JP2004205408A - Solid electrolyte type carbon dioxide sensor element - Google Patents

Solid electrolyte type carbon dioxide sensor element Download PDF

Info

Publication number
JP2004205408A
JP2004205408A JP2002376535A JP2002376535A JP2004205408A JP 2004205408 A JP2004205408 A JP 2004205408A JP 2002376535 A JP2002376535 A JP 2002376535A JP 2002376535 A JP2002376535 A JP 2002376535A JP 2004205408 A JP2004205408 A JP 2004205408A
Authority
JP
Japan
Prior art keywords
solid electrolyte
carbon dioxide
electrode layer
sensor element
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376535A
Other languages
Japanese (ja)
Other versions
JP4063658B2 (en
Inventor
Mitsuhiko Matsui
光彦 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002376535A priority Critical patent/JP4063658B2/en
Publication of JP2004205408A publication Critical patent/JP2004205408A/en
Application granted granted Critical
Publication of JP4063658B2 publication Critical patent/JP4063658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte type carbon dioxide sensor element capable of highly accurate measurement even when an operation temperature is lowered to a low-temperature region of about 300°C, and having the unchanged electromotive force even when left for long hours in the non-heated state. <P>SOLUTION: In this solid electrolyte type carbon dioxide sensor element, a working electrode layer containing an electron conductive material and a metal carbonate and a reference electrode layer containing the electron conductive material are formed on the solid electrolyte layer surface. The sensor element has a characteristic wherein the working electrode layer contains a carbonate oxide of a rare earth element, preferably La<SB>2</SB>O<SB>2</SB>CO<SB>3</SB>, Nd<SB>2</SB>O<SB>2</SB>CO<SB>3</SB>or the like, and a zeolite. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、雰囲気中の炭酸ガス濃度を測定するための固体電解質型炭酸ガスセンサ素子に関する。
【0002】
【従来の技術】
近年、住環境、特に室内環境に対する関心が高まっており、例えば室内の炭酸ガス濃度をモニタリングし、炭酸ガス濃度が高くなった場合に自動的に換気を行なうような炭酸ガスセンサ素子を搭載した空気清浄装置が開発されている。また、公害防止或いはその対策の観点から、環境中の炭酸ガス濃度変化を常時測定するいわゆる環境測定の重要性も高まっている。これら空気清浄装置等の制御装置或いは警報装置、または環境測定装置などに組み込まれる炭酸ガスセンサ素子としては、ガス選択性が高く小型化が容易で作動条件が広く、更に保守性に優れるという特長を有する固体電解質型炭酸ガスセンサ素子が適している。
【0003】
固体電解質型炭酸ガスセンサ素子は、一般に、(a)イオン伝導体である“固体電解質層”に、(b)電子伝導物質、及び被測定ガスである炭酸ガスとの平衡反応を引き起こすことができる物質として金属炭酸塩を含む“作用電極”、並びに(c)電子伝導物質を含む“参照電極”が接合された基本構造を有している。このような炭酸ガスセンサ素子においては、付属するヒータによって450℃〜600℃の一定温度に加熱された状態で被測定ガスを含む雰囲気中に放置されると、作用電極層に含まれる金属炭酸塩と被測定ガスである炭酸ガスとの間で解離平衡反応が平衡に達するまで進行して作用電極層付近で固体電解質層の可動イオン濃度に変化が生じ、結果として固体電解質層を介して作用電極層と参照電極層との間に被測定ガス濃度に応じたある一定の起電力が正確に発生するので、該起電力を測定することによって被測定ガス濃度を知ることができる。
【0004】
従来、一般的に知られている固体電解質型炭酸ガスセンサ素子においては、固体電解質層を形成する固体電解質としてNASICON(Na1+AZrSi3−A12、但し0≦A≦3)、β−Al等のナトリウムイオン伝導性物質やLiTiSiO、LiTi(PO等のリチウムイオン伝導性物質などが、作用電極および参照電極に含まれる電子伝導物質(該物質は起電力を検出するために必要な物質である)としては、金や白金など耐熱、耐酸化性に優れた貴金属材料が、更に作用電極に含まれる金属炭酸塩としてはアルカリ金属炭酸塩やアルカリ土類金属炭酸塩が一般に用いられている。
【0005】
しかし、上記の金属炭酸塩としてアルカリ金属炭酸塩やアルカリ土類金属炭酸塩を用いた固体電解質型炭酸ガスセンサは、加熱を中断して作動を止めた状態で高湿度雰囲気や結露雰囲気などのように水分濃度の高い雰囲気中に放置されると、その後再び作動を開始した時に起電力が放置前の値に比べて著しく低下する(以下、このような現象が起こり易いことを非加熱時耐湿性が低いともいう。)という問題を有していた。
【0006】
このような問題点を解決する方法として、作用電極に希土類金属の炭酸酸化物を添加する方法が知られており(特許文献1参照)、作用極にLaCO、NdCO等の希土類金属の炭酸酸化物を添加することにより、非加熱の状態で高湿度の雰囲気中に長時間放置しても起電力が放置前と殆ど変化しないようにすることが出来、しかも作動開始から起電力が安定するまでの時間を2時間以内とすることが可能となっている。
【0007】
さらに、作用電極にUSY、ZSM−5などのゼオライトを添加する方法(特許文献2参照)、および作用電極にLa、Nd等の希土類金属酸化物とゼオライトを添加する方法(特許文献3参照)においても、上記と同様の効果が得られている。
【0008】
【特許文献1】
特開平11−153576号公報
【特許文献2】
特開平11−174024号公報
【特許文献3】
特開平11−271261号公報
【0009】
【発明が解決しようとする課題】
ところで、固体電解質型炭酸ガスセンサにおいては、上記非加熱時耐湿性の問題とは別に、省エネルギーの観点から、作動温度を低減することが望まれている。作動温度を低減することで消費電力が少なくなり、センサの部品点数削減によるコストダウンや、動力源を商用電源から乾電池に変換することが可能になる。
【0010】
ところが、上記刊行物に開示されている固体電解質型炭酸ガスセンサにおいては非加熱時耐湿性の問題は良好に解決されているものの、その作動温度は従来の固体電解質型炭酸ガスセンサと同様であり、必ずしも満足のいくものではなかった。例えば、作動温度を200℃〜300℃の低温域に設定すると、感度が低下し今一歩信頼性のある測定を行なうことは困難であった。
【0011】
そこで、本発明は、動作温度がこれまでよりも低い温度、特に200℃〜300℃という温度域でも、炭酸ガス濃度を精度よく計測できる固体電解質型炭酸ガスセンサを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく研究を重ねた結果、固体電解質層表面に形成される作用電極に特定の化合物を添加した場合には、上記の要求性能を全て満足する固体電解質型炭酸ガスセンサが得られることを見出し、本発明を提案するに至った。
【0013】
即ち、本発明は、固体電解質層表面に、電子伝導物質と金属炭酸塩とを含む作用電極層及び電子伝導物質を含む参照電極層が形成されてなる固体電解質型炭酸ガスセンサ素子において、該作用電極層が希土類元素の炭酸酸化物とゼオライトとを含むことを特徴とする固体電解質型炭酸ガスセンサ素子である。
【0014】
【発明の実施の形態】
以下に、本発明の固体電解質型炭酸ガスセンサ素子の構成について詳細に説明する。
【0015】
本発明の固体電解質型炭酸ガスセンサ素子においては、希土類元素の炭酸酸化物とゼオライトとを含有する作用電極を使用することが重要である。これら両物質を併用し、これらを相乗的に作用させることにより、本発明の固体電解質型炭酸ガスセンサ素子では、作動温度が200〜300℃の低温域でも高い感度で精度良く炭酸ガス濃度を測定することができる。作用電極層がこれらの物質のどちらか一方でも含まない場合に作動温度を300℃以下にすると、十分な感度が得られなくなり炭酸ガス濃度の計測の正確性が大きく低下する。また、希土類金属酸化物とゼオライトとを含有させた場合も同様である。さらに、両物質とも含有しない場合は、高湿度環境下で非加熱の状態で放置されると起電力の値が放置前と比較して著しく低下してしまう。
【0016】
本発明で使用する希土類元素の炭酸酸化物とは、RCO、RO(CO及びその水和物(RO(CO・xHO(xは0より大きい任意の数))、R(CO(OH)(A、L、M、Tは任意の整数)等の一般式で表される炭酸酸化物を意味する。ここでRは希土類金属元素であり、Sc;Y;及びLa、Ce、Pr、Nd、Pm等原子番号57〜71のランタノイドを挙げることができる。
【0017】
上記一般式で表わされる希土類元素の炭酸酸化物のうち、希土類元素がランタノイドである希土類元素の炭酸酸化物が、固体電解質型炭酸ガスセンサ素子の作動開始から起電力が安定化するまでの時間短縮の点で好ましく、特に希土類元素がLa、Ndである希土類元素の炭酸酸化物が好ましい。
【0018】
また、希土類元素の炭酸酸化物の中でも、RCO、RO(CO、で表される希土類元素の炭酸酸化物が、高湿度環境下での作動開始から起電力が安定化するまでの時間短縮の点で好ましい。特に、RCOを用いるのが最も好ましい。
【0019】
作用電極層中の希土類元素の炭酸酸化物の含有量は特に制限されないが、作用電極の全重量100重量%中に占める割合で0.5〜80重量%であることが好ましく、特に1〜60重量%であることが好ましい。
【0020】
本発明において使用されるゼオライトは、公知のものが何ら制限なく用いられる。例えば、A型、X型、Y型、USY、ZSM−5などに加え、これらのゼオライトに含まれる陽イオンを他の陽イオンと交換したものを挙げることができる。
上記のゼオライトのうち、Naを含むUSY(以下、Na−USYと略す。
)およびNa−USYに含まれるNaを、LiやKで置き換えたもの、或いはZSM−5が本発明の効果をより発揮しやすいことから好ましく、特にNa−USYに含まれるNaをLiで置き換えたもの(以下、Li−USYと略す。)およびZSM−5が最も好ましい。
【0021】
ゼオライトに含まれる陽イオンを他の陽イオンと交換する方法は特に制限されるものではないが、代表的な方法を例示すると、イオン交換される前のゼオライト粉末を、交換しようとする陽イオンを含んだ水溶液中に浸漬、攪拌した後、乾燥、焼成する方法を挙げることができる。
本発明において、ゼオライトに含まれる陽イオンが他の陽イオンに交換される割合は特に制限されるものではないが、本発明の効果をより発揮させるためには、交換前の陽イオン100%に対して、70%以上が交換されることが好ましい。
【0022】
作用電極層中のゼオライトの含有量は特に制限されないが、作用電極の全重量100重量%中に占める割合で0.1〜8重量%であることが好ましく、特に0.5〜5重量%であることが好ましい。
【0023】
本発明において、作用電極層に含まれる金属炭酸塩は、炭酸ガスが含まれる雰囲気中で、炭酸ガスとの平衡反応を引き起こすことができるものであり、公知の材料が制限なく使用される。例えば、炭酸ナトリウム、炭酸リチウムなどのアルカリ金属炭酸塩およびこれらの混合物、もしくは炭酸カルシウム、炭酸マグネシウムなどのアルカリ土類金属炭酸塩およびこれらの混合物などが採用されるが、炭酸ガスとの平衡反応を起こしやすいことからアルカリ金属炭酸塩、特に、炭酸ナトリウムや炭酸リチウムを用いることが好ましい。
【0024】
希土類元素の炭酸酸化物およびゼオライトと、金属炭酸塩との組み合わせは特に制限されないが、希土類元素がランタノイドである希土類元素の炭酸酸化物およびゼオライトのUSYと、アルカリ金属炭酸塩との組み合わせが、高湿度環境下での作動開始から起電力が安定化するまでの時間短縮の点で好ましく、特に、炭酸酸化ランタンもしくは炭酸酸化ネオジムおよびゼオライトのLi−USYと、炭酸ナトリウムもしくは炭酸リチウムとの組み合わせが好ましい。
【0025】
作用電極層中の金属炭酸塩の含有量は特に制限されないが、作用電極の全重量100重量%中に占める割合で1〜70重量%であることが好ましく、特に5〜50重量%であることが連続使用時におけるセンサ素子の起電力のふらつきを少なくすることから好ましい。
【0026】
本発明において、作用電極層に含まれる電子伝導物質は、後述する参照電極層に含まれる電子伝導物質と同様に、センサ素子の起電力を出力するために必要な物質であり、公知の材料が制限なく使用される。例えば、白金、金、パラジウム、銀などの貴金属元素およびこれらの合金、もしくは上記の貴金属元素の2種類以上を混合したものが採用されるが、特に、白金、金およびこれらの混合物や合金が耐腐食性に優れていることから好適である。
【0027】
作用電極層中の電子伝導物質の含有量は特に制限されないが、作用電極の全重量100重量%中に占める割合で10〜95重量%であることが好ましく、特に25〜90重量%であることが好ましい。
【0028】
本発明において、電子伝導物質、金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトを含む作用電極層の構造は、特に制限されるものではない。代表的な構造を例示すると、電子伝導物質、金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトが固体電解質層表面に層状に積み重なる構造、作用電極層の電子伝導物質中に金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトが分散して存在する構造、固体電解質層表面に形成された金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトの混合物層の一部又は全部を電子伝導物質が被覆する構造などが挙げられるが、特に、電子伝導物質中に金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトが分散して存在する構造が作用電極層を簡便に形成できることから好ましい。
【0029】
上記の作用電極層の形成方法としては、公知の方法が特に制限なく使用される。例えば、上記の電子伝導物質、金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトを単独で、もしくは混合した後に溶媒およびバインダーと混練してペースト化し、該ペーストをスクリーン印刷法などによって固体電解質表面に焼き付ける方法、電子伝導物質、金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトをスパッタリングや蒸着などの薄膜形成技術によって形成する方法が好適に採用される。
【0030】
作用電極層の厚みは特に制限されないが、一般には0.001〜0.03mmの範囲から採用される。
【0031】
本発明において、参照電極層に含まれる電子伝導物質は、前述の作用電極層に含まれる電子伝導物質と同様に、センサ素子の起電力を出力するために必要な物質であり、公知の材料が制限なく使用される。例えば、白金、金、パラジウム、銀などの貴金属元素およびこれらの合金、もしくは上記の貴金属元素の2種類以上を混合したものが採用されるが、特に、白金、金およびこれらの混合物や合金が耐腐食性に優れていることから好適である。
【0032】
上記の参照電極層の形成方法としては、公知の方法が特に制限なく使用される。例えば、既述の作用電極層の製造方法で示したような方法を用いることができる。
【0033】
参照電極層の厚みは特に制限されないが、一般には0.001〜0.03mmの範囲から採用される。
【0034】
本発明において、上記作用電極層および参照電極層の配置は、作用電極層および参照電極層が固体電解質層に接触していれば、特に制限されない。例えば、固体電解質層の片方の表面に作用電極層、他方の面に参照電極層が形成されている構造を有するもの、固体電解質の片方の表面に作用電極層と参照電極層の両層が一定の距離をおいて形成されている構造を有するものでも良い。
【0035】
本発明において、固体電解質層には、公知の固体電解質が制限なく使用される。例えば、前述のNASICON、β―Alなどが挙げられる。
【0036】
固体電解質層の形成方法は、公知の方法が特に制限なく採用される。代表的な形成方法としては、固体電解質の合成原料を焼成し、成形した後に加熱する方法、固体電解質の合成原料を成型した後、焼結する方法、及び、固体電解質の合成原料を溶媒およびバインダーと混練してペースト化し、該ペーストをスクリーン印刷法などによってセラミックスやガラスの基板上に印刷して焼き付ける方法などが挙げられる。
【0037】
固体電解質層の厚みは特に制限されないが、一般には0.02mm〜2.0mmの範囲から採用される。
【0038】
固体電解質型炭酸ガスセンサ素子は、金属炭酸塩と炭酸ガスとの間で解離平衡反応を起こさせるため、通常400℃〜600℃の一定温度に加熱して使用される。本発明においては、それよりも低い200℃〜400℃未満の一定温度で使用しても、高い感度で精度良く測定を行うことができる。特に、200℃〜300℃の温度で使用した場合において、より顕著に効果が発揮される。上記センサ素子を加熱する方法としては、センサ素子の外部の熱源からの加熱によっても良いし、ヒータが形成されたセラミックスやガラス基板をセンサ素子に接合し、該ヒータに直流または交流電圧を印加して加熱してもよい。センサ素子に接合するヒータの装着位置は、参照電極層の上のように、センサ素子の作動を阻害しない位置であれば特に制限されない。
【0039】
【実施例】
本発明を具体的に説明するために以下の実施例を挙げて説明するが、本発明は、これら実施例に制限されるものではない。
(1)起電力と感度の作動温度依存性試験方法
固体電解質型炭酸ガスセンサ素子を作製した直後に炭酸ガス濃度が自由に制御できるチャンバー内に入れ、電源よりヒータに直流電圧を印加することで素子を作動温度の200℃に加熱し、センサ素子を該温度に保持したまま、チャンバー内の炭酸ガス濃度を350ppmに調整して起電力を測定した。次いで、チャンバー内の炭酸ガス濃度を2000ppmに調整し、同一温度で起電力を測定した。その後、素子温度(作動温度)を300℃、及び450℃に上げて、各温度で同様にして350ppm及び2000ppmにおける起電力を測定した。また、各温度における350ppmのときと2000ppmの時の起電力差を求め、この値を各作動温度における感度とした。
(2)非加熱時耐湿性試験方法
上記(1)の試験の測定後直ちに、固体電解質型炭酸ガスセンサ素子を炭酸ガス濃度が自由に制御できるチャンバー内に入れ、電源よりヒータに直流電圧を印加することで素子を450℃に加熱し、センサ素子の温度を450℃に保持したまま、チャンバー内の炭酸ガス濃度を350ppmおよび2000ppmに調整し、それぞれの濃度での起電力を測定して、これを初期の起電力とした。また、350ppmの時の起電力値と2000ppmの時の起電力値との差を求め、これを素子温度450℃における初期の感度とした。素子温度450℃時における初期感度を測定後、センサ素子をチャンバー内から取り出し、これを温度60℃、湿度90%に保持された恒温槽内に入れて、非加熱の状態で7日間放置した後に恒温槽から取り出し、素子温度が450℃時における350ppmと2000ppmにおける起電力(試験後起電力)を同様にして測定し、感度(試験後感度)を算出した。
【0040】
実施例1〜6
固体電解質型炭酸ガスセンサとして、図1に示されるような断面構造を有する素子を作製した。この固体電解質型ガスセンサ素子は、固体電解質層2の片面に作用電極層1が、反対面に参照電極層3が形成され、参照電極層3の上にはセラミックス板4が接着剤5によって接合されたものであった。さらに、参照電極層3が接合している面とは反対側のセラミックス板4の表面にはヒータ6が形成されおり、電源7から電気の供給を受けるものであった。また、作用電極層1および参照電極層3からはリード線が引き出されており、電圧計8に接続して起電力が測定されるものであった。
【0041】
固体電解質層2を形成するための固体電解質粉末は、ケイ酸ジルコニウムとリン酸ナトリウムをNaZrSiPO12の組成になるように混合し、1100℃の大気雰囲気で6時間、焼成することによって得た。
【0042】
固体電解質層2は、上記固体電解質粉末を一軸成形後、1200℃の大気雰囲気で10時間焼結して円盤状のペレットとした。
【0043】
作用電極層は、5重量%エチルセルロースを溶解したテルピネオールに、電子伝導物質としての金粉末、金属炭酸塩、希土類元素の炭酸酸化物およびゼオライトを表1に示す割合で混練してペーストとし、これを上記固体電解質層の片面にスクリーン印刷、乾燥、650℃の大気中で30分焼成して形成した。このようにして、膜厚が0.015mmの作用電極層を得た。
【0044】
希土類元素の炭酸酸化物は、該希土類元素の金属炭酸塩であるLa(COまたはNd(COを700℃の大気中で30分焼成することによって得た。
ゼオライトのうち、Li−USYは、Na−USYを25℃の硝酸リチウム水溶液中で12時間攪拌して水洗した後、500℃の大気中で8時間焼成することによって得た。この処理により、Na−USY中のNaの90%がLiに交換されたLi−USYが得られていることが、蛍光X線分析装置によって確認された。
【0045】
他の材料は、市販のものをそのまま用いた。
【0046】
参照電極層は、電子伝導物質としての金粉末と、5重量%エチルセルロースを溶解したテルピネオールとを混練してペーストとし、これを上記固体電解質層の作用電極層を形成した面とは反対の表面にスクリーン印刷、乾燥、650℃の大気中で30分焼成して形成した。このようにして、膜厚が0.015mmの参照電極層を得た。
【0047】
上記の参照電極層の上には、市販の白金ペーストでスクリーン印刷法によって形成した白金ヒータを搭載するアルミナ基板を、ヒータが形成されていない面が接合面になるようにガラスよりなる接着剤で接合した。
【0048】
以上の方法によって作製した固体電解質型炭酸ガスセンサ素子に対し、作動温度依存性試験および非加熱時耐湿性試験を行った。その結果を表2に示した。
【0049】
比較例7〜15
比較例7〜15の固体電解質型炭酸ガスセンサ素子は、作用電極層の構成成分を表1に示す割合とした他は、実施例1〜6と同様の方法で作製した。
【0050】
作製したセンサ素子に対し、作動温度依存性試験および非加熱時耐湿性試験を行い、その結果を表2に示した。
【0051】
【表1】

Figure 2004205408
【0052】
【表2】
Figure 2004205408
【0053】
【発明の効果】
本発明の固体電解質型炭酸ガスセンサ素子は、加熱されて一定の温度に保たれた条件下で被検出ガスである炭酸ガスを含み得る雰囲気下に放置することによって使用され、被測定ガス濃度に応じて発生する起電力に基づいて雰囲気中の炭酸ガス濃度を測定することができる。そして、作用電極層に希土類金属元素の炭酸酸化物とゼオライトとを含むことにより、非加熱時耐湿性が高いばかりでなく、動作温度を300℃程度の低温域に下げても高精度での計測が可能である。
このため、省エネルギー運転が求められる炭酸ガスセンサ素子として特に好適に使用できる。
【図面の簡単な説明】
【図1】図1は、固体電解質型炭酸ガスセンサ素子の代表的な態様を示す断面図である。
【符号の説明】
1.作用電極層
2.固体電解質層
3.参照電極層
4.セラミックス板
5.接着剤
6.ヒータ
7.電源
8.電圧計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide carbon dioxide sensor element for measuring the concentration of carbon dioxide in an atmosphere.
[0002]
[Prior art]
In recent years, there has been an increasing interest in living environments, particularly indoor environments. For example, an air purifier equipped with a carbon dioxide sensor element that monitors the indoor carbon dioxide concentration and automatically ventilates when the carbon dioxide concentration becomes high. Equipment is being developed. In addition, from the viewpoint of pollution prevention or countermeasures, the importance of so-called environmental measurement, which constantly measures changes in the concentration of carbon dioxide in the environment, is increasing. As a carbon dioxide sensor element incorporated in a control device or an alarm device such as an air purifying device, or an environmental measurement device, it has features of high gas selectivity, easy downsizing, wide operating conditions, and excellent maintainability. A solid electrolyte type carbon dioxide sensor element is suitable.
[0003]
A solid electrolyte type carbon dioxide sensor element is generally composed of (a) a solid electrolyte layer, which is an ionic conductor, and (b) a substance capable of causing an equilibrium reaction with an electron conductive material and carbon dioxide, which is a gas to be measured. Has a basic structure in which a “working electrode” containing a metal carbonate and (c) a “reference electrode” containing an electron conductive material are joined. In such a carbon dioxide sensor element, when it is left in an atmosphere containing the gas to be measured while being heated to a constant temperature of 450 ° C. to 600 ° C. by an attached heater, the metal carbonate contained in the working electrode layer is removed. The dissociation equilibrium reaction with the gas to be measured proceeds until the equilibrium reaction reaches equilibrium, and the mobile ion concentration of the solid electrolyte layer changes near the working electrode layer, and as a result, the working electrode layer Since a certain electromotive force corresponding to the concentration of the gas to be measured is accurately generated between the electrode and the reference electrode layer, the concentration of the gas to be measured can be known by measuring the electromotive force.
[0004]
Conventionally, in a generally known solid electrolyte type carbon dioxide gas sensor element, NASICON (Na 1 + A Zr 2 Si A P 3-A O 12 , where 0 ≦ A ≦ 3) is used as a solid electrolyte forming a solid electrolyte layer. A sodium ion conductive material such as β-Al 2 O 3 and a lithium ion conductive material such as Li 2 TiSiO 5 and LiTi 2 (PO 4 ) 3 are used as an electron conductive material contained in the working electrode and the reference electrode. Is a substance necessary to detect electromotive force) as a noble metal material such as gold or platinum which has excellent heat resistance and oxidation resistance. Further, as a metal carbonate contained in the working electrode, an alkali metal carbonate or an alkali metal is used. Earth metal carbonates are commonly used.
[0005]
However, a solid electrolyte type carbon dioxide gas sensor using an alkali metal carbonate or an alkaline earth metal carbonate as the above-mentioned metal carbonate, such as a high-humidity atmosphere or a dew atmosphere, in a state where heating is interrupted and operation is stopped. If left in an atmosphere with a high moisture concentration, the electromotive force will be significantly lower than the value before the operation when the operation is started again afterwards. Low).
[0006]
As a method of solving such a problem, a method of adding a rare earth metal carbonate to the working electrode is known (see Patent Document 1), and La 2 O 2 CO 3 and Nd 2 O 2 are added to the working electrode. By adding a carbonate of a rare earth metal such as CO 3, it is possible to make the electromotive force hardly change from that before leaving even when left for a long time in a high humidity atmosphere without heating. It is possible to set the time from the start of operation to the stabilization of the electromotive force within 2 hours.
[0007]
Further, a method of adding a zeolite such as USY or ZSM-5 to the working electrode (see Patent Document 2) and a method of adding a rare earth metal oxide such as La 2 O 3 or Nd 2 O 3 and a zeolite to the working electrode ( In Patent Document 3), the same effect as described above is obtained.
[0008]
[Patent Document 1]
JP-A-11-153576 [Patent Document 2]
Japanese Patent Application Laid-Open No. H11-174024 [Patent Document 3]
JP-A-11-271261
[Problems to be solved by the invention]
By the way, in the solid electrolyte type carbon dioxide sensor, it is desired to reduce the operating temperature from the viewpoint of energy saving, apart from the above-mentioned problem of moisture resistance during non-heating. By reducing the operating temperature, power consumption is reduced, so that the cost can be reduced by reducing the number of parts of the sensor, and the power source can be converted from a commercial power supply to a dry battery.
[0010]
However, in the solid electrolyte type carbon dioxide gas sensor disclosed in the above publication, although the problem of moisture resistance at the time of non-heating is well solved, the operating temperature is the same as the conventional solid electrolyte type carbon dioxide gas sensor, and is not necessarily. It was not satisfactory. For example, when the operating temperature is set in a low temperature range of 200 ° C. to 300 ° C., the sensitivity is lowered, and it is difficult to perform a reliable measurement one step at a time.
[0011]
Therefore, an object of the present invention is to provide a solid electrolyte type carbon dioxide sensor capable of accurately measuring a carbon dioxide concentration even at an operating temperature lower than before, particularly in a temperature range of 200 ° C. to 300 ° C.
[0012]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the present inventor has found that, when a specific compound is added to a working electrode formed on the surface of a solid electrolyte layer, solid electrolyte type carbonate satisfying all the above-mentioned required performances is obtained. They have found that a gas sensor can be obtained, and have proposed the present invention.
[0013]
That is, the present invention provides a solid electrolyte type carbon dioxide gas sensor element in which a working electrode layer containing an electron conductive material and a metal carbonate and a reference electrode layer containing an electron conductive material are formed on the surface of a solid electrolyte layer. A solid electrolyte type carbon dioxide sensor element, characterized in that the layer contains a rare earth carbonate and zeolite.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the solid oxide carbon dioxide sensor element of the present invention will be described in detail.
[0015]
In the solid oxide carbon dioxide sensor element of the present invention, it is important to use a working electrode containing a carbonate of a rare earth element and zeolite. By using these two substances in combination and making them act synergistically, the solid electrolyte type carbon dioxide sensor element of the present invention can measure the carbon dioxide gas concentration with high sensitivity and high accuracy even in a low temperature range of 200 to 300 ° C. be able to. If the working temperature is set to 300 ° C. or lower when the working electrode layer does not contain any one of these substances, sufficient sensitivity cannot be obtained, and the accuracy of measuring the carbon dioxide concentration is greatly reduced. The same applies to the case where a rare earth metal oxide and zeolite are contained. Further, when neither substance is contained, the value of the electromotive force is significantly reduced when left unheated in a high-humidity environment, as compared to before.
[0016]
The carbonate of a rare earth element used in the present invention includes R 2 O 2 CO 3 , R 2 O (CO 3 ) 2 and a hydrate thereof (R 2 O (CO 3 ) 2 .xH 2 O (x is 0 any number greater than)) means a R a O L (CO 3) M (OH) T (a, L, M, carbonate oxide T is represented by the general formula any integer), and the like. Here, R is a rare earth metal element, and examples include Sc; Y; and lanthanoids having atomic numbers 57 to 71 such as La, Ce, Pr, Nd, and Pm.
[0017]
Of the carbonates of the rare earth element represented by the above general formula, the carbonate of the rare earth element in which the rare earth element is a lanthanoid reduces the time from the start of operation of the solid electrolyte type carbon dioxide sensor element until the electromotive force is stabilized. In particular, a carbonate of a rare earth element in which the rare earth element is La or Nd is preferable.
[0018]
Further, among the carbonates of the rare earth elements, the carbonates of the rare earth elements represented by R 2 O 2 CO 3 and R 2 O (CO 3 ) 2 generate electromotive force from the start of operation in a high humidity environment. Is preferred from the viewpoint of shortening the time required for stabilization. In particular, it is most preferable to use R 2 O 2 CO 3 .
[0019]
The content of the rare earth element carbonate in the working electrode layer is not particularly limited, but is preferably 0.5 to 80% by weight based on the total weight of 100% by weight of the working electrode, and more preferably 1 to 60% by weight. % By weight.
[0020]
As the zeolite used in the present invention, known zeolites are used without any limitation. For example, in addition to A-type, X-type, Y-type, USY, ZSM-5 and the like, there can be mentioned those obtained by exchanging cations contained in these zeolites with other cations.
Of the above zeolites, USY containing Na + (hereinafter abbreviated as Na-USY).
) And Na + contained in Na-USY are preferably replaced by Li + or K + , or ZSM-5 is preferable because the effect of the present invention is more easily exerted. Particularly, Na + contained in Na-USY is preferably used. Those replaced with Li + (hereinafter abbreviated as Li-USY) and ZSM-5 are most preferred.
[0021]
The method of exchanging cations contained in zeolite with other cations is not particularly limited.A typical example is a method of exchanging zeolite powder before ion exchange with a cation to be exchanged. After immersion and stirring in a contained aqueous solution, drying and baking can be exemplified.
In the present invention, the rate at which the cations contained in the zeolite are exchanged for other cations is not particularly limited, but in order to achieve the effects of the present invention, the cations before exchange should be reduced to 100%. On the other hand, it is preferable that 70% or more be exchanged.
[0022]
The content of zeolite in the working electrode layer is not particularly limited, but is preferably 0.1 to 8% by weight, more preferably 0.5 to 5% by weight, based on 100% by weight of the total weight of the working electrode. Preferably, there is.
[0023]
In the present invention, the metal carbonate contained in the working electrode layer can cause an equilibrium reaction with carbon dioxide in an atmosphere containing carbon dioxide, and known materials are used without any limitation. For example, alkali metal carbonates such as sodium carbonate and lithium carbonate and mixtures thereof, or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate and mixtures thereof are employed. It is preferable to use an alkali metal carbonate, particularly sodium carbonate or lithium carbonate, because it easily occurs.
[0024]
The combination of the rare earth carbonate and zeolite with the metal carbonate is not particularly limited, but the combination of the rare earth carbonate and zeolite USY in which the rare earth element is a lanthanoid and the alkali metal carbonate is high. It is preferable in terms of shortening the time from the start of operation in a humid environment to the stabilization of the electromotive force. In particular, a combination of lanthanum carbonate or neodymium carbonate and zeolite Li-USY and sodium carbonate or lithium carbonate is preferable. .
[0025]
The content of the metal carbonate in the working electrode layer is not particularly limited, but is preferably from 1 to 70% by weight, more preferably from 5 to 50% by weight based on 100% by weight of the total weight of the working electrode. Is preferable because the fluctuation of the electromotive force of the sensor element during continuous use is reduced.
[0026]
In the present invention, the electron conductive material contained in the working electrode layer is a substance necessary for outputting an electromotive force of the sensor element, similarly to the electron conductive material contained in the reference electrode layer described later, and a known material is used. Used without restrictions. For example, noble metal elements such as platinum, gold, palladium, and silver and alloys thereof, or a mixture of two or more of the above noble metal elements are used. In particular, platinum, gold, and mixtures and alloys thereof are resistant. It is suitable because of its excellent corrosiveness.
[0027]
The content of the electron conductive material in the working electrode layer is not particularly limited, but is preferably 10 to 95% by weight, more preferably 25 to 90% by weight based on 100% by weight of the total weight of the working electrode. Is preferred.
[0028]
In the present invention, the structure of the working electrode layer including the electron conductive material, the metal carbonate, the carbonate of the rare earth element, and the zeolite is not particularly limited. A typical structure is, for example, a structure in which an electron conductive material, a metal carbonate, a carbonate of a rare earth element and zeolite are layered on the surface of a solid electrolyte layer, and a metal carbonate, a rare earth element in an electron conductive material of a working electrode layer. Structure in which carbon oxides and zeolites are present in a dispersed state, and a structure in which a part or all of a mixture layer of metal carbonate, rare earth carbonate and zeolite formed on the surface of the solid electrolyte layer is covered with an electron conductive material In particular, a structure in which a metal carbonate, a carbonate of a rare earth element and zeolite exist in a dispersed state in an electron conductive material is preferable because a working electrode layer can be easily formed.
[0029]
As a method for forming the working electrode layer, a known method is used without any particular limitation. For example, the above-mentioned electron conductive material, metal carbonate, carbonate of rare earth element and zeolite are used alone or mixed and then kneaded with a solvent and a binder to form a paste, and the paste is formed on a solid electrolyte surface by a screen printing method or the like. A method of baking, a method of forming an electron conductive material, a metal carbonate, a carbonate of a rare earth element and zeolite by a thin film forming technique such as sputtering or vapor deposition is suitably employed.
[0030]
The thickness of the working electrode layer is not particularly limited, but is generally adopted in the range of 0.001 to 0.03 mm.
[0031]
In the present invention, the electron conductive substance contained in the reference electrode layer is a substance necessary for outputting an electromotive force of the sensor element, similarly to the electron conductive substance contained in the above-mentioned working electrode layer. Used without restrictions. For example, noble metal elements such as platinum, gold, palladium, and silver and alloys thereof, or a mixture of two or more of the above noble metal elements are used. In particular, platinum, gold, and mixtures and alloys thereof are resistant. It is suitable because of its excellent corrosiveness.
[0032]
As a method for forming the above-mentioned reference electrode layer, a known method is used without any particular limitation. For example, the method as described in the method for manufacturing the working electrode layer described above can be used.
[0033]
The thickness of the reference electrode layer is not particularly limited, but is generally adopted in the range of 0.001 to 0.03 mm.
[0034]
In the present invention, the arrangement of the working electrode layer and the reference electrode layer is not particularly limited as long as the working electrode layer and the reference electrode layer are in contact with the solid electrolyte layer. For example, those having a structure in which a working electrode layer is formed on one surface of the solid electrolyte layer and a reference electrode layer is formed on the other surface, and both the working electrode layer and the reference electrode layer are fixed on one surface of the solid electrolyte. May have a structure formed at a distance of.
[0035]
In the present invention, a known solid electrolyte is used without limitation for the solid electrolyte layer. For example, the above-mentioned NASICON, β-Al 2 O 3 and the like can be mentioned.
[0036]
As a method for forming the solid electrolyte layer, a known method is employed without particular limitation. Typical forming methods include: a method in which a solid electrolyte synthetic material is fired, molded and then heated, a method in which the solid electrolyte synthetic material is molded and then sintered, and a method in which the solid electrolyte synthetic material is mixed with a solvent and a binder. Kneading into a paste, and printing the paste on a ceramic or glass substrate by a screen printing method or the like, and baking the paste.
[0037]
The thickness of the solid electrolyte layer is not particularly limited, but is generally adopted in the range of 0.02 mm to 2.0 mm.
[0038]
The solid electrolyte type carbon dioxide sensor element is usually heated to a constant temperature of 400 ° C. to 600 ° C. in order to cause a dissociation equilibrium reaction between the metal carbonate and carbon dioxide. In the present invention, measurement can be performed with high sensitivity and high accuracy even when used at a lower constant temperature of 200 ° C. to less than 400 ° C. In particular, when used at a temperature of 200 ° C to 300 ° C, the effect is more remarkably exhibited. As a method for heating the sensor element, heating from a heat source outside the sensor element may be used, or a ceramic or glass substrate on which a heater is formed is joined to the sensor element, and a DC or AC voltage is applied to the heater. May be heated. The mounting position of the heater joined to the sensor element is not particularly limited as long as it does not hinder the operation of the sensor element, such as on the reference electrode layer.
[0039]
【Example】
The present invention will be described specifically with reference to the following examples, but the present invention is not limited to these examples.
(1) Test method for operating temperature dependence of electromotive force and sensitivity Immediately after fabricating a solid electrolyte type carbon dioxide sensor element, place it in a chamber where the concentration of carbon dioxide can be freely controlled, and apply a DC voltage to the heater from a power supply. Was heated to an operating temperature of 200 ° C., and while the sensor element was kept at the temperature, the concentration of carbon dioxide in the chamber was adjusted to 350 ppm, and the electromotive force was measured. Next, the concentration of carbon dioxide in the chamber was adjusted to 2000 ppm, and the electromotive force was measured at the same temperature. Thereafter, the device temperature (operating temperature) was increased to 300 ° C. and 450 ° C., and the electromotive force at 350 ppm and 2000 ppm was measured at each temperature in the same manner. Further, a difference between the electromotive force at 350 ppm and the electromotive force at 2000 ppm at each temperature was determined, and this value was defined as the sensitivity at each operating temperature.
(2) Moisture resistance test method without heating Immediately after the measurement in the above test (1), the solid electrolyte type carbon dioxide sensor element is placed in a chamber in which the carbon dioxide concentration can be freely controlled, and a DC voltage is applied to the heater from a power supply. By heating the element to 450 ° C., while maintaining the temperature of the sensor element at 450 ° C., the concentration of carbon dioxide in the chamber was adjusted to 350 ppm and 2000 ppm, and the electromotive force at each concentration was measured. The initial electromotive force was used. Further, the difference between the electromotive force value at 350 ppm and the electromotive force value at 2000 ppm was determined, and this was defined as the initial sensitivity at an element temperature of 450 ° C. After measuring the initial sensitivity at an element temperature of 450 ° C., the sensor element was taken out of the chamber, placed in a constant temperature bath maintained at a temperature of 60 ° C. and a humidity of 90%, and allowed to stand in a non-heated state for 7 days. It was taken out of the thermostat, and the electromotive force (electromotive force after the test) at 350 ppm and 2000 ppm when the element temperature was 450 ° C. was measured in the same manner to calculate the sensitivity (the sensitivity after the test).
[0040]
Examples 1 to 6
An element having a cross-sectional structure as shown in FIG. 1 was manufactured as a solid electrolyte type carbon dioxide sensor. In this solid electrolyte type gas sensor element, a working electrode layer 1 is formed on one surface of a solid electrolyte layer 2 and a reference electrode layer 3 is formed on the other surface, and a ceramics plate 4 is bonded on the reference electrode layer 3 with an adhesive 5. It was. Further, a heater 6 was formed on the surface of the ceramic plate 4 opposite to the surface to which the reference electrode layer 3 was joined, and was supplied with electricity from a power supply 7. Further, lead wires were drawn out from the working electrode layer 1 and the reference electrode layer 3 and connected to the voltmeter 8 to measure the electromotive force.
[0041]
The solid electrolyte powder for forming the solid electrolyte layer 2 is obtained by mixing zirconium silicate and sodium phosphate so as to have a composition of Na 3 Zr 2 SiPO 12 and firing the mixture in an air atmosphere at 1100 ° C. for 6 hours. Obtained.
[0042]
The solid electrolyte layer 2 was formed into a disk-shaped pellet by uniaxially molding the solid electrolyte powder and then sintering at 1200 ° C. in an air atmosphere for 10 hours.
[0043]
The working electrode layer was prepared by kneading 5% by weight of ethylcellulose in terpineol with kneading gold powder, metal carbonate, rare earth carbonate and zeolite as an electron conductive material in the proportions shown in Table 1 to obtain a paste. One side of the solid electrolyte layer was formed by screen printing, drying and baking for 30 minutes in the air at 650 ° C. Thus, a working electrode layer having a thickness of 0.015 mm was obtained.
[0044]
The rare earth element carbonate was obtained by calcining La 2 (CO 3 ) 3 or Nd 2 (CO 3 ) 3 , which is a metal carbonate of the rare earth element, in the air at 700 ° C. for 30 minutes.
Among the zeolites, Li-USY was obtained by stirring Na-USY in a 25 ° C. aqueous solution of lithium nitrate for 12 hours, washing with water, and then calcining in a 500 ° C. atmosphere for 8 hours. By this treatment, it was confirmed by a fluorescent X-ray analyzer that Li-USY in which 90% of Na + in Na-USY was replaced with Li + was obtained.
[0045]
As other materials, commercially available materials were used as they were.
[0046]
The reference electrode layer is formed by kneading gold powder as an electron conductive substance and terpineol in which 5% by weight of ethylcellulose is dissolved to form a paste. The paste is formed on the surface of the solid electrolyte layer opposite to the surface on which the working electrode layer is formed. It was formed by screen printing, drying, and firing for 30 minutes in the air at 650 ° C. Thus, a reference electrode layer having a thickness of 0.015 mm was obtained.
[0047]
On the above-mentioned reference electrode layer, an alumina substrate mounted with a platinum heater formed by a screen printing method using a commercially available platinum paste is bonded with an adhesive made of glass so that the surface on which the heater is not formed becomes a bonding surface. Joined.
[0048]
An operating temperature dependency test and a non-heating moisture resistance test were performed on the solid electrolyte type carbon dioxide sensor element manufactured by the above method. The results are shown in Table 2.
[0049]
Comparative Examples 7 to 15
The solid oxide carbon dioxide sensor elements of Comparative Examples 7 to 15 were produced in the same manner as in Examples 1 to 6, except that the components of the working electrode layer were set to the ratios shown in Table 1.
[0050]
An operating temperature dependency test and a non-heating moisture resistance test were performed on the manufactured sensor element, and the results are shown in Table 2.
[0051]
[Table 1]
Figure 2004205408
[0052]
[Table 2]
Figure 2004205408
[0053]
【The invention's effect】
The solid electrolyte type carbon dioxide gas sensor element of the present invention is used by being left in an atmosphere that can contain carbon dioxide as a gas to be detected under the condition of being heated and maintained at a constant temperature, and depending on the concentration of the gas to be measured. The concentration of carbon dioxide in the atmosphere can be measured based on the generated electromotive force. In addition, since the working electrode layer contains carbonate and zeolite of a rare earth metal element, not only high humidity resistance during non-heating but also high accuracy measurement even when the operating temperature is lowered to a low temperature range of about 300 ° C. Is possible.
For this reason, it can be used particularly suitably as a carbon dioxide gas sensor element requiring energy-saving operation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a typical embodiment of a solid oxide carbon dioxide sensor element.
[Explanation of symbols]
1. Working electrode layer2. 2. solid electrolyte layer 3. Reference electrode layer Ceramic plate5. Adhesive 6. Heater 7. Power supply 8. voltmeter

Claims (1)

固体電解質層表面に、電子伝導物質と金属炭酸塩とを含む作用電極層及び電子伝導物質を含む参照電極層が形成されてなる固体電解質型炭酸ガスセンサ素子において、該作用電極層が希土類元素の炭酸酸化物とゼオライトとを含むことを特徴とする固体電解質型炭酸ガスセンサ素子。In a solid electrolyte type carbon dioxide sensor element in which a working electrode layer containing an electron conductive material and a metal carbonate and a reference electrode layer containing an electron conductive material are formed on the surface of a solid electrolyte layer, the working electrode layer is made of a rare-earth carbon dioxide. A solid oxide carbon dioxide sensor element comprising an oxide and zeolite.
JP2002376535A 2002-12-26 2002-12-26 Solid electrolyte carbon dioxide sensor element Expired - Fee Related JP4063658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376535A JP4063658B2 (en) 2002-12-26 2002-12-26 Solid electrolyte carbon dioxide sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376535A JP4063658B2 (en) 2002-12-26 2002-12-26 Solid electrolyte carbon dioxide sensor element

Publications (2)

Publication Number Publication Date
JP2004205408A true JP2004205408A (en) 2004-07-22
JP4063658B2 JP4063658B2 (en) 2008-03-19

Family

ID=32813983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376535A Expired - Fee Related JP4063658B2 (en) 2002-12-26 2002-12-26 Solid electrolyte carbon dioxide sensor element

Country Status (1)

Country Link
JP (1) JP4063658B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064492A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Test gas accumulation type gas sensor
JP2009008527A (en) * 2007-06-28 2009-01-15 Figaro Eng Inc Co2 sensor and manufacturing method therefor
CN106501448A (en) * 2016-10-17 2017-03-15 中国石油大学(华东) A kind of carbonic acid gas lanthanum nano-particular film sensitive to carbon dioxide
WO2020012870A1 (en) 2018-07-13 2020-01-16 富士電機株式会社 Carbon dioxide gas sensor
CN114813837A (en) * 2021-07-09 2022-07-29 长城汽车股份有限公司 Biodiesel quality sensor, manufacturing method thereof and vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064492A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Test gas accumulation type gas sensor
JP2009008527A (en) * 2007-06-28 2009-01-15 Figaro Eng Inc Co2 sensor and manufacturing method therefor
CN106501448A (en) * 2016-10-17 2017-03-15 中国石油大学(华东) A kind of carbonic acid gas lanthanum nano-particular film sensitive to carbon dioxide
WO2020012870A1 (en) 2018-07-13 2020-01-16 富士電機株式会社 Carbon dioxide gas sensor
EP4027136A1 (en) 2018-07-13 2022-07-13 Fuji Electric Co., Ltd. Carbon dioxide gas sensor
CN114813837A (en) * 2021-07-09 2022-07-29 长城汽车股份有限公司 Biodiesel quality sensor, manufacturing method thereof and vehicle

Also Published As

Publication number Publication date
JP4063658B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4063658B2 (en) Solid electrolyte carbon dioxide sensor element
JP3268252B2 (en) Solid electrolyte type carbon dioxide sensor element
JP2002357586A (en) Solid electrolyte molded material
JP3236254B2 (en) Solid electrolyte type carbon dioxide sensor element
JPH11271261A (en) Solid electrolyte carbon dioxide sensor element
JP2001133435A (en) Solid electrolyte type nitrogen oxide gas sensor element
JP4179573B2 (en) Solid electrolyte carbon dioxide sensor element
JPH11174024A (en) Solid electrolyte type carbon dioxide sensor element
JP2008224637A (en) Gas sensor and its manufacturing method
JP2001141693A (en) Solid electrolyte type nitrogen oxide gas sensor element
JP2004239706A (en) Sox sensor and sox detecting module employing the same
JPH03120456A (en) Oxygen sensor
JP2001221771A (en) Solid electrolyte type gas sensor element
JP2834680B2 (en) Carbon dioxide sensor element
JP4179488B2 (en) Solid electrolyte carbon dioxide sensor element
JP2002365260A (en) Solid electrolyte type carbon dioxide gas sensor element
JP3268039B2 (en) Solid electrolyte type carbon dioxide sensor element
JP2834679B2 (en) Solid electrolyte type gas sensor element
JPH11326270A (en) Solid electrolyte carbon dioxide sensor element
JP2002350388A (en) Carbon dioxide sensing element of solid electrolyte type
JP2003121411A (en) Solid electrolyte type carbon dioxide sensor element
JP2000065787A (en) Solid electrolyte type carbon dioxide sensor element
JP2001033426A (en) Solid electrolyte-type carbon dioxide sensor element
JP2003254937A (en) Solid electrolyte type carbon dioxide sensor element
JP2000193638A (en) Solid electrolyte type carbon dioxide sensor element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees