JP2004205264A - Current detecting circuit - Google Patents

Current detecting circuit Download PDF

Info

Publication number
JP2004205264A
JP2004205264A JP2002372205A JP2002372205A JP2004205264A JP 2004205264 A JP2004205264 A JP 2004205264A JP 2002372205 A JP2002372205 A JP 2002372205A JP 2002372205 A JP2002372205 A JP 2002372205A JP 2004205264 A JP2004205264 A JP 2004205264A
Authority
JP
Japan
Prior art keywords
current
output
detection
resistor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372205A
Other languages
Japanese (ja)
Other versions
JP4155560B2 (en
Inventor
Kuniya Araki
邦彌 荒木
Takeyoshi Watanabe
健芳 渡辺
Masafumi Kasahara
政史 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NF Corp
Original Assignee
NF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NF Corp filed Critical NF Corp
Priority to JP2002372205A priority Critical patent/JP4155560B2/en
Publication of JP2004205264A publication Critical patent/JP2004205264A/en
Application granted granted Critical
Publication of JP4155560B2 publication Critical patent/JP4155560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current detecting circuit capable of wide-band current detection from direct currents to high frequencies. <P>SOLUTION: The current detecting circuit comprises both a first current sensor 2 having a current transformer CT for passing a current to be measured through the side of a primary winding N1 and outputting the current to be measured from the side of a secondary winding N2 and a second current sensor 3 for detecting components containing a direct current among the current to be measured. By inputting both the output from the side of the secondary winding N2 and the output from the second current sensor 3 acquired from an error amplifier 5 and connecting a difference signal between the outputs to the secondary winding N2 of the first current sensor 2, it is possible to perform wide-range current detection from low frequencies to high frequencies. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電流検出回路に関し、特に、直流から高周波までの広帯域電流検出を可能とする電流検出回路に関する。
【0002】
【従来の技術】
従来の電流検出回路の代表的な回路としては、シャント抵抗やカレントトランス(CT)を用いた電流検出回路が知られている。また、このシャント抵抗やカレントトランス(CT)を組み合わせてより広帯域な電流検出を可能にする電流検出回路が、本願出願人により提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−66329号公報(第3頁〜第4頁、図1)
【0004】
図4には、この種の電流検出回路が示されている。図4において、負荷RLには、電源(V1)1から負荷電流I1が供給され、第1の電流センサとしてのCT(カレントトランス)2及び第2の電流センサとしての電流シャント抵抗(Rs)3が直列に挿入、接続され、負荷RLに流れる電流I1が測定される。第1の電流センサ2の1次側(N1)には被測定電流I1が流れ、2次側の検出巻線(2次巻線:N2)からは被測定電流I1に比例した電流が取り出される。この検出用の2次巻線N2の出力は、オペアンプ7と抵抗Rcから成る電流電圧変換回路に入力され、オペアンプ7の出力側から出力電圧Vacが取り出される。
【0005】
第2の電流センサとしての電流シャント抵抗3に流れる負荷電流I1によって発生した電圧は、増幅器4によって増幅される。増幅された電圧は、抵抗とコンデンサから成るLPF(低域通過フィルタ)8で低域成分が取り出され、電流センサ3からの出力Vdcが得られる。
【0006】
ところで、第2の電流センサ3の電流シャント抵抗Rsには浮遊容量を介して外部ノイズが加わる。この外部ノイズの伝達経路は、その等価回路は浮遊容量(図示せず)と電流シャントで構成された高域通過フィルタを介してのものであり、印加された外部ノイズ成分は周波数が高くなるほど大きくなる。
【0007】
第1の電流センサ2には、このカレントトランスCTの直流による磁化をキャンセルするために、1次巻線(N1)、2次巻線(N2)の他に第3の巻線である補正巻線(N3)が設けられている。この補正巻線(N3)には、低域通過フィルタ(LPF)8の出力に比例し、負荷電流I1とは逆相の電流Idcが補正電流源中の電流増幅器9を介して供給される。こうすることによって、負荷電流I1中の直流を含む低周波成分がI1とは逆相の電流としてカレントトランスCTに流れ、カレントトランスCTの直流による磁化をキャンセルできる。この例では、第1の電流センサ2の1次側巻線(N1)や補正電流を流す第3の巻線(N3)は1ターンに限らず複数ターンであっても構わない。
【0008】
こうして得られた2つの電流センサ2と3からの出力Vac、Vdcは、加算合成器10により合成されて最終的に電流検出信号Voが得られる。
【0009】
【発明が解決しようとする課題】
上述の図4に示す従来の電流検出回路によれば、直流から高周波までの広い周波数帯域に渡って、CTの磁気飽和を防ぎ、外部ノイズの影響や直流ドリフトを低減した電流検出回路が得られるものの、カレントトランスCTに対して新たに補正巻線(N3)を追加巻回する必要があるという問題点があった。
【0010】
そこで、本発明の目的は、上記の問題を解消し、追加巻線を必要とせず、広帯域且つ低ノイズの電流検出回路を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、カレントトランス(CT)とインピーダンス(抵抗)を組み合わせて電流検出を行い、各々の信号を合成して直流を含む低周波から高周波までの広帯域電流検出を可能とするような電流検出回路であり、具体的には次のような特徴的な構成を採用している。
【0012】
(1)1次巻線側に被測定電流が流れ、2次巻線側から前記被測定電流が出力されるカレントトランスを有する第1の電流検出手段と、
前記被測定電流のうち直流を含む成分を検出する第2の電流検出手段と、
前記2次巻線側からの出力と前記第2の電流検出手段からの出力を入力とし、両入力の差信号を出力する誤差増幅手段と、
前記誤差増幅手段の出力が前記第1の電流検出手段の前記2次巻線に接続されて成る電流検出回路。
【0013】
(2)前記第1の電流検出手段の2次巻線側に同相の増幅器が設けられ、この同相の増幅器から検出信号を出力する上記(1)の電流検出回路。
【0014】
(3)前記第2の電流検出手段は、抵抗器またはホール素子等を使用した直流電流センサである上記(1)の電流検出回路。
【0015】
(4)1次巻線側には被測定電流が流れ、2次側には前記被測定電流を検出する検出巻線が巻かれたカレントトランスの一次側と、シャント抵抗とが負荷に直列に接続され、前記カレントトランスの検出巻線からの検出信号と前記シャント抵抗による検出信号とが、誤差増幅器の入力端子に接続され、前記誤差増幅器の出力が前記検出巻線に接続されて成る電流検出回路。
【0016】
(5)負荷に直列接続されるカレントトランスとシャント抵抗により、前記負荷に流れる負荷電流を検出する電流検出回路において、
前記カレントトランスによる検出電流と、前記シャント抵抗による検出電流の各出力を前記カレントトランスの2次巻線側で重畳・加算する電流検出回路。
【0017】
【発明の実施の形態】
以下、本発明による電流検出回路の好適実施形態について図面を参照しながら説明する。
【0018】
図1は本発明に係る電流検出回路図の第1の実施形態を示す回路図である。図1において、負荷RLには、電源(V1)1から負荷電流I1が供給されており、第1の電流センサ2としてのCT(カレントトランス)及び第2の電流センサ3としての電流シャント(Rs)が直列に挿入され、それぞれにより負荷RLに流れる電流I1が測定される。
【0019】
第1の電流センサ2のカレントトランスCTにおける1次側に被測定電流I1が流れると、2次側には検出巻線(2次巻線)N2の巻数(比)がnであれば、第1の電流センサ2の信号通過帯域では(1/n)・I1の電流が流れる。また、負荷電流I1によって第2の電流センサ3である電流シャント(Rs)に発生した電圧は、増幅器4により増幅される。
【0020】
増幅器4からの出力は、抵抗Raを介して、誤差増幅機能を有する増幅器5に入力される。この誤差増幅機能を有する増幅器5は、増幅器51と、その出力と反転入力(−)間に接続されている抵抗Rfから構成され、増幅器4からの出力が増幅器51の反転入力(−)に入力される。増幅器51の非反転入力(+)は接地されている。
【0021】
誤差増幅器5の出力は、第2の電流センサにおける2次巻線N2の一方の端子に接続され、他方の端子は増幅器5の反転入力端子(−)に抵抗Rbを介して接続されると共に、抵抗Roで接地されている。抵抗Roの両端には、電流検出結果(電圧出力)Voが得られる。ここで、出力端子OUTに接続される負荷は十分大きな値をもつものとする。
【0022】
増幅器5は、第1の電流センサ2と第2の電流センサ3からの出力の誤差を増幅する誤差増幅器であり、この出力を2次巻線N2に流すことにより1次巻線N1により発生した直流及び低周波の磁化を打ち消している。このような構成により、図4に示すような従来の電流検出回路におけるCTの磁気飽和を防ぐ第3の巻線を不要とする。
【0023】
上述の実施形態における電流検出回路において、第1の電流センサ2は、クロスオーバ周波数fc以上の交流成分を受け持ち、他方、シャント抵抗Rsによる第2の電流センサ3は、誤差増幅器5を経由することにより、直流から上記クロスオーバ周波数fc迄の信号成分を受け持っている。そして、第1の電流センサ2と第2の電流センサ3からの両出力信号は、誤差増幅器5の出力を第1の電流センサ2の2次巻線に対して直列に加えられ合成される。
【0024】
本実施形態では、第1の電流センサ2の直流及び低周波による磁気飽和を防ぐため、第1の電流センサにおけるカレントトランスCTの1次巻線N1による磁界を2次巻線N2による逆磁界で打ち消している。すなわち、カレントトランスCTの1次側(N1)の巻数を1とし、2次側(N2)の巻数をnとし、2つの巻線が同一方向に巻回してカレントトランスCTの2次側に1次側の1/nの電流を逆方向に流すことにより、カレントトランスCTの直流及び低周波による磁気飽和をキャンセルしている。
【0025】
今、カレントトランスCTの1次側にI1なる電流が流れると、これに比例した電圧が増幅器4の出力に現れて抵抗Raに電流が流れる。これにより、誤差増幅器5の出力からカレントトランスCTの2次側の巻線N2に(I1/n)なる電流が流れるように、抵抗Rbを介して、出力端子OUTから誤差増幅器5に負帰還をかけている。
【0026】
即ち、この誤差増幅器5は、抵抗Ra、Rbに流れる電流がバランスするように、言い換えれば、図示したように抵抗Raに対しては電流(k1・I1)が流れ込み、抵抗Rbには電流(−k1・I1)が流れ込みバランスするように動作する。
【0027】
今、直流分について考えると、図1に示すように抵抗Raに矢印の向きにk1・I1なる電流が流れる。すると、この電流により誤差増幅器5の出力に接続されたカレントトランスCTの2次側巻線N2に電流I1/nが流れ、抵抗Roの両端(出力端子)にVo=Ro・(I1/n)なる出力電圧が発生する。この出力電圧Voは、抵抗Rbを介して誤差増幅器5に入力され、カレントトランスCTの2次巻線N2に常に(I1/n)の大きさの電流が流れるように制御している。
【0028】
カレントトランスCTの2次側巻線N2に流す電流(補正用電流)の値は(I1/n)にする必要がある。ところで、抵抗Rbに流れる電流はVo/Rbで、この電流の絶対値はRaに流れる電流(k1・I1)と同じ値であることから、Vs/Ra=Vo/Rbなる関係、すなわちVs/Vo=Ra/Rbである必要がある。
【0029】
設計に当たっては、まずカレントトランスCTに定格電流を流した時のVs、Voを決め、任意のRaを与えれば上記の関係式から、Rb=(Vo/Vs)・Raとして抵抗Rbの値が求まる。
【0030】
そして、抵抗Roには補正電流(I1/n)から抵抗Rbに流れる電流(k1・I1=Vs/Ra)を差し引いた差電流が流れるので、出力電圧Voの値をこの差電流の値で割れば抵抗Roを算出できる。なお、抵抗Rbに流れる電流は、カレントトランスCTに流れる電流(I1/n)に比して通常は十分小さくなるように設計するため、抵抗Rbに流れる電流は無視でき、通常はRo=Vo/(I1/n)としても構わない。
【0031】
誤差増幅器5の反転入力(−)と出力との間に接続されている抵抗Rfの決定に関しては、カレントトランスCTの特性に対応させ、更に誤差増幅器5、カレントトランスCTの2次巻線N2、抵抗Rbからなる負帰還ループの安定性を確保するために負帰還ループの位相余裕が十分大きくなるよう決定することが望ましい。
【0032】
ところで、上述のように、第2の電流センサ3である電流シャント抵抗Rsには浮遊容量を介して外部ノイズが加わり、この外部ノイズの伝達経路の等価回路は浮遊容量と電流シャントで構成された高域通過フィルタとみなすことができ、外部ノイズ成分は周波数が高くなるほど大きくなる。本実施形態では、Rsによる検出信号のうち高域成分は減衰させて利用しないので、この外部ノイズの影響は低減できる。上記電流センサ(抵抗Rs)3は、一般にシャント抵抗と呼ばれる低い抵抗値(例えば、1mΩ以下)の抵抗器を用いているため、シャント抵抗のみによる電流検出では抵抗器の有するインダクタンス成分が無視できず、高い周波数での特性が悪化するという問題があったが、本発明によればこの高域特性の悪化を防ぐことができる。
【0033】
図2は、図1に示す実施形態による電流検出回路の周波数特性のシミュレーション結果を示す図である。尚、本シミュレーションにおいては、抵抗Rfに直列にキャパシタCfを挿入した。本シミュレーションにおける主要な回路定数は、
I1=1AのときVs=0.1V
カレントトランスCTの巻線比=1:250
Vo=40mV
Ra=22kΩ
Rb=8.8kΩ
Rf=4.7MΩ
Cf=0.039μF
Ro=10Ω
である。
【0034】
図2における特性Aは、電流センサRs3から出力端子OUTまでの周波数特性であり、低域通過フィルタを形成している。特性Bは、第1の電流センサ2のカレントトランスCTから出力端子OUTまでの周波数特性であり、第1の電流センサ(カレントトランスCT)は直流を通過させないことからもわかる通り高域通過フィルタを形成している。図2からも明らかなように、これら特性A、Bは、周波数≒456Hzで交差しており、その合成特性、すなわち本回路の電流センサ(カレントトランスCT)とシャント抵抗Rsとを合わせた電流センサとしての周波数特性は特性Cに示すように平坦となる
【0035】
尚、本実施形態では電流センサ(カレントトランスCT)2の1次側巻線N1は1ターンであるが、複数ターンであっても構わないことは勿論である。
【0036】
本実施形態では、電流センサ(カレントトランスCT)2の2次巻線N2と抵抗Roとの接続点を電流検出の出力としているが、この接続点と出力端子OUTとの間に同相の増幅器を追加し、抵抗Rsも出力側に接続するようにしても良い。図3には、かかる構成を有する他の実施形態の電流検出回路が示されている。図3において、図1と同一符号が付されている構成部は同様な機能を有する構成部を示すので、その詳細な説明は省略する。図3を参照すると、電流センサ2の出力側と出力端子OUTとの間には利得Gを有する増幅器6が挿入されている。このようにすると部品点数は増加するが、出力電圧VoをRoとは独立に設定できる等、設計の自由度が増すという効果がある。
【0037】
この場合は、先ず電流センサ(カレントトランスCT)2に定格電流を流した時の電圧Vs、Voを決め、任意の抵抗Raを与えれば、数式:Rb=(Vo/Vs)・Ra、から抵抗Rbが求まる。次に、Vo=(I1/n)・Ro・Gであり、定格電流時の電流センサCT2の2次巻線N2に流す電流(I1/n)は、巻数nが決まれば一義的に決まるので、あとは適宜Ro、Gを決定すれば良い。
【0038】
また、本実施形態においては、電流センサ(カレントトランスCT)の出力を抵抗Roに流して電圧に変換し、この抵抗Roの両端から電圧出力を取り出しているが、電流センサ(カレントトランスCT)2の出力をI−V(電流電圧)変換回路に加えても良い。この場合、オペアンプを用いた通常のI−V変換回路は、オペアンプの出力と反転入力との間に抵抗器を接続した構成であり、入出力の位相が反転するため、抵抗Rbには更に反転した信号を加える必要がある。
【0039】
図1、図3の誤差増幅器5における抵抗Rfは、抵抗、キャパシタから成るCR回路網であっても良い。
【0040】
また、電流センサRs3側の抵抗Raは増幅器4の出力に接続されているが、この抵抗Raは電流センサRs3のホット側に直接接続しても良い。
【0041】
本実施形態においては、第2の電流センサ3として抵抗器(シャント抵抗)を用いているが、これは被測定電流の直流成分を検出できれば良いので、第2の電流センサは抵抗器に限定されるものではなく、例えばホール素子等を用いても構わない。
【0042】
以上、本発明の好適実施形態の構成及び動作を詳述した。しかし、斯かる実施形態は、本発明の一つの例示に過ぎず、何ら本発明を限定するものではない。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であること、当業者には容易に理解できよう。
【0043】
【発明の効果】
以上説明したように、本発明によれば、電流センサCTによる電流検出とシャント抵抗による電流検出の各出力を電流センサCTの2次巻線において重畳・加算しているので、特別な補正巻線を追加せずとも、電流センサCTの磁気飽和を防止でき、それぞれの周波数帯域を足し合わせた広帯域、低ノイズの電流センサが得られる。
【0044】
また、測定電流に直流成分が含まれていても、その直流成分を検出して補正電流として電流センサCTに加えているので、電流センサCTの直流磁化が防げ、電流検出の精度が格段に向上する。
【0045】
更に、電流センサCTが対象とする線路の任意の位置に挿入できる点、シャント抵抗により直流検出を行うので直流安定度が高い点等、それぞれの長所を生かした使い方ができる。
【図面の簡単な説明】
【図1】本発明による電流検出回路の一実施形態を示す回路図である。
【図2】図1に示す実施形態による電流検出回路の周波数特性のシミュレーション結果を示す図である。
【図3】本発明による電流検出回路の他の実施形態を示す回路図である。
【図4】従来の電流検出回路図である。
【符号の説明】
1 電源
2 第1の電流センサ
3 第2の電流センサ
4 増幅器
5 誤差増幅器
6 増幅器
7 増幅器
8 LPF(低域通過フィルタ)
9 電流アンプ
51 増幅器
RL 負荷
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current detection circuit, and more particularly, to a current detection circuit capable of detecting a wideband current from DC to high frequency.
[0002]
[Prior art]
As a typical circuit of the conventional current detection circuit, a current detection circuit using a shunt resistor or a current transformer (CT) is known. Further, a current detection circuit that enables current detection in a wider band by combining the shunt resistor and the current transformer (CT) has been proposed by the present applicant (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-66329 A (pages 3 to 4, FIG. 1)
[0004]
FIG. 4 shows such a current detection circuit. In FIG. 4, a load current I1 is supplied to a load RL from a power supply (V1) 1, a CT (current transformer) 2 as a first current sensor, and a current shunt resistor (Rs) 3 as a second current sensor. Are inserted and connected in series, and the current I1 flowing through the load RL is measured. The current I1 to be measured flows through the primary side (N1) of the first current sensor 2, and a current proportional to the current to be measured I1 is taken out from the secondary-side detection winding (secondary winding: N2). . The output of the secondary winding N2 for detection is input to a current-voltage conversion circuit including an operational amplifier 7 and a resistor Rc, and an output voltage Vac is extracted from the output side of the operational amplifier 7.
[0005]
The voltage generated by the load current I1 flowing through the current shunt resistor 3 as the second current sensor is amplified by the amplifier 4. From the amplified voltage, a low-pass component is extracted by an LPF (low-pass filter) 8 including a resistor and a capacitor, and an output Vdc from the current sensor 3 is obtained.
[0006]
By the way, external noise is added to the current shunt resistor Rs of the second current sensor 3 via the stray capacitance. The transmission path of the external noise has an equivalent circuit via a high-pass filter composed of a stray capacitance (not shown) and a current shunt. The applied external noise component increases as the frequency increases. Become.
[0007]
In order to cancel the DC magnetization of the current transformer CT, the first current sensor 2 includes a correction winding, which is a third winding in addition to the primary winding (N1) and the secondary winding (N2). A line (N3) is provided. The correction winding (N3) is supplied with a current Idc in proportion to the output of the low-pass filter (LPF) 8 and having a phase opposite to that of the load current I1 via a current amplifier 9 in the correction current source. By doing so, the low-frequency component including DC in the load current I1 flows through the current transformer CT as a current having a phase opposite to that of I1, and the DC magnetization of the current transformer CT can be canceled. In this example, the primary winding (N1) of the first current sensor 2 and the third winding (N3) through which the correction current flows are not limited to one turn, and may be plural turns.
[0008]
The outputs Vac and Vdc from the two current sensors 2 and 3 obtained in this manner are combined by the adder / combiner 10 to finally obtain a current detection signal Vo.
[0009]
[Problems to be solved by the invention]
According to the conventional current detection circuit shown in FIG. 4 described above, a current detection circuit that prevents magnetic saturation of CT and reduces the influence of external noise and DC drift over a wide frequency band from DC to high frequency can be obtained. However, there is a problem that it is necessary to additionally wind a correction winding (N3) on the current transformer CT.
[0010]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems and to provide a wideband and low-noise current detection circuit that does not require an additional winding.
[0011]
[Means for Solving the Problems]
The present invention relates to a current detection circuit which detects a current by combining a current transformer (CT) and an impedance (resistance), and synthesizes respective signals to enable wideband current detection from a low frequency including DC to a high frequency. Specifically, the following characteristic configuration is adopted.
[0012]
(1) first current detection means having a current transformer in which a current to be measured flows through the primary winding and the current to be measured is output from the secondary winding;
Second current detection means for detecting a component including direct current in the measured current,
An error amplifying unit that receives an output from the secondary winding and an output from the second current detecting unit and outputs a difference signal between the two inputs;
A current detection circuit comprising an output of the error amplification means connected to the secondary winding of the first current detection means.
[0013]
(2) The current detection circuit according to (1), wherein an in-phase amplifier is provided on the secondary winding side of the first current detection means, and a detection signal is output from the in-phase amplifier.
[0014]
(3) The current detection circuit according to (1), wherein the second current detection means is a DC current sensor using a resistor, a Hall element, or the like.
[0015]
(4) The current to be measured flows on the primary winding side, and the primary side of the current transformer having a detection winding for detecting the current to be measured wound on the secondary side, and a shunt resistor are connected in series to the load. And a detection signal from a detection winding of the current transformer and a detection signal from the shunt resistor are connected to an input terminal of an error amplifier, and an output of the error amplifier is connected to the detection winding. circuit.
[0016]
(5) In a current detection circuit for detecting a load current flowing through the load by a current transformer and a shunt resistor connected in series to the load,
A current detection circuit for superimposing and adding each output of the detection current by the current transformer and the detection current by the shunt resistor on the secondary winding side of the current transformer.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the current detection circuit according to the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a circuit diagram showing a first embodiment of a current detection circuit diagram according to the present invention. In FIG. 1, a load RL is supplied with a load current I1 from a power supply (V1) 1 and a CT (current transformer) as a first current sensor 2 and a current shunt (Rs) as a second current sensor 3 ) Are inserted in series, and the current I1 flowing through the load RL is measured by each.
[0019]
When the current to be measured I1 flows on the primary side of the current transformer CT of the first current sensor 2, if the number of turns (ratio) of the detection winding (secondary winding) N2 is n on the secondary side, the first A current of (1 / n) · I1 flows in the signal pass band of the first current sensor 2. Further, the voltage generated in the current shunt (Rs) as the second current sensor 3 by the load current I1 is amplified by the amplifier 4.
[0020]
An output from the amplifier 4 is input to an amplifier 5 having an error amplification function via a resistor Ra. The amplifier 5 having this error amplification function is composed of an amplifier 51 and a resistor Rf connected between its output and an inverting input (-). The output from the amplifier 4 is input to the inverting input (-) of the amplifier 51. Is done. The non-inverting input (+) of the amplifier 51 is grounded.
[0021]
The output of the error amplifier 5 is connected to one terminal of a secondary winding N2 in the second current sensor, and the other terminal is connected to the inverting input terminal (−) of the amplifier 5 via a resistor Rb. It is grounded by a resistor Ro. At both ends of the resistor Ro, a current detection result (voltage output) Vo is obtained. Here, it is assumed that the load connected to the output terminal OUT has a sufficiently large value.
[0022]
The amplifier 5 is an error amplifier that amplifies an error between outputs from the first current sensor 2 and the second current sensor 3 and is generated by the primary winding N1 by flowing the output through the secondary winding N2. DC and low frequency magnetization are canceled. With such a configuration, the third winding for preventing magnetic saturation of CT in the conventional current detection circuit as shown in FIG. 4 is not required.
[0023]
In the current detection circuit according to the above-described embodiment, the first current sensor 2 is responsible for an AC component equal to or higher than the crossover frequency fc, while the second current sensor 3 using the shunt resistor Rs passes through the error amplifier 5. Accordingly, the signal component from DC to the crossover frequency fc is taken over. The two output signals from the first current sensor 2 and the second current sensor 3 are combined by adding the output of the error amplifier 5 in series to the secondary winding of the first current sensor 2.
[0024]
In the present embodiment, in order to prevent magnetic saturation due to direct current and low frequency of the first current sensor 2, the magnetic field of the primary winding N1 of the current transformer CT in the first current sensor is changed by the inverse magnetic field of the secondary winding N2. I am cancelling. That is, the number of turns on the primary side (N1) of the current transformer CT is 1, the number of turns on the secondary side (N2) is n, and the two windings are wound in the same direction, and 1 is placed on the secondary side of the current transformer CT. By flowing a current of 1 / n on the next side in the reverse direction, magnetic saturation due to DC and low frequency of the current transformer CT is canceled.
[0025]
Now, when a current I1 flows through the primary side of the current transformer CT, a voltage proportional to the current appears at the output of the amplifier 4, and a current flows through the resistor Ra. As a result, negative feedback is provided from the output terminal OUT to the error amplifier 5 via the resistor Rb such that a current (I1 / n) flows from the output of the error amplifier 5 to the secondary winding N2 of the current transformer CT. I'm running.
[0026]
That is, the error amplifier 5 balances the currents flowing through the resistors Ra and Rb, in other words, the current (k1 · I1) flows into the resistor Ra as shown in FIG. k1 · I1) flows in and balances.
[0027]
Now, considering the DC component, a current k1 · I1 flows through the resistor Ra in the direction of the arrow as shown in FIG. Then, this current causes a current I1 / n to flow through the secondary winding N2 of the current transformer CT connected to the output of the error amplifier 5, and Vo = Ro · (I1 / n) across both ends (output terminals) of the resistor Ro. Output voltage. This output voltage Vo is input to the error amplifier 5 via the resistor Rb, and is controlled so that a current of (I1 / n) always flows through the secondary winding N2 of the current transformer CT.
[0028]
The value of the current (correction current) flowing through the secondary winding N2 of the current transformer CT needs to be (I1 / n). By the way, the current flowing through the resistor Rb is Vo / Rb, and the absolute value of this current is the same as the current (k1 · I1) flowing through Ra. Therefore, the relationship Vs / Ra = Vo / Rb, that is, Vs / Vo = Ra / Rb.
[0029]
In designing, first, Vs and Vo when a rated current is passed through the current transformer CT are determined, and if an arbitrary Ra is given, the value of the resistor Rb is obtained from the above relational expression as Rb = (Vo / Vs) · Ra. .
[0030]
Then, a difference current obtained by subtracting a current (k1 · I1 = Vs / Ra) flowing through the resistor Rb from the correction current (I1 / n) flows through the resistor Ro, and the value of the output voltage Vo is divided by the value of the difference current. Thus, the resistance Ro can be calculated. Since the current flowing through the resistor Rb is usually designed to be sufficiently smaller than the current (I1 / n) flowing through the current transformer CT, the current flowing through the resistor Rb can be neglected, and Ro = Vo / (I1 / n).
[0031]
The determination of the resistance Rf connected between the inverting input (−) and the output of the error amplifier 5 corresponds to the characteristics of the current transformer CT, and further includes the error amplifier 5, the secondary winding N2 of the current transformer CT, It is desirable that the phase margin of the negative feedback loop is determined to be sufficiently large in order to secure the stability of the negative feedback loop including the resistor Rb.
[0032]
By the way, as described above, external noise is added to the current shunt resistor Rs as the second current sensor 3 via the stray capacitance, and an equivalent circuit of the transmission path of the external noise is constituted by the stray capacitance and the current shunt. It can be regarded as a high-pass filter, and the external noise component increases as the frequency increases. In the present embodiment, the high frequency component of the detection signal due to Rs is not attenuated and used, so that the influence of this external noise can be reduced. Since the current sensor (resistance Rs) 3 uses a resistor having a low resistance value (for example, 1 mΩ or less) generally called a shunt resistor, the inductance component of the resistor cannot be ignored in current detection using only the shunt resistor. However, according to the present invention, it is possible to prevent the high-frequency characteristics from deteriorating.
[0033]
FIG. 2 is a diagram showing a simulation result of frequency characteristics of the current detection circuit according to the embodiment shown in FIG. In this simulation, a capacitor Cf was inserted in series with the resistor Rf. The main circuit constants in this simulation are
Vs = 0.1V when I1 = 1A
Turn ratio of current transformer CT = 1: 250
Vo = 40mV
Ra = 22kΩ
Rb = 8.8 kΩ
Rf = 4.7 MΩ
Cf = 0.039 μF
Ro = 10Ω
It is.
[0034]
The characteristic A in FIG. 2 is a frequency characteristic from the current sensor Rs3 to the output terminal OUT, and forms a low-pass filter. The characteristic B is a frequency characteristic from the current transformer CT of the first current sensor 2 to the output terminal OUT. As can be seen from the fact that the first current sensor (current transformer CT) does not pass DC, a high-pass filter is used. Has formed. As is clear from FIG. 2, these characteristics A and B intersect at a frequency of ≒ 456 Hz, and the combined characteristics thereof, that is, the current sensor combining the current sensor (current transformer CT) of the present circuit and the shunt resistor Rs. Becomes flat as shown in a characteristic C.
In the present embodiment, the primary winding N1 of the current sensor (current transformer CT) 2 has one turn, but it goes without saying that the primary winding N1 may have a plurality of turns.
[0036]
In the present embodiment, the connection point between the secondary winding N2 of the current sensor (current transformer CT) 2 and the resistor Ro is used as an output for current detection, but an in-phase amplifier is connected between this connection point and the output terminal OUT. In addition, the resistor Rs may be connected to the output side. FIG. 3 shows a current detection circuit of another embodiment having such a configuration. In FIG. 3, components denoted by the same reference numerals as those in FIG. 1 indicate components having the same functions, and thus detailed description thereof will be omitted. Referring to FIG. 3, an amplifier 6 having a gain G is inserted between the output side of the current sensor 2 and the output terminal OUT. This increases the number of components, but has the effect of increasing the degree of freedom in design, for example, the output voltage Vo can be set independently of Ro.
[0037]
In this case, first, the voltages Vs and Vo when the rated current is applied to the current sensor (current transformer CT) 2 are determined, and if an arbitrary resistance Ra is given, the resistance is calculated from the equation: Rb = (Vo / Vs) · Ra. Rb is determined. Next, Vo = (I1 / n) · Ro · G, and the current (I1 / n) flowing through the secondary winding N2 of the current sensor CT2 at the rated current is uniquely determined if the number of turns n is determined. Then, Ro and G may be appropriately determined.
[0038]
In the present embodiment, the output of the current sensor (current transformer CT) is passed through the resistor Ro and converted into a voltage, and the voltage output is taken out from both ends of the resistor Ro. May be applied to an IV (current-voltage) conversion circuit. In this case, a normal IV conversion circuit using an operational amplifier has a configuration in which a resistor is connected between the output of the operational amplifier and an inverting input, and the input / output phase is inverted. Signal needs to be added.
[0039]
The resistor Rf in the error amplifier 5 in FIGS. 1 and 3 may be a CR network composed of a resistor and a capacitor.
[0040]
Although the resistor Ra on the current sensor Rs3 side is connected to the output of the amplifier 4, the resistor Ra may be directly connected to the hot side of the current sensor Rs3.
[0041]
In the present embodiment, a resistor (shunt resistor) is used as the second current sensor 3. However, since it is only necessary to detect the DC component of the measured current, the second current sensor is limited to a resistor. However, for example, a Hall element or the like may be used.
[0042]
The configuration and operation of the preferred embodiment of the present invention have been described above in detail. However, such an embodiment is merely an example of the present invention, and does not limit the present invention in any way. It will be readily apparent to those skilled in the art that various modifications and changes can be made in accordance with the particular application without departing from the spirit of the invention.
[0043]
【The invention's effect】
As described above, according to the present invention, since the outputs of the current detection by the current sensor CT and the current detection by the shunt resistor are superimposed and added in the secondary winding of the current sensor CT, a special correction winding is provided. Can be prevented from being added to the magnetic field, magnetic saturation of the current sensor CT can be prevented, and a wide-band, low-noise current sensor obtained by adding the respective frequency bands can be obtained.
[0044]
Further, even if the measured current includes a DC component, the DC component is detected and added to the current sensor CT as a correction current, so that the DC magnetization of the current sensor CT can be prevented, and the accuracy of current detection is significantly improved. I do.
[0045]
Furthermore, the current sensor CT can be inserted at an arbitrary position on a target line, and DC detection is performed by a shunt resistor, so that DC stability is high.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a current detection circuit according to the present invention.
FIG. 2 is a diagram showing a simulation result of a frequency characteristic of the current detection circuit according to the embodiment shown in FIG. 1;
FIG. 3 is a circuit diagram showing another embodiment of the current detection circuit according to the present invention.
FIG. 4 is a diagram of a conventional current detection circuit.
[Explanation of symbols]
Reference Signs List 1 power supply 2 first current sensor 3 second current sensor 4 amplifier 5 error amplifier 6 amplifier 7 amplifier 8 LPF (low-pass filter)
9 Current amplifier 51 Amplifier RL Load

Claims (5)

1次巻線側に被測定電流が流れ、2次巻線側から前記被測定電流が検出されるカレントトランスを有する第1の電流検出手段と、
前記被測定電流のうち直流を含む成分を検出する第2の電流検出手段と、
前記2次巻線側からの出力と前記第2の電流検出手段からの出力を入力とし、両入力の差信号を出力する誤差増幅手段と、
前記誤差増幅手段の出力が前記第1の電流検出手段の前記2次巻線に接続されて構成されていることを特徴とする電流検出回路。
First current detection means having a current transformer through which a current to be measured flows through the primary winding and the current to be measured is detected from the secondary winding;
Second current detection means for detecting a component including direct current in the measured current,
An error amplifying unit that receives an output from the secondary winding and an output from the second current detecting unit and outputs a difference signal between the two inputs;
A current detection circuit, wherein an output of the error amplification means is connected to the secondary winding of the first current detection means.
前記第1の電流検出手段の2次巻線側に同相の増幅器が設けられ、この同相の増幅器から検出信号を出力することを特徴とする請求項1に記載の電流検出回路。The current detection circuit according to claim 1, wherein an in-phase amplifier is provided on a secondary winding side of the first current detection means, and a detection signal is output from the in-phase amplifier. 前記第2の電流検出手段は、抵抗器またはホール素子等を使用した直流電流センサであることを特徴とする請求項1に記載の電流検出回路。The current detection circuit according to claim 1, wherein the second current detection means is a DC current sensor using a resistor, a Hall element, or the like. 1次巻線側には被測定電流が流れ、2次側には前記被測定電流を検出する検出巻線が巻かれたカレントトランスの一次側と、シャント抵抗とが負荷に直列に接続され、前記カレントトランスの検出巻線からの検出信号と前記シャント抵抗による検出信号とが、誤差増幅器の入力端子に接続され、前記誤差増幅器の出力が前記検出巻線に接続されて成ることを特徴とする電流検出回路。A current to be measured flows on the primary winding side, and a primary side of a current transformer having a detection winding wound thereon for detecting the measured current and a shunt resistor are connected in series to the load on the secondary side. A detection signal from a detection winding of the current transformer and a detection signal by the shunt resistor are connected to an input terminal of an error amplifier, and an output of the error amplifier is connected to the detection winding. Current detection circuit. 負荷に直列接続されるカレントトランスとシャント抵抗により、前記負荷に流れる負荷電流を検出する電流検出回路において、
前記カレントトランスによる検出電流と、前記シャント抵抗による検出電流の各出力を前記カレントトランスの2次巻線側で重畳・加算することを特徴とする電流検出回路。
In a current detection circuit for detecting a load current flowing through the load by a current transformer and a shunt resistor connected in series to the load,
A current detection circuit, wherein each output of the detection current by the current transformer and the detection current by the shunt resistor is superimposed and added on the secondary winding side of the current transformer.
JP2002372205A 2002-12-24 2002-12-24 Current detection circuit Expired - Fee Related JP4155560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372205A JP4155560B2 (en) 2002-12-24 2002-12-24 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372205A JP4155560B2 (en) 2002-12-24 2002-12-24 Current detection circuit

Publications (2)

Publication Number Publication Date
JP2004205264A true JP2004205264A (en) 2004-07-22
JP4155560B2 JP4155560B2 (en) 2008-09-24

Family

ID=32810867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372205A Expired - Fee Related JP4155560B2 (en) 2002-12-24 2002-12-24 Current detection circuit

Country Status (1)

Country Link
JP (1) JP4155560B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536741A (en) * 2006-05-08 2009-10-15 テクトロニクス・インコーポレイテッド Current detection circuit for current measurement probe
JP2012013435A (en) * 2010-06-29 2012-01-19 Hioki Ee Corp Current measurement apparatus and method for detecting conversion rate of current sensor
JP2015014525A (en) * 2013-07-05 2015-01-22 日置電機株式会社 Measurement device and measurement method
US9689900B1 (en) 2015-12-14 2017-06-27 Keysight Technologies, Inc. Current sensing circuit
WO2018073627A1 (en) * 2016-10-21 2018-04-26 Sony Mobile Communications Inc. Device and method for measuring electrical current in an electrical conductor
JP2020003374A (en) * 2018-06-29 2020-01-09 日置電機株式会社 Current detection device
JP2023015389A (en) * 2019-06-20 2023-01-31 横河電機株式会社 Current measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536741A (en) * 2006-05-08 2009-10-15 テクトロニクス・インコーポレイテッド Current detection circuit for current measurement probe
JP2012013435A (en) * 2010-06-29 2012-01-19 Hioki Ee Corp Current measurement apparatus and method for detecting conversion rate of current sensor
JP2015014525A (en) * 2013-07-05 2015-01-22 日置電機株式会社 Measurement device and measurement method
US9689900B1 (en) 2015-12-14 2017-06-27 Keysight Technologies, Inc. Current sensing circuit
WO2018073627A1 (en) * 2016-10-21 2018-04-26 Sony Mobile Communications Inc. Device and method for measuring electrical current in an electrical conductor
US10782324B2 (en) 2016-10-21 2020-09-22 Qoitech Ab Device and method for measuring electrical current in an electrical conductor
JP2020003374A (en) * 2018-06-29 2020-01-09 日置電機株式会社 Current detection device
JP2023015389A (en) * 2019-06-20 2023-01-31 横河電機株式会社 Current measuring device

Also Published As

Publication number Publication date
JP4155560B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4245236B2 (en) Current detection circuit
US6094044A (en) AC current sensor having high accuracy and large bandwidth
US10436821B2 (en) Apparatus for detecting AC components in a DC circuit and use of the apparatus
JP6452623B2 (en) Improved efficiency of the linear amplifier of the envelope tracking modulator
KR101056003B1 (en) Extended Range RMS-DC Converters
JPH01265168A (en) Current measuring apparatus
US6661217B2 (en) Wideband precision current sensor
JP4155560B2 (en) Current detection circuit
EP1887830A2 (en) Protection circuit and load current detection circuit
WO2022016395A1 (en) Electromagnetic interference suppression circuit and related sensing circuit
TWI816786B (en) Low noise broadband amplifier with resistive matching
JP2011038964A (en) Current sensor
JP4275642B2 (en) Error compensated current transformer device
US10476438B2 (en) Envelope tracking bias circuit
JP3999303B2 (en) Current detector
JP2003283266A (en) Offset canceller
JP2009148058A (en) Active filter apparatus and power conversion apparatus
CN116500530B (en) Frequency band calibration method and calibration system of broadband current measurement device
WO2024090239A1 (en) Differential input/differential output inverting amplifier circuit and measuring device
JP7094473B1 (en) Common mode filter
KR20180017445A (en) Emi filter and method for reducing emi using the same
US5459417A (en) Apparatus for detecting DC content of an AC waveform
JPS6388468A (en) Current detection circuit
JP2024055404A (en) Semiconductor Integrated Circuit
JP3774859B2 (en) High-frequency oscillation type proximity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4155560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees