JP2004205928A - Optical unit - Google Patents

Optical unit Download PDF

Info

Publication number
JP2004205928A
JP2004205928A JP2002376789A JP2002376789A JP2004205928A JP 2004205928 A JP2004205928 A JP 2004205928A JP 2002376789 A JP2002376789 A JP 2002376789A JP 2002376789 A JP2002376789 A JP 2002376789A JP 2004205928 A JP2004205928 A JP 2004205928A
Authority
JP
Japan
Prior art keywords
optical
optical unit
flow path
optical element
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376789A
Other languages
Japanese (ja)
Inventor
Kazuhiro Wada
一啓 和田
Yuichi Shin
勇一 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002376789A priority Critical patent/JP2004205928A/en
Publication of JP2004205928A publication Critical patent/JP2004205928A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical unit which is not influenced by the temperature of service environment with more easily manufactured constitution as an optical unit for recording and reproducing a disk using a short wavelength light source and aiming at high storage capacity. <P>SOLUTION: The optical unit where three or more optical elements are fixed and integrated and which is provided with a gas passage where gas circulates between a space surrounded in a state where the optical effective surfaces of the optical elements face to each other and the outside air is provided with a gas passage where the gas circulates between the surrounded spaces. Furthermore, the optical element has a projecting part at a circumferential part other than the optical effective surface and is positioned in the circumferential direction by the projecting part while the optical unit is provided with the gas passage where the gas circulates between the space and the outside air by the projecting part and/or a recessed part facing to the projecting part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスク等の光情報記録媒体に対し、情報の記録又は読み出しをおこなう光ピックアップに用いられる光学ユニットに関するものである。
【0002】
【従来の技術】
従来より、CDをはじめDVDの記録、又は再生用の光ピックアップ用の光学ユニットとして、樹脂モールド単玉レンズ、ガラスモールド単玉レンズや樹脂モールドレンズ2枚で構成したものが使用されている。
【0003】
樹脂モールドレンズはガラスモールドレンズに比べ、比重が小さくこのため軽量化が可能である。このため、レンズを駆動するアクチュエータへの負荷を軽減でき、且つ慣性モーメントが小さいため、その応答性を向上させることが容易である利点を有している。
【0004】
本出願人は、光ピックアップ用の光学ユニットを複数の光学素子で構成したものに関し、光学素子で囲まれた空間にある空気が、使用環境温度の変化に応じ膨張や圧縮し、光学素子面に対して圧力変動を生じ光学素子面の状態を変化させる問題や、環境温度が下がった場合には、この空間内の水分が飽和状態となり有効光学面に結露する問題に対して、この空間と外気との間を同圧とし、更に気体の流通ができるように気体流路を設けたものを提案した(例えば、特許文献1参照。)。
【0005】
更に、光学素子の成形や金型の誤差により発生する非点収差等の光学特性の偏りが重畳しないように組み立てるため、円周方向での位置決めをおこなう規定部を有する光学素子も提案した(例えば、特許文献2参照。)。
【0006】
一方、近年では、従来のDVDよりさらに高密度のピットで、400nm近傍の青紫色レーザを使用する、高記憶容量をめざしたディスクの提案がされている。
【0007】
この従来より短い波長に対して、回折効率を向上させるための輪帯状のパターンを設けた回折レンズ構造の、光ピックアップ用対物レンズも提案されている(例えば、特許文献3参照。)。また、
【0008】
【特許文献1】
特開2002−221649号公報(図1〜図6)
【0009】
【特許文献2】
特開2002−228909号公報
【0010】
【特許文献3】
特開2002−298422号公報
【0011】
【発明が解決しようとする課題】
上述の特許文献1に記載の、気体流路を設けた光学ユニットは、上述の使用環境温度の変化に応じ膨張や圧縮し、光学素子面に対して圧力変動を生じ光学素子面の状態を変化させる問題や、光学素子で囲まれた空間内の水分が飽和状態となり有効光学面に結露する問題に対しては、有効な手段である。
【0012】
一方、3枚以上の光学素子を使用して光学ユニットを構成した場合には、光学素子で囲まれた空間が連なることになり、この連なった空間の間で換気状態の相違があると、連なった空間の間で温度差を生じ光学素子の面精度に影響を与えることにもなり、好ましくない問題となる。
【0013】
更に、上述の高記憶容量ディスクに要求される光学ユニットは、従来のCDやDVDより大きい開口数が必要である。このため波長変化に対しその結像性能や結像位置は非常に敏感に変化するようになる。
【0014】
この、光源波長の短波長化に対し、1枚の回折レンズ構成で対応しようとする特許文献2に記載の光ピックアップ用対物レンズは、短波長化による誤差感度の増大のため、金型製作や成形時の技術的難易度が高くなり、克服には多大な時間を要するという問題がある。
【0015】
本発明は、上記問題を鑑み、400nm近傍の青紫色レーザを使用する高記憶容量をめざしたディスクの記録及び再生のための光学ユニットとして、より製造の容易な構成で、且つ使用環境温度の影響を受けない光学ユニットを得ることを目的とするものである。
【0016】
【課題を解決するための手段】
上記の目的は、
1) 3枚以上の光学素子を固着して一体化し、該光学素子の光学有効面が相対して囲まれた空間と外気との間に気体が流通する気体流路が設けられた光学ユニットにおいて、該囲まれた空間同士を気体が流通する気体流路を設けたことを特徴とする光学ユニット、
とすることで、3枚以上の光学素子を用いる場合にも、その前後に光学素子で囲まれた空間がある場合も、換気の相違からおこる温度差による光学素子の面精度への影響を排除できる。
【0017】
2) 光学ユニットは、少なくともその一面に、光軸から離れるに従って厚みが階段状に変化する輪帯群を有する光学素子を含む1)の光学ユニット、
とすることで、光源波長の変化を補正する光学素子と結像に関わる光学素子に、機能分離することで個々の金型製作や成形を容易にでき、ひいては安定的製造が可能になる。
【0018】
3) 囲まれた空間同士を気体が流通する気体流路は、光軸方向から見て、囲まれた空間と外気との間に気体が流通する気体流路とは異なる半径方向の位置に設けられている1)又は2)の光学ユニット、
とすることで、より1)の効果を高めることができる。
【0019】
4) 複数の光学素子を固着して一体化し、該光学素子の光学有効面が相対して囲まれた空間と外気との間に気体が流通する気体流路が設けられた光学ユニットにおいて、該光学素子の少なくとも1枚は、光学有効面以外の円周部に凸部を有し、該凸部及び/又は該凸部と相対する凹部で外気との間に気体が流通する気体流路を設けたことを特徴とする光学ユニット、
とすることで、光学素子相互の円周方向の位置決めをおこない、成形や金型の誤差により発生する非点収差等の光学特性の偏りが重畳しないように組み立てつつ、光学素子面の状態を変化させる問題や、有効光学面に結露する問題を解消することができる。
【0020】
5) 光学ユニットは、少なくともその一面に、光軸から離れるに従って厚みが階段状に変化する輪帯群を有する光学素子を含む4)の光学ユニット、
とすることで、2)と同様に個々の金型製作や成形を容易にでき、ひいては安定的製造が可能になる。
【0021】
【発明の実施の形態】
以下、実施の形態により本発明を詳しく説明するが、本発明はこれに限定されるものではない。
【0022】
(第一の実施の形態)
図1は、第一の発明に係る光学ユニットの要部構成を示す側面断面図と背面図である。図1(a)は側面断面図であり、図1(b)は背面図である。図1(b)のP−P断面が図1(a)である。
【0023】
図示しないレーザ光源からの光束は、ビームスプリッタ透過後、コリメートレンズを介して平行光束にされ1/4波長板を透過し、図1(a)に示す光学素子の一つである色収差補正素子11に入射するよう構成されている。
【0024】
この色収差補正素子11は、特開平6−82725号公報に記載と同様の回折素子構造のものであり、光入射側端面に複数の階段状の平面が形成され、光軸を中心とした同心円上の輪帯として形成されている。なおこの図を含む以降の図も理解を容易にするため、輪帯の幅、段差を誇張して示している。
【0025】
色収差補正素子の巨視的な形状が凹平レンズとなる場合は、一般の屈折を利用した正レンズの色収差を打ち消すことができ、光ディスク用の対物レンズと組み合わせて使用することにより、色収差を補正することができる。
【0026】
12、13は光学素子であり正のパワーを持ち、この2枚で結像系が構成されている。このように、機能により色収差補正と結像に関わる部分を分離した構成とすることで個々の金型製作や成形を容易にでき、ひいては安定的製造が可能になる。なお15は光ディスクであり、15aは透明保護層である。
【0027】
色収差補正素子11は、光学素子12と当接する11aの部位の円周上の一部に、切り欠き部11bが設けられており、この色収差補正素子11と光学素子12で囲まれた空間と外気との間に気体が流通する気体流路となっている。同様に光学素子12にも光学素子13と当接する12aの部位の円周上の一部に、切り欠き部12bが設けられており、この光学素子12と光学素子13で囲まれた空間と外気との間に気体が流通する気体流路となっている。
【0028】
更に、色収差補正素子11と光学素子13に挟まれた、光学素子12はその光学有効面以外の部分に貫通穴12cが設けられている。この貫通穴12cで色収差補正素子11と光学素子12で囲まれた空間と、光学素子12と光学素子13で囲まれた空間との間で気体が流通する気体流路が形成されることになる。またこの貫通穴12cの位置は、図1(b)に示すように光軸方向から見て、囲まれた空間と外気との間に気体が流通する気体流路とは異なる半径方向の位置に設けられることが好ましい。これにより換気の相違からおこる温度差による光学素子の面精度への影響を排除できる。
【0029】
図2は、第一の発明のその他の例の要部構成を示す側面断面図と背面図である。図2(a)は側面断面図であり、図2(b)は背面図である。図2(b)のP−P断面が図2(a)である。
【0030】
図2の光学ユニットは、図1に示す切り欠き部11b及び12bを180度間隔で2カ所設けたものである。更に、色収差補正素子11と光学素子13に挟まれた、光学素子12はその光学有効面以外の部分に貫通穴12cを切り欠き部と異なる半径方向の位置に2カ所設けたものである。
【0031】
なおこの切り欠き部11b、12bは、多数設けても良く例えば90度刻み、60度刻み或いは45度刻み等にしても良い。また同様に貫通穴12cも更に多数設けても良く例えば90度刻み、60度刻み或いは45度刻み等にしても良いのは勿論であり、この貫通穴は光軸方向から見て、切り欠き部と異なる半径方向の位置に設けることが望ましい。また色収差補正素子を使用しない3枚以上の構成の光学ユニットに対しても適用可能なのは勿論である。
【0032】
図3は、第一の発明の別の例の要部構成を示す側面断面図と背面図である。図3(a)は側面断面図であり、図3(b)は背面図である。図3(b)のP−P断面が図3(a)である。
【0033】
図3では、色収差補正素子11には切り欠き部11bを設け、光学素子12及び13はその光学有効面以外の位置に貫通穴12c及び13cを設けたものである。この切り欠き部11bと貫通穴13cにより、それぞれ外気との気体流路が形成され、貫通穴12cにより色収差補正素子11と光学素子12で囲まれた空間と、光学素子12と光学素子13で囲まれた空間との間で気体が流通する気体流路としたものである。
【0034】
なお、上記の第一の実施の形態の例では光学素子として、色収差補正素子と正のパワーを持つ2枚のレンズの3枚構成で説明したが、これに限るものでなく、3枚以上の光学素子を固着して一体化したものに適用できるのは言うまでもない。
【0035】
(第二の実施の形態)
第二の発明について以下に実施の形態を説明する。
【0036】
図4は、第二の発明の一例を示した図である。図4(a)は光軸を含む側断面図、図4(b)は背面図、図4(c)は側面図である。
【0037】
図4の光学ユニットは色収差補正素子11と光学素子14で構成されている。
図4に示すように、色収差補正素子11と光学素子14は円周状の当接部11aで嵌合し光軸方向の間隔と光軸合わせがなされるようになっている。更に色収差補正素子11には、対で配置された突起部11dが外周上90度間隔で配置されており、この突起部の内のあらかじめ決められた突起部11dと光学素子14に設けられた凸部14hが嵌合するよう組み立てられる。この凸部14hの部分は図示断面図のように当接のための形状が無く、このためこの部分と色収差補正素子11と光学素子14に囲まれた空間と外気との間に気体流路が形成される。
【0038】
図5は、図4に示した光学ユニットに使用される光学素子14の形状を示した3面図である。図5に示すように、光学素子14は樹脂で成形され、ゲート部14gとそれに続く凸部14hを有した形状をなし、この凸部14hは断面図に示すようにフランジ部14fを一部切り欠いた形状となっている。また厚み方向では、色収差補正素子11の突起部11dに挟まれた領域で空隙ができるように段差を付けた形状となっている。このゲート部14gは色収差補正素子11と結合される前に切断面(図示)で切断され図4(a)に示す形状となる。
【0039】
この突起部11dと凸部14hにより、光学素子相互の円周方向の位置決めをおこない、成形や金型の誤差により発生する非点収差等の光学特性の偏りが重畳しないように組み立てることができる。更に凸部14hと突起部11dに挟まれた面でできる空隙を気体流路として光学素子面の状態を変化させる問題や、有効光学面に結露する問題を解消することができる。
【0040】
図6は、第二の発明のその他の例を示した図である。図6(a)は光軸を含む側断面図、図6(b)は背面図、図6(c)は側面図である。また図7は、図6に示した光学ユニットに使用される光学素子14の形状を示した3面図である。
【0041】
本例は図6に示すように、色収差補正素子11の突起部11dに挟まれた部位の形状を当接部11aと連続した面とし、ここを気体流路としたものである。
【0042】
光学素子14は図7に示すように、ゲート部14gとそれに続く凸部14hを有した形状をなし、この凸部14hは断面図に示すようにフランジ部14fを一部切り欠いた形状となっており、厚み方向は断面図に示すように段差なく凹部14iと繋がっている。このゲート部14gは色収差補正素子11と結合される前に切断面(図示)で切断され図6(a)に示す形状となる。このため図4の場合と同様に空隙ができ、気体流路となる。
【0043】
なお、上記の第二の実施の形態の例では光学素子14のゲート部に連続して凸部を設けた例で説明したがゲート部以外に図4(a)に示すような凸部の断面形状を形成し同様の組み立てをおこなってもよい。また、突起部11dは90度間隔で配置したが、60度間隔、45度間隔等適宜必要に応じ設定すればよい。更に、色収差補正素子11と光学素子14の円周方向の位置決めが大凡でよい場合は、ゲート切断後に残るゲート形状そのものを回転方向の位置決めとしてもよい。
【0044】
図8は、光学素子3枚構成の光学ユニットに上記第一の発明と第二の発明の双方を適用した図である。
【0045】
図8において、色収差補正素子11と光学素子12で囲まれた空間は、凸部12hでできる空隙、光学素子12と光学素子13で囲まれた空間は図2に示す光学素子12の形状と凸部13hとでできる空隙で外部との気体流路を形成し、更に光学素子12はその光学有効範囲以外で貫通穴12cを有し、囲まれた空間同士での気体流路が形成されている。
【0046】
また、光学素子13の凸部13hは光学素子12の突起部12dに嵌合して回転方向の位置決めがなされ、光学素子12の凸部12hは色収差補正素子11の突起部11d(図8では丸ピンのボス)に嵌合して位置決めがなされ、3枚の光学素子の回転方向の位置決めをすることができる。
【0047】
【発明の効果】
以上説明したように、3枚以上の光学素子を用いる場合、その前後に光学素子で囲まれた空間があり、双方の換気の相違からおこる温度差による光学素子の面精度への影響を排除できるようになった。
【0048】
また光学有効面以外の円周部に凸部を有し、該凸部及び/又は該凸部と相対する凹部で外気との間に気体が流通する気体流路を設け、この凸部と凹部で光学素子相互の円周方向の位置決めをおこない、成形や金型の誤差により発生する非点収差等の光学特性の偏りが重畳しないように組み立てつつ、光学素子面の状態を変化させる問題や、有効光学面に結露する問題を解消できるようになった。
【0049】
これにより短波長の光源を使用する高記憶容量をめざしたディスクの記録及び再生のための光学ユニットとして、光源波長の変化を補正する光学素子と結像に関わる光学素子に機能分離した製造の容易な構成で、且つ使用環境温度の影響を受けない光学ユニットを得ることができるようになった。
【図面の簡単な説明】
【図1】第一の発明に係る光学ユニットの要部構成を示す側面断面図と背面図である。
【図2】第一の発明のその他の例の要部構成を示す側面断面図と背面図である。
【図3】第一の発明の別の例の要部構成を示す側面断面図と背面図である。
【図4】第二の発明の一例を示した図である。
【図5】図4に示した光学ユニットに使用される光学素子14の形状を示した3面図である。
【図6】第二の発明のその他の例を示した図である。
【図7】図6に示した光学ユニットに使用される光学素子14の形状を示した3面図である。
【図8】光学素子3枚構成の光学ユニットに上記第一の発明と第二の発明の双方を適用した図である。
【符号の説明】
11 色収差補正素子
12 光学素子
13 光学素子
14 光学素子
15 光ディスク
15a 透明保護層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical unit used for an optical pickup for recording or reading information on an optical information recording medium such as an optical disk.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an optical unit for an optical pickup for recording or reproducing a CD or a DVD, an optical unit composed of a resin-molded single lens, a glass-molded single lens, and two resin-molded lenses has been used.
[0003]
Resin-molded lenses have a lower specific gravity than glass-molded lenses, and therefore can be reduced in weight. Therefore, there is an advantage that the load on the actuator for driving the lens can be reduced, and the responsiveness can be easily improved because the moment of inertia is small.
[0004]
The present applicant relates to an optical unit for an optical pickup constituted by a plurality of optical elements, wherein air in a space surrounded by the optical elements expands and compresses in accordance with a change in the use environment temperature, and the optical element surface In contrast to the problem of pressure fluctuations and changes in the state of the optical element surface, and the problem of moisture in this space becoming saturated and condensing on the effective optical surface when the ambient temperature drops, And the same pressure, and provided with a gas flow path so that gas can flow further (for example, see Patent Document 1).
[0005]
Furthermore, in order to assemble such that deviations in optical characteristics such as astigmatism caused by errors in molding and molding of the optical element do not overlap, an optical element having a defining portion for performing positioning in the circumferential direction has also been proposed (for example, And Patent Document 2.).
[0006]
On the other hand, in recent years, there has been proposed a disk aiming at a high storage capacity using a blue-violet laser having a density of about 400 nm and having higher density pits than conventional DVDs.
[0007]
An objective lens for an optical pickup having a diffractive lens structure provided with a ring-shaped pattern for improving the diffraction efficiency for a wavelength shorter than the conventional wavelength has been proposed (for example, see Patent Document 3). Also,
[0008]
[Patent Document 1]
JP-A-2002-221649 (FIGS. 1 to 6)
[0009]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-228909
[Patent Document 3]
JP-A-2002-298422
[Problems to be solved by the invention]
The optical unit provided with a gas flow path described in Patent Document 1 expands and compresses in accordance with the above-mentioned change in the use environment temperature, causing a pressure change on the optical element surface and changing the state of the optical element surface. This is an effective means for solving the problem of causing moisture and the problem that water in the space surrounded by the optical element becomes saturated and dew forms on the effective optical surface.
[0012]
On the other hand, when the optical unit is configured by using three or more optical elements, the spaces surrounded by the optical elements are connected, and if there is a difference in the ventilation state between the connected spaces, the connection is performed. A temperature difference occurs between the spaces, which affects the surface accuracy of the optical element, which is an undesirable problem.
[0013]
Further, the optical unit required for the above-mentioned high storage capacity disk needs a numerical aperture larger than that of a conventional CD or DVD. Therefore, the imaging performance and the imaging position change very sensitively to the wavelength change.
[0014]
The objective lens for an optical pickup described in Patent Literature 2 which attempts to cope with the shortening of the light source wavelength by using a single diffraction lens configuration increases the error sensitivity due to the shortening of the wavelength. There is a problem that the technical difficulty at the time of molding is increased and it takes a lot of time to overcome it.
[0015]
The present invention has been made in view of the above problems, and has an easy-to-manufacture configuration as an optical unit for recording and reproducing a disk with a high storage capacity using a blue-violet laser near 400 nm, and is affected by the temperature of the use environment. It is an object of the present invention to obtain an optical unit which is not affected by light.
[0016]
[Means for Solving the Problems]
The purpose of the above is
1) An optical unit in which three or more optical elements are fixed and integrated, and a gas flow path through which gas flows is provided between a space in which the optically effective surfaces of the optical elements are opposed to each other and outside air. An optical unit, wherein a gas flow path through which gas flows between the enclosed spaces is provided,
This eliminates the effect of temperature differences caused by differences in ventilation on the surface accuracy of optical elements, regardless of whether three or more optical elements are used or if there is a space surrounded by optical elements before and after. it can.
[0017]
2) The optical unit according to 1), wherein the optical unit includes, at least on one surface thereof, an optical element having an annular group whose thickness changes stepwise as the distance from the optical axis increases.
By separating the functions into an optical element for correcting a change in the wavelength of the light source and an optical element for image formation, it is possible to easily manufacture and mold individual molds, and to achieve stable manufacturing.
[0018]
3) The gas flow path through which the gas flows through the enclosed spaces is provided at a radial position different from the gas flow path through which the gas flows between the enclosed space and the outside air when viewed from the optical axis direction. 1) or 2) optical unit,
By doing so, the effect of 1) can be further enhanced.
[0019]
4) In an optical unit in which a plurality of optical elements are fixed and integrated, and a gas flow path through which gas flows is provided between a space in which the optically effective surfaces of the optical elements are opposed to each other and outside air, At least one of the optical elements has a convex portion on a circumferential portion other than the optically effective surface, and a gas flow path through which gas flows between the convex portion and / or a concave portion facing the convex portion and outside air. An optical unit characterized by being provided;
In this way, the optical elements are positioned in the circumferential direction, and the state of the optical element surface is changed while assembling so that deviations in optical characteristics such as astigmatism caused by molding and mold errors do not overlap. And the problem of condensation on the effective optical surface can be solved.
[0020]
5) The optical unit according to 4), wherein at least one surface of the optical unit includes an optical element having an annular group whose thickness changes stepwise as the distance from the optical axis increases.
By doing so, the production and molding of individual molds can be facilitated as in 2), and stable production can be achieved.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited thereto.
[0022]
(First embodiment)
FIG. 1 is a side sectional view and a rear view showing a main part configuration of an optical unit according to the first invention. FIG. 1A is a side sectional view, and FIG. 1B is a rear view. FIG. 1A is a cross-sectional view taken along line PP of FIG.
[0023]
A light beam from a laser light source (not shown) passes through a beam splitter, is converted into a parallel light beam through a collimator lens, passes through a quarter-wave plate, and is a chromatic aberration correction element 11 which is one of the optical elements shown in FIG. It is configured to be incident on.
[0024]
The chromatic aberration correction element 11 has a diffraction element structure similar to that described in Japanese Patent Application Laid-Open No. 6-82725, has a plurality of stepped flat surfaces formed on the light incident side end face, and is concentric on the optical axis. Are formed as annular zones. In addition, in the following drawings including this figure, the width of the ring zone and the step are exaggerated for easy understanding.
[0025]
When the macroscopic shape of the chromatic aberration correction element is a concave flat lens, the chromatic aberration of a positive lens utilizing general refraction can be canceled, and the chromatic aberration is corrected by using the lens in combination with an objective lens for an optical disc. be able to.
[0026]
Optical elements 12 and 13 have a positive power, and these two elements constitute an imaging system. As described above, by using a configuration in which a portion related to chromatic aberration correction and image formation is separated by a function, individual molds can be easily manufactured and molded, and stable production can be achieved. Reference numeral 15 denotes an optical disk, and 15a denotes a transparent protective layer.
[0027]
The chromatic aberration correction element 11 is provided with a cutout portion 11b at a part of the circumference of a portion 11a in contact with the optical element 12, and a space surrounded by the chromatic aberration correction element 11 and the And a gas flow path through which gas flows. Similarly, the optical element 12 is also provided with a cutout portion 12b at a part of the circumference of a portion 12a in contact with the optical element 13, so that a space surrounded by the optical element 12 and And a gas flow path through which gas flows.
[0028]
Further, the optical element 12 sandwiched between the chromatic aberration correction element 11 and the optical element 13 has a through-hole 12c in a portion other than the optically effective surface. A gas flow path through which gas flows is formed between the space surrounded by the chromatic aberration correction element 11 and the optical element 12 and the space surrounded by the optical element 12 and the optical element 13 by the through hole 12c. . As shown in FIG. 1B, the position of the through hole 12c is at a radial position different from the gas flow path through which gas flows between the enclosed space and the outside air when viewed from the optical axis direction. Preferably, it is provided. Thereby, the influence on the surface accuracy of the optical element due to the temperature difference caused by the difference in ventilation can be eliminated.
[0029]
FIG. 2 is a side cross-sectional view and a rear view showing a main part configuration of another example of the first invention. FIG. 2A is a side sectional view, and FIG. 2B is a rear view. FIG. 2A is a cross-sectional view taken along line PP of FIG.
[0030]
The optical unit shown in FIG. 2 is provided with two notches 11b and 12b shown in FIG. 1 at intervals of 180 degrees. Further, the optical element 12, which is sandwiched between the chromatic aberration correction element 11 and the optical element 13, has two through holes 12c provided in a portion other than the optically effective surface at a radial position different from the cutout portion.
[0031]
The notches 11b and 12b may be provided in large numbers, for example, at intervals of 90 degrees, at intervals of 60 degrees or at intervals of 45 degrees. Similarly, a plurality of through-holes 12c may be provided, and may be formed at intervals of, for example, 90 degrees, 60 degrees, 45 degrees, or the like. It is desirable to provide at a different position in the radial direction. Further, it is needless to say that the present invention can be applied to an optical unit having three or more components that does not use a chromatic aberration correction element.
[0032]
FIG. 3 is a side sectional view and a rear view showing a main part configuration of another example of the first invention. FIG. 3A is a side sectional view, and FIG. 3B is a rear view. FIG. 3A is a cross-sectional view taken along line PP of FIG.
[0033]
In FIG. 3, the chromatic aberration correction element 11 is provided with a notch 11b, and the optical elements 12 and 13 are provided with through holes 12c and 13c at positions other than the optically effective surfaces. A gas flow path to the outside air is formed by the notch 11b and the through hole 13c, respectively, and a space surrounded by the chromatic aberration correction element 11 and the optical element 12 by the through hole 12c, and a space surrounded by the optical element 12 and the optical element 13. It is a gas flow path through which gas flows between the space and the space.
[0034]
In the example of the first embodiment described above, the optical element has been described as a three-element configuration including a chromatic aberration correction element and two lenses having positive power. However, the present invention is not limited to this. It goes without saying that the present invention can be applied to an optical element which is fixedly integrated.
[0035]
(Second embodiment)
Embodiments of the second invention will be described below.
[0036]
FIG. 4 is a diagram showing an example of the second invention. 4A is a side sectional view including the optical axis, FIG. 4B is a rear view, and FIG. 4C is a side view.
[0037]
The optical unit in FIG. 4 includes a chromatic aberration correction element 11 and an optical element 14.
As shown in FIG. 4, the chromatic aberration correction element 11 and the optical element 14 are fitted by a circumferential abutment portion 11a, so that the interval in the optical axis direction and the optical axis are aligned. Further, the chromatic aberration correction element 11 is provided with a pair of projections 11d arranged at 90 ° intervals on the outer periphery. A predetermined one of the projections 11d and a projection provided on the optical element 14 are provided. The parts 14h are assembled so as to be fitted. The convex portion 14h does not have a shape for contact as shown in the cross-sectional view in the drawing, and therefore, a gas flow path is provided between this portion, the space surrounded by the chromatic aberration correction element 11 and the optical element 14, and the outside air. It is formed.
[0038]
FIG. 5 is a three-view drawing showing the shape of the optical element 14 used in the optical unit shown in FIG. As shown in FIG. 5, the optical element 14 is formed of a resin and has a shape having a gate portion 14g and a convex portion 14h following the gate portion. The convex portion 14h partially cuts the flange portion 14f as shown in the sectional view. It has a missing shape. In the thickness direction, a step is formed so that a gap is formed in a region between the protrusions 11d of the chromatic aberration correction element 11. The gate portion 14g is cut by a cut surface (shown) before being combined with the chromatic aberration correction element 11, and has a shape shown in FIG.
[0039]
The projections 11d and the projections 14h allow the optical elements to be positioned in the circumferential direction, and can be assembled so that deviations in optical characteristics such as astigmatism caused by errors in molding and molds do not overlap. Further, the problem of changing the state of the optical element surface and the problem of dew condensation on the effective optical surface can be solved by using a gap formed between the convex portion 14h and the protrusion 11d as a gas flow path.
[0040]
FIG. 6 is a diagram showing another example of the second invention. 6A is a side sectional view including the optical axis, FIG. 6B is a rear view, and FIG. 6C is a side view. FIG. 7 is a three-view drawing showing the shape of the optical element 14 used in the optical unit shown in FIG.
[0041]
In this example, as shown in FIG. 6, the shape of the portion of the chromatic aberration correction element 11 sandwiched between the protrusions 11d is a surface continuous with the contact portion 11a, and this is used as a gas flow path.
[0042]
As shown in FIG. 7, the optical element 14 has a shape having a gate portion 14g and a convex portion 14h following it, and the convex portion 14h has a shape in which a flange portion 14f is partially cut away as shown in a sectional view. As shown in the sectional view, the thickness direction is connected to the concave portion 14i without any step. The gate portion 14g is cut by a cut surface (shown) before being combined with the chromatic aberration correction element 11, and has a shape shown in FIG. Therefore, a gap is formed as in the case of FIG.
[0043]
In the example of the second embodiment described above, an example is described in which the convex portion is provided continuously to the gate portion of the optical element 14. However, in addition to the gate portion, the cross section of the convex portion as shown in FIG. A shape may be formed and similar assembly may be performed. In addition, the protrusions 11d are arranged at 90-degree intervals, but may be set as needed, such as at 60-degree intervals and 45-degree intervals. Further, when the positioning of the chromatic aberration correcting element 11 and the optical element 14 in the circumferential direction is generally sufficient, the gate shape itself remaining after cutting the gate may be used as the positioning in the rotation direction.
[0044]
FIG. 8 is a diagram in which both the first invention and the second invention are applied to an optical unit having three optical elements.
[0045]
8, the space surrounded by the chromatic aberration correction element 11 and the optical element 12 is a space formed by the convex portion 12h, and the space surrounded by the optical element 12 and the optical element 13 is the same as the shape of the optical element 12 shown in FIG. A gas flow path with the outside is formed by a gap formed with the portion 13h, and the optical element 12 has a through hole 12c outside the optically effective range, and a gas flow path is formed between enclosed spaces. .
[0046]
Further, the protrusion 13h of the optical element 13 is fitted in the protrusion 12d of the optical element 12 for positioning in the rotational direction, and the protrusion 12h of the optical element 12 is formed as a protrusion 11d of the chromatic aberration correction element 11 (in FIG. Positioning is performed by fitting to the boss of the pin, and the three optical elements can be positioned in the rotation direction.
[0047]
【The invention's effect】
As described above, when three or more optical elements are used, there is a space surrounded by the optical elements before and after the optical elements, and it is possible to eliminate the influence on the surface accuracy of the optical elements due to a temperature difference caused by a difference in ventilation between the two. It became so.
[0048]
In addition, a convex portion is provided on a circumferential portion other than the optically effective surface, and a gas flow path through which gas flows between the convex portion and / or a concave portion facing the convex portion is provided. In the circumferential positioning of the optical elements with each other, the problem of changing the state of the optical element surface while assembling so that deviations in optical characteristics such as astigmatism generated by errors in molding and mold do not overlap, The problem of condensation on the effective optical surface can be solved.
[0049]
As a result, as an optical unit for recording and reproducing data on and from a disk aiming at a high storage capacity using a short wavelength light source, an optical element for correcting a change in the wavelength of the light source and an optical element relating to imaging are easily separated and manufactured. It is possible to obtain an optical unit having a simple configuration and not affected by the temperature of the use environment.
[Brief description of the drawings]
FIGS. 1A and 1B are a side sectional view and a rear view showing a main part configuration of an optical unit according to a first invention.
FIGS. 2A and 2B are a side cross-sectional view and a rear view showing a main part configuration of another example of the first invention.
FIG. 3 is a side sectional view and a rear view showing a main part configuration of another example of the first invention.
FIG. 4 is a diagram showing an example of the second invention.
5 is a three-sided view showing a shape of an optical element 14 used in the optical unit shown in FIG.
FIG. 6 is a view showing another example of the second invention.
FIG. 7 is a three-view drawing showing a shape of an optical element 14 used in the optical unit shown in FIG. 6;
FIG. 8 is a diagram in which both the first invention and the second invention are applied to an optical unit having three optical elements.
[Explanation of symbols]
Reference Signs List 11 chromatic aberration correction element 12 optical element 13 optical element 14 optical element 15 optical disk 15a transparent protective layer

Claims (5)

3枚以上の光学素子を固着して一体化し、該光学素子の光学有効面が相対して囲まれた空間と外気との間に気体が流通する気体流路が設けられた光学ユニットにおいて、
該囲まれた空間同士を気体が流通する気体流路を設けたことを特徴とする光学ユニット。
An optical unit in which three or more optical elements are fixed and integrated, and a gas flow path through which gas flows is provided between a space surrounded by the optically effective surface of the optical elements and the outside air,
An optical unit having a gas flow path through which gas flows between the enclosed spaces.
前記光学ユニットは、少なくともその一面に、光軸から離れるに従って厚みが階段状に変化する輪帯群を有する光学素子を含むことを特徴とする請求項1に記載の光学ユニット。2. The optical unit according to claim 1, wherein the optical unit includes at least one surface of an optical element having an annular group whose thickness changes stepwise as the distance from the optical axis increases. 3. 前記囲まれた空間同士を気体が流通する気体流路は、光軸方向から見て、前記囲まれた空間と外気との間に気体が流通する気体流路とは異なる半径方向の位置に設けられていることを特徴とする請求項1又は2記載の光学ユニット。The gas flow path through which the gas flows through the enclosed spaces is provided at a radial position different from the gas flow path through which the gas flows between the enclosed space and the outside air when viewed from the optical axis direction. The optical unit according to claim 1, wherein the optical unit is provided. 複数の光学素子を固着して一体化し、該光学素子の光学有効面が相対して囲まれた空間と外気との間に気体が流通する気体流路が設けられた光学ユニットにおいて、
該光学素子の少なくとも1枚は、光学有効面以外の円周部に凸部を有し、該凸部及び/又は該凸部と相対する凹部で外気との間に気体が流通する気体流路を設けたことを特徴とする光学ユニット。
An optical unit in which a plurality of optical elements are fixed and integrated, and an optical unit provided with a gas flow path through which gas flows between a space surrounded by the optically effective surface of the optical elements and the outside air,
At least one of the optical elements has a convex portion on a circumferential portion other than the optically effective surface, and a gas flow path in which gas flows between the convex portion and / or a concave portion facing the convex portion and outside air. An optical unit comprising:
前記光学ユニットは、少なくともその一面に、光軸から離れるに従って厚みが階段状に変化する輪帯群を有する光学素子を含むことを特徴とする請求項4に記載の光学ユニット。5. The optical unit according to claim 4, wherein the optical unit includes an optical element having, at least on one surface thereof, an annular zone whose thickness changes stepwise as the distance from the optical axis increases. 6.
JP2002376789A 2002-12-26 2002-12-26 Optical unit Pending JP2004205928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376789A JP2004205928A (en) 2002-12-26 2002-12-26 Optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376789A JP2004205928A (en) 2002-12-26 2002-12-26 Optical unit

Publications (1)

Publication Number Publication Date
JP2004205928A true JP2004205928A (en) 2004-07-22

Family

ID=32814157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376789A Pending JP2004205928A (en) 2002-12-26 2002-12-26 Optical unit

Country Status (1)

Country Link
JP (1) JP2004205928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126284A (en) * 2004-10-26 2006-05-18 Konica Minolta Opto Inc Objective lens and optical pickup with same
JP2006187204A (en) * 2004-12-28 2006-07-20 Olympus Corp Culture observation device
JP2006195331A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Photographic lens
JP2011043860A (en) * 2010-11-30 2011-03-03 Panasonic Corp Imaging lens, imaging apparatus, and digital imaging equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126284A (en) * 2004-10-26 2006-05-18 Konica Minolta Opto Inc Objective lens and optical pickup with same
JP2006187204A (en) * 2004-12-28 2006-07-20 Olympus Corp Culture observation device
JP4668609B2 (en) * 2004-12-28 2011-04-13 オリンパス株式会社 Culture observation equipment
JP2006195331A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Photographic lens
US8070304B2 (en) 2005-01-17 2011-12-06 Panasonic Corporation Camera lens unit
JP2011043860A (en) * 2010-11-30 2011-03-03 Panasonic Corp Imaging lens, imaging apparatus, and digital imaging equipment

Similar Documents

Publication Publication Date Title
KR101013295B1 (en) Objective lens and optical pickup apparatus
JP4120788B2 (en) Optical pickup device, objective lens, diffractive optical element, optical element, and recording / reproducing apparatus
KR100681965B1 (en) Optical pickup apparatus, objective lens, apparatus for reproducing and/or recording optical information recording medium
JP4131366B2 (en) Objective lens, optical pickup device and recording / reproducing device
JP2004265573A (en) Objective lens for optical pickup device, optical pickup device, and optical information reproducing and reproducing device
US6992838B2 (en) Objective lens with the diffractive surface for DVD/CD compatible optical pickup
JP2004205928A (en) Optical unit
JP2006085837A (en) Objective lens unit and optical pickup device using the same
JPWO2005091279A1 (en) Objective optical system for optical pickup apparatus, optical pickup apparatus, and optical information recording / reproducing apparatus
JP4370619B2 (en) Optical element, optical pickup device and drive device
JP4585513B2 (en) Optical element, optical pickup, and optical information recording / reproducing apparatus
JP3864749B2 (en) Optical system of optical pickup device and objective lens of optical pickup device
JP2006107558A (en) Objective optical system for optical recording medium and optical pickup device using the same
JP4958022B2 (en) Optical pickup device
JP4678462B2 (en) Objective lens for optical pickup device
JP4348917B2 (en) Synthetic resin lens and method of forming the same
JP2003123303A5 (en)
JP2004205774A (en) Optical unit
JP4224763B2 (en) Objective lens for optical pickup device, objective lens and optical pickup device
JP2007087479A (en) Object optical system and optical pickup device
JP4437829B2 (en) Objective lens, optical pickup device, and recording / reproducing device
JP4482830B2 (en) Optical pickup device, objective lens, diffractive optical element, optical element, and recording / reproducing apparatus
JP2008108305A (en) Objective optical system for optical recording medium and optical pickup device using the same
JP2007299530A (en) Objective lens, optical pickup device, and recording/reproducing device
JP2007242235A (en) Objective lens, optical pickup apparatus, and recording/reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120