by electrostatic force, and the arm 53 is moved downward accordingly. The reflection / shading electrode 58 located on the upper stage of the transparent beam 52 moves obliquely downward and covers the optical path by the movement amount amplified by the movement amount (see the optical path L). In this case, if the electrode is a reflective electrode, the light is reflected and the optical path is turned back.
Then, when the voltage between the transparent electrode 55 and the movable electrode 56 is removed again, the electrostatic force disappears, and the state of FIG. Since the return in this case is performed with both pillar materials, the restoring force is larger than that of a conventional cantilever-supported MEM mechanical shutter, and it is suitable for high-speed movement.
[0031]
【The invention's effect】
As described above, according to the transmissive electromechanical optical switch element of claim 1, the transparent substrate provided with the transparent electrode, and the inclined thin-film transparent beam having a hollow structure supported at least both on the transparent substrate, And a movable electrode provided in the vicinity of the light transmission region on the thin film transparent beam, and the thin film transparent beam is tilted by an electrostatic force when a voltage is applied between the transparent electrode and the movable electrode. Since they are moved, a transmission type electromechanical optical switch element having a simple configuration and easy to manufacture can be obtained.
[0032]
According to the transmissive electromechanical optical switch element according to claim 2, a transparent substrate provided with a transparent electrode, a double pillar material which is provided on the transparent substrate and forms a parallelogram with the transparent substrate, and the double pillar material And a movable electrode provided in a region in the vicinity of the light transmission region on at least one of the two pillar members or on the thin film transparent beam, and a voltage between the transparent electrode and the movable electrode. Since the column member is tilted by the electrostatic force when a sapphire is applied, a transmissive electromechanical optical switch element having a simple configuration and a simple manufacture is provided. Further, two optical paths can be taken for one thin film transparent beam.
[0033]
According to a third aspect of the present invention, in the transmissive electromechanical optical switch element according to the first or second aspect, since the movable electrode is formed of a film that reflects or absorbs light, a member that blocks the optical path is provided separately. This eliminates the need for a transmissive electromechanical optical switch element having a simple configuration and is simple to manufacture.
[0034]
According to a fourth aspect of the present invention, in the transmissive electromechanical optical switch element according to the third aspect, the film that reflects or absorbs the light is a metal, metal and dielectric multilayer reflective film, or a transparent electrode and a dielectric. Thus, a transmissive electromechanical optical switch element which is strong and simple in construction and easy to manufacture can be obtained.
[0035]
According to a fifth aspect of the present invention, in the transmissive electromechanical optical switch element according to any one of the first to fourth aspects, the thin film transparent beam is made of polyimide, photoresist, polycarbonate, polyethylene, polystyrene, or other resin. In addition, since it is made of an organic material, a transmissive electromechanical optical switch element having a simple structure and strong can be obtained.
[0036]
The invention of the transmissive electromechanical optical switch element according to claim 6 includes: a transparent substrate provided with a transparent electrode; a double column member formed on the transparent substrate and forming a parallelogram with the transparent substrate; and the both column members A transparent thin film beam supported by the thin film transparent member, at least one of the two column members, or a light shielding member or a reflection member provided in the vicinity of the light transmission region on the thin film transparent beam, and the transparent electrode from one of the two column members An arm extending toward the arm and a non-transparent electrode provided at the tip of the arm, and the column member is formed by an electrostatic force when a voltage is applied between the transparent electrode and the non-transparent electrode. Since the tilting is performed, a transmission type electromechanical optical switch element having a simple configuration and a large displacement is obtained, and the transmission type electromechanical optical switch element can be easily manufactured.
[0037]
In the invention of the optical switch array according to claim 7, the transmission type electromechanical optical switch element according to any one of claims 1 to 6 is arranged one-dimensionally or two-dimensionally. A simple optical switch array can be obtained.
[0038]
According to the eighth aspect of the present invention, in the optical switch array according to the seventh aspect, since the microlens array for condensing the light is provided on the light incident or emission side of the optical switch array, the light is collected by the microlens array. Since the light is emitted, the light utilization efficiency is increased, and high-efficiency and bright modulated light can be obtained even with a small opening area.
Further, since the amount of displacement of the thin film transparent beam can be reduced as compared with the case where no microlens array is provided, the driving energy of the thin film transparent beam can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a transmissive electromechanical optical switch element according to a first embodiment of the present invention, where (a) is non-operating (no voltage is applied), and (b) is operating ( When voltage is applied).
FIGS. 2A and 2B are longitudinal sectional views of a transmissive electromechanical optical switch element according to Modification 1 of the first embodiment of the present invention, in which FIG. 2A is a non-operating state (when no voltage is applied), and FIG. During operation (when voltage is applied).
FIGS. 3A and 3B are longitudinal sectional views of a transmissive electromechanical optical switch element according to Modification 2 of the first embodiment of the present invention, where FIG. 3A is a non-operating state (when no voltage is applied), and FIG. It is during operation (when voltage is applied).
4A and 4B are longitudinal sectional views of a transmissive electromechanical optical switch element according to a second embodiment of the present invention, in which FIG. 4A is a non-operating state (when no voltage is applied), and FIG. When voltage is applied).
FIGS. 5A and 5B are longitudinal sectional views of a transmissive electromechanical optical switch element according to a third embodiment of the present invention. FIG. 5A is a non-operating state (when no voltage is applied), and FIG. When voltage is applied).
[Explanation of symbols]
10, 40, 50 Transparent substrate 12, 12 ', 42, 52 Thin film transparent beam 14, 44, 54 Transparent electrode 16, 16' Reflection or shading electrode (movable electrode)
56 movable electrode 58 reflective or light shielding member 100 transmissive electromechanical optical switch element 200 according to the first embodiment transmissive electromechanical optical switch element 300 according to the second embodiment in the third embodiment Transmission type electromechanical optical switch element

Claims (8)

透明電極を備えた透明基板と、該透明基板上に少なくとも両支持された中空構造の傾斜した薄膜透明梁と、該薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記薄膜透明梁が傾倒移動することを特徴とする透過型電気機械式光スイッチ素子。A transparent substrate provided with a transparent electrode, an inclined thin-film transparent beam having at least a hollow structure supported on the transparent substrate, and a movable electrode provided in a region near the light transmission region on the thin-film transparent beam. A transmissive electromechanical optical switch element comprising: the thin-film transparent beam tiltingly moved by an electrostatic force when a voltage is applied between the transparent electrode and the movable electrode. 透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた可動電極とで構成され、前記透明電極と前記可動電極間に電圧が印加されたときの静電気力で前記柱材が傾倒することを特徴とする透過型電気機械式光スイッチ素子。A transparent substrate provided with a transparent electrode; both pillars formed on the transparent substrate and forming a parallelogram with the transparent substrate; and a thin-film transparent beam supported by the both pillars; and at least one of the both pillars or A movable electrode provided in a region in the vicinity of the light transmission region on the thin film transparent beam, and the column member is tilted by an electrostatic force when a voltage is applied between the transparent electrode and the movable electrode. A transmissive electromechanical optical switch element. 前記可動電極を光を反射又は吸収させる膜から構成することを特徴とする請求項1又は2記載の透過型電気機械式光スイッチ素子。3. The transmission type electromechanical optical switch element according to claim 1, wherein the movable electrode is made of a film that reflects or absorbs light. 前記光を反射又は吸収させる膜を、金属、金属および誘電体多層反射膜、又は透明電極および誘電体多層膜から構成することを特徴とする請求項3記載の透過型電気機械式光スイッチ素子。4. The transmission type electromechanical optical switch element according to claim 3, wherein the light reflecting or absorbing film is composed of a metal, a metal and dielectric multilayer reflective film, or a transparent electrode and a dielectric multilayer film. 前記薄膜透明梁をポリイミド、フォトレジスト、ポリカーボネート、ポリエチレン、ポリスチレン、その他樹脂、又はその他有機材料から構成することを特徴とする請求項1〜4のいずれか1項記載の透過型電気機械式光スイッチ素子。The transmission type electromechanical optical switch according to any one of claims 1 to 4, wherein the thin film transparent beam is made of polyimide, photoresist, polycarbonate, polyethylene, polystyrene, other resin, or other organic material. element. 透明電極を備えた透明基板と、該透明基板上に設けられ透明基板とで平行四辺形をなす両柱材および該両柱材に支持された薄膜透明梁と、該両柱材の少なくとも一方又は薄膜透明梁の上の光透過領域の近傍領域に設けられた遮光部材又は反射部材と、該両柱材の一方から前記透明電極へ向けて延設されるアームと、該アームの先端に設けられた非透明電極とで構成され、前記透明電極と前記非透明電極間に電圧が印加されたときの静電気力で前記柱材が傾倒することを特徴とする透過型電気機械式光スイッチ素子。A transparent substrate provided with a transparent electrode; both pillars formed on the transparent substrate and forming a parallelogram with the transparent substrate; and a thin-film transparent beam supported by the both pillars; and at least one of the both pillars or A light shielding member or a reflecting member provided in a region near the light transmitting region on the thin film transparent beam, an arm extending from one of the both column members toward the transparent electrode, and provided at a tip of the arm. And a non-transparent electrode, wherein the column member is tilted by an electrostatic force when a voltage is applied between the transparent electrode and the non-transparent electrode. 請求項1〜6のいずれか1項記載の透過型電気機械式光スイッチ素子を一次元又は二次元に配設して成ることを特徴とする光スイッチアレイ。7. An optical switch array comprising the transmissive electromechanical optical switch elements according to claim 1 arranged one-dimensionally or two-dimensionally. 光スイッチアレイの光の入射又は出射側に該光を集光するマイクロレンズアレイを設けたことを特徴とする請求項7記載の光スイッチアレイ。8. The optical switch array according to claim 7, wherein a microlens array for condensing the light is provided on the light incident or emission side of the optical switch array.
JP2002377423A 2002-12-26 2002-12-26 Transmission type electromechanical optical switch element and its switch array Expired - Fee Related JP3993088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377423A JP3993088B2 (en) 2002-12-26 2002-12-26 Transmission type electromechanical optical switch element and its switch array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377423A JP3993088B2 (en) 2002-12-26 2002-12-26 Transmission type electromechanical optical switch element and its switch array

Publications (2)

Publication Number Publication Date
JP2004205975A true JP2004205975A (en) 2004-07-22
JP3993088B2 JP3993088B2 (en) 2007-10-17

Family

ID=32814600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377423A Expired - Fee Related JP3993088B2 (en) 2002-12-26 2002-12-26 Transmission type electromechanical optical switch element and its switch array

Country Status (1)

Country Link
JP (1) JP3993088B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199824A (en) * 2008-02-20 2009-09-03 Stanley Electric Co Ltd Led light source unit
FR2930352A1 (en) * 2008-04-21 2009-10-23 Commissariat Energie Atomique IMPROVED MEMBRANE, IN PARTICULAR FOR A DEFORMABLE MEMBRANE OPTICAL DEVICE
JP2018004993A (en) * 2016-07-04 2018-01-11 エドワード・パクチャン Mems optical modulator for display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199824A (en) * 2008-02-20 2009-09-03 Stanley Electric Co Ltd Led light source unit
FR2930352A1 (en) * 2008-04-21 2009-10-23 Commissariat Energie Atomique IMPROVED MEMBRANE, IN PARTICULAR FOR A DEFORMABLE MEMBRANE OPTICAL DEVICE
WO2009130171A1 (en) * 2008-04-21 2009-10-29 Commissariat A L'energie Atomique Improved membrane, especially for an optical device having a deformable membrane
US8363330B2 (en) 2008-04-21 2013-01-29 Commissariat A L'energie Atomique Membrane, especially for an optical device having a deformable membrane
JP2018004993A (en) * 2016-07-04 2018-01-11 エドワード・パクチャン Mems optical modulator for display

Also Published As

Publication number Publication date
JP3993088B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US6195196B1 (en) Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US7964877B2 (en) Polarized semiconductor light emitting device with light guiding portions formed within
US20090059619A1 (en) Backlight Assembly And Display Device Having The Same
JPH11258558A (en) Planar display device
JP2001222906A (en) Flat lighting system
TWI373634B (en)
JP2006189790A (en) Diffraction light modulator having open hole as base
JP3993088B2 (en) Transmission type electromechanical optical switch element and its switch array
JPH11254752A (en) Exposing element
KR101366044B1 (en) Optical device
JP3160289B2 (en) Scanning device
JP6106970B2 (en) Spatial light modulator and exposure apparatus
JP2008502021A (en) Light bulb
US7869130B2 (en) Line beam illumination optical system
KR100815362B1 (en) Interdigitate-type diffraction optical modulator
US7474324B2 (en) Printing apparatus using order-separation type optical modulator
US7415172B2 (en) Diffractive waveguide-spatial optical modulator
CN115769110A (en) Reflection structure, reflection structure array including the same, and floating image display device
US20060119692A1 (en) Order separation and multibeam formation-based printing apparatus using optical modulator
JP2000221419A (en) Light reflection unit and illuminator
JP4404787B2 (en) Light modulation element and image forming apparatus
JPS6235323A (en) Light scan optical system
JPH11160635A (en) Optical element and manufacturing method thereof and device using it
JP4107860B2 (en) Linear array of electromechanical conformal grating devices with improved optical efficiency and contrast
US6907183B1 (en) Display device and display method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050215

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070725

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110803

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110803

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120803

LAPS Cancellation because of no payment of annual fees