JP2004205101A - Soot blower nozzle protecting cover - Google Patents

Soot blower nozzle protecting cover Download PDF

Info

Publication number
JP2004205101A
JP2004205101A JP2002374412A JP2002374412A JP2004205101A JP 2004205101 A JP2004205101 A JP 2004205101A JP 2002374412 A JP2002374412 A JP 2002374412A JP 2002374412 A JP2002374412 A JP 2002374412A JP 2004205101 A JP2004205101 A JP 2004205101A
Authority
JP
Japan
Prior art keywords
nozzle head
soot blower
cover
protective cover
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374412A
Other languages
Japanese (ja)
Other versions
JP4204309B2 (en
Inventor
Hiroaki Wariishi
博明 割石
Tadashi Noguchi
正 野口
Kenji Hisada
健治 久田
Kazuo Sekihama
和夫 関浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to JP2002374412A priority Critical patent/JP4204309B2/en
Publication of JP2004205101A publication Critical patent/JP2004205101A/en
Application granted granted Critical
Publication of JP4204309B2 publication Critical patent/JP4204309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the breakage of a soot blower nozzle head due to thermal fatigue. <P>SOLUTION: The nozzle head is covered at its outside with a material having superior heat resistance, and a plurality of layers of partition walls are provided in the cover around the nozzle head where thermal amplitude is the greatest. The inside nozzle head can be protected against the thermal fatigue by the heat insulating and radiation scattering effects of air existing between the partition walls. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラ、空気予熱器等の伝熱エレメントに付着したダストを除去するために使われるスートブロワのノズルヘッドを保護するためのカバーに関し、詳しくはノズルヘッドの熱疲労による損壊を防止するような保護カバーに関する。
【0002】
【従来の技術】
一般に、ボイラや空気予熱器の伝熱エレメントの表面に排ガスダストが付着すると、排ガスや空気の流路が狭くなったり閉塞されたりして、その結果、熱交換効率が低下する。さらに、圧力損失が高まり、ボイラプラントが運転不能に陥るおそれがある。このダスト付着の原因としては、例えば石炭焚きボイラからの排ガス熱を回収する空気予熱器では、その上流側の脱硝工程で使用されるNH3 の一部が未反応のまま残り、それが排ガス中のSOx と反応して硫酸アンモニウム化合物等を生成し、この生成化合物が結合剤として働き、排ガス中のダストを伝熱エレメントに付着するためと考えられる。この付着物は運転条件によっては、剥離が極めて困難な固着物に変わる。
【0003】
従来、伝熱エレメントの表面から固着物を除去するために、スートブロワが用いられる。このスートブロワは、長尺の管体にノズルヘッドを設けた構造をとり、伝熱エレメント面付近に間歇的に挿入されて、蒸気や圧縮空気を噴射して付着物を吹き飛ばす。
【0004】
このスートブロワは、待機時には約600℃、ボイラ内挿入時には1000℃以上の高温に曝される。そして蒸気投入時には、ノズルヘッド内の温度が急激に下がり、ヘッド内外面の最大温度差が、瞬間的に700℃を超える。この700℃を超える熱(温度)振幅を1000時間以上続けると、熱疲労によりノズルヘッド先端部に亀裂を生じ、さらに破孔や損壊にもつながる。
【0005】
ノズルヘッド先端部の破損の原因は、ノズルヘッド内外面の大きな熱振幅による熱疲労である。したがって、その熱振幅を緩和すること、すなわち、ノズルヘッド外面温度の上昇を抑制し、その温度差を低減することが必要である。
【0006】
ノズルヘッドの外面温度の上昇を抑制するために、特開昭62−166218や特開2000−65337には、ノズルヘッドにセラミックス、舶用ディーゼルエンジン用特殊鋼などの特殊な材料でできたケーシングを装着し、さらにケーシングとノズルへッドの間に断熱材を装填することが開示されている。
【0007】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術と異なり、特殊な材料を用いずに安価に製造でき、しかも既存のノズルヘッドを変更せずに装着できるノズルヘッド保護カバーを提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を鋭意検討した結果、ノズルヘッドの外側を耐熱性に優れた材料で覆うと共に、熱振幅が最も大きくなるノズルヘッド先端部周辺のカバー内部に複層の隔壁を設けると、隔壁間の空気による断熱効果と輻射線散乱効果によってノズルヘッドの熱疲労を低減できることを見出した。すなわち、本発明は、スートブロワノズルヘッドの外側に配置されるカバー本体と、該カバー本体の先端部から該ノズルヘッドの先端部に向かって層状にかつ離隔して内設された複数の隔壁とからなるスートブロワノズルヘッド保護カバーである。
【0009】
【発明の実施の形態】
本発明を、実施例を用いて図面を参照しながら説明する。図1は、本発明のノズルヘッド保護カバー1の平面図であり、図2は、そのA−A面に沿った断面図である。本発明のノズルヘッド保護カバー1を装着したスートブロワ11は、図7のように炉壁に設置され、炉壁から火炉反対側に設けられた直径90mm程度のパイプ(ウォールスリーブ)内にノズルヘッド部が納められる。
【0010】
本発明のノズルヘッド保護カバー1を構成するカバー本体2は、ノズルヘッド(図2の仮想線6)を包み込み、しかもノズルヘッドの蒸気噴射域を閉ざさないように、ノズルヘッド用開口部3をカバー本体2から切り欠く形状となっている。また、カバー本体2の先端部は、ノズルヘッド6より僅かに大きめの曲率(例えば35mmR)にて、曲面状の加工が施されている。カバー本体2は、耐熱性に優れる材料でできており、ノズルヘッドが直接輻射熱に曝されることを防ぐ。材質は、一般に、SUS304、SUS310などである。好ましくは、カバー本体2を鏡面仕上げまたは熱線反射コーティングとすることで、輻射伝熱をより一層低減できる。
【0011】
図1では、本発明のノズルヘッド保護カバー1を構成する隔壁4として、2枚の平円盤状の仕切り板がカバー本体2に層状かつ間隔をあけて取り付けられている。隔壁間には、空気による断熱効果のため、幾分かの対流伝熱があり、隔壁の熱は適度にカバー本体2や他の隔壁またはノズルへッドに放熱される。この作用で、挿入時の1分間程度では、ノズルヘッドは温度上昇せず、次に蒸気が投入されてノズル内面からの蒸気による冷却効果が発揮できる時点では、ノズル側から隔壁4やカバー本体2を冷却するように作用する。したがって、カバー本体2の待機時温度への復帰は10分程度で完了し、作動サイクルによる熱蓄積が全くなく、保護カバーが高温度に曝されるのは、挿入開始から蒸気噴射までの1分間程度にほぼ限定される。
【0012】
隔壁4の数は、外部環境により増減し、ノズルヘッド6の内外面の熱振幅が500℃以下となるように調整される。隔壁の材質は、耐熱性に優れた材料、例えばSUS304、SUS310などである。特に、隔壁4の材質は、カバー本体2の材質と同じであることが、熱歪みを生じさせない点で好ましい。好ましくは、隔壁4を鏡面仕上げまたは熱線反射コーティングとすることで、輻射伝熱をより一層低減できる。
【0013】
詳細に説明すると、待機時にノズル収納パイプ(ウォールスリーブ)を経てノズルヘッド保護カバーが受ける熱量の主たるは輻射熱であり、鏡面仕上げや熱線反射コーティングによって積極的に輻射伝熱を低減させ、さらに適宜曲面をもった複層の隔壁を用いてその間の空気による断熱効果と輻射線散乱効果により積極的に輻射伝熱を防止する際、隔壁まで侵入する熱に対しては保護カバー側面への伝導熱として放熱が可能で、複層の隔壁がそのように作用することで最終的にノズルヘッドに到達できる熱量は、保護カバーが無い場合に較べて非常に僅かとなる。これは、保護カバー先端が輻射伝熱によって加熱される温度よりも、ノズル収納パイプ(ウォールスリーブ)周囲の断熱材の温度が低いから果たし得る効果である。
【0014】
挿入過程時も同様で、常にウォールスリーブ周囲側の温度が低く、保護カバーおよび複層の隔壁が受けた輻射を主体とした熱を適度に保護カバー側面から放熱することで、保護カバー内の温度上昇を極力低減することができ、結果的にノズルヘッド外面温度の上昇を抑制できる。
【0015】
保護カバー本体および隔壁を設けたことによって、待機時のノズルヘッドの温度も保護カバー無装着よりも低減でき、挿入過程時も同効果によってノズルヘッドの温度は、ほとんど上昇しないうちに蒸気噴射過程へと進む。したがって、保護カバーによって、二重の効果、すなわち、ノズルヘッドの温度は待機時に既に保護カバー無装着の待機時よりも低下しており、次の挿入過程での温度上昇はほとんど無く、そのまま蒸気噴射過程へと進む。このことは、蒸気噴射時のノズル内外面の熱振幅の大幅な低下によってクラックの発生が極限まで低減できることと、運用の90%以上の時間を占める待機時のノズルヘッドの温度低下も伴って、ノズルヘッドの耐久性を向上させることができる。
【0016】
隔壁4は、図2のようにカバー本体2に点接触で固定してもよく、あるいは面接触のように全面的に固定してもよい。熱変形による保護カバー本体と隔壁の変形・破損を防ぐ観点から、点接触が好ましい。固定方法は、溶接などの固着方法や、着脱自在な螺合手段がある。さらにまた、ノズルヘッド保護カバー1の製造時に、カバー本体2と隔壁4とを同質の材料で一体に製造してもよい。
【0017】
図2から明らかなように、隔壁4の外周からやや内側(例えば約10mm)の位置に、直径2mm程度の孔5を一箇所穿設している。この孔5は、ガス抜きとして機能し、熱振幅時の空気の膨張収縮によるカバー本体2および隔壁4の変形や破損を防ぐ。なお、孔5の形状は、保護カバー1内の断熱用空気が膨張・収縮する際の出入口となるように形成される限り、任意形状でよい。
【0018】
図3は、本発明の別の実施態様であるノズルヘッド保護カバー1の平面図であり、図4はそのA−A矢視断面図である。隔壁4は、カバー本体2の先端部に対して凸状の曲面を呈している。この曲率は、平板に近いものから、ノズルヘッド2の先端と同等のもの、さらに、それより大きいものまで任意である。曲面状の隔壁4をカバー本体2に内設することにより、カバー本体2の先端の突き出し寸法を板状の場合よりも15mm程度短くすることができる。また、板状の場合には、取り付けの関係上、カバー本体2の先端部が長くなって待機中および炉内挿入時共に、高温域に曝されるため受熱量が大きくなる。曲面状にすれば、受熱量の影響を低減できる。さらに、保護カバー1内面の輻射散乱を助長することができ、ノズルヘッドの長寿命化により一層寄与する。
【0019】
ノズルヘッド保護カバー1は、ノズルヘッド付根側継手管に、カバー本体2のノズル用開口部3とノズルヘッド6(破線)の同開口部とを一致、調整した後、数個所の点溶接個所7(図4では3箇所)を設けて固定構造とすることにより、保護カバー1を適時ノズルヘッド6から着脱可能にする。
【0020】
図5および図6は、図3の変形例であり、カバー本体2にノズルヘッド6をノズルヘッド付根側継手管のビス止め位置に調整可能な切欠き部8と、約5mm径の回り止め用孔9が設けてある以外は、図3と同じである。カバーのノズルヘッド用開口部3とノズルヘッド6の噴射口とを一致させて調整した後、ビス等で着脱自在に固定する。
【0021】
【実施例】
〔比較例1〕
図7に示すようなスートブロワを火炉に設置した全体図(ただし、保護カバー2は無し)において、火炉内の温度が1100℃の場合に、保護カバー無装着のノズルヘッド6の待機時のノズル先端部の温度は、約630℃(ノズル内側:575℃)あり、これを火炉内へ1分間挿入すると810℃(ノズル内側:630℃)になった。この状態で蒸気を投入すると、ノズルヘッド内外面の温度差は550℃となって、この熱疲労が原因で耐久性を著しく低下させた。
【0022】
〔実施例1〕
図7に示す全体図において、火炉内の温度が1100℃の場合に、図3に示す保護カバーを装着したノズルヘッド6の待機時の保護カバー先端部の温度は、約700℃であり、保護カバーが無い場合のノズルヘッド先端部の温度より若干高かった。しかし、待機時の保護カバー内のノズルヘッド先端部の温度は約500℃(ノズル内側:490℃)であり、保護カバーの装着によって、ノズルヘッド先端部の温度は、待機状態で130℃低下した。
【0023】
次に、待機状態からこれを火炉内へ1分間挿入すると、保護カバー先端部の温度は、約860℃で、待機時と同様に保護カバーが無い場合のノズル先端部より若干高かったが、保護カバー内部のノズルヘッド先端部の温度は待機時と同じ500℃(ノズル内側:490℃)のままであり、保護カバーによって300℃低下した。この時点で蒸気を投入しても、ノズルヘッド内外面の温度差は250℃程度となって、熱振幅による熱疲労を大幅に低減でき、待機時の温度低下も相俟って耐久性が著しく向上する。
【0024】
〔実施例2〕
火炉内温度を1100℃から1400℃に変えた以外は、実施例1と同じ条件で試験を行った。1400℃のときも同様に、保護カバー内のノズルヘッド部の温度は何れも500℃(内側:490℃)で火炉1100℃の場合と変化しなかった。したがって、火炉内温度1400℃の場合も、ノズルヘッド先端部の温度は、保護カバーによって500℃も改善され、蒸気投入によるノズルヘッド内外面の温度差は250℃程度である。
【0025】
【発明の効果】
ノズルヘッドの外側を耐熱性に優れた材質のカバーで覆うことによってノズルヘッドが輻射熱に直接曝されることを防ぐ。そして、カバー内部に、耐熱性の隔壁を複数、間隔をあけて設けることによって、隔壁間の空気による断熱効果と内部の輻射線散乱効果で内外の温度差を低減することができる。したがって、ノズルヘッドの長寿命化を図れる。さらに、隔壁を曲面状にすれば、カバー先端の突出し寸法と受熱量の増大を板状のものよりも抑えることができる。さらにカバー内面の輻射散乱を助長することもでき、ノズルヘッドの長寿命化がより一層進む。既存のノズルヘッドを変更することなく、その外側に着脱自在に装着できる点で利便性は大である。
【図面の簡単な説明】
【図1】本発明の一実施態様であるスートブロワノズル保護カバーの平面図である。
【図2】図1のA−A線に沿った断面図である。
【図3】本発明の別の実施態様であるスートブロワノズル保護カバーの平面図である。
【図4】図3のA−A線に沿った断面図である。
【図5】本発明のさらに別の実施態様であるスートブロワノズル保護カバーの平面図である。
【図6】図5のA−A線に沿った断面図である。
【図7】本発明のノズルヘッド保護カバーを装着したスートブロワを火炉に設置した際の全体図である。
【符号の説明】
1:ノズルヘッド保護カバー
2:カバー本体
3:ノズルヘッド用開口部
4:隔壁
5:孔
6:ノズルヘッド
7:点溶接個所
8:カバー調整用切欠き部
9:回り止め用孔
10:炉壁
11:スートブロワ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cover for protecting a nozzle head of a soot blower used for removing dust attached to a heat transfer element such as a boiler or an air preheater, and more particularly to a cover for preventing damage due to thermal fatigue of the nozzle head. Protective cover.
[0002]
[Prior art]
In general, when exhaust gas dust adheres to the surface of a heat transfer element of a boiler or an air preheater, the flow path of exhaust gas or air is narrowed or blocked, and as a result, the heat exchange efficiency is reduced. Further, the pressure loss increases, and the boiler plant may become inoperable. As a cause of this dust adhesion, for example, in an air preheater that recovers exhaust gas heat from a coal-fired boiler, part of the NH 3 used in the denitration process on the upstream side remains unreacted, It is considered that this reacts with SOx to produce an ammonium sulfate compound and the like, and the produced compound acts as a binder to adhere dust in exhaust gas to the heat transfer element. Depending on the operating conditions, this deposit changes into a sticky substance that is extremely difficult to peel off.
[0003]
Conventionally, a soot blower is used to remove the adhered matter from the surface of the heat transfer element. This soot blower has a structure in which a nozzle head is provided in a long tube body, and is inserted intermittently near the heat transfer element surface to blow off steam and compressed air to blow off deposits.
[0004]
The soot blower is exposed to a high temperature of about 600 ° C. during standby and 1000 ° C. or more when inserted into the boiler. At the time of steam injection, the temperature inside the nozzle head rapidly drops, and the maximum temperature difference between the inner and outer surfaces of the head instantaneously exceeds 700 ° C. If the heat (temperature) amplitude exceeding 700 ° C. is continued for 1000 hours or more, a crack is generated at the tip of the nozzle head due to thermal fatigue, which further leads to a hole or damage.
[0005]
The cause of damage to the nozzle head tip is thermal fatigue due to a large thermal amplitude on the inner and outer surfaces of the nozzle head. Therefore, it is necessary to reduce the thermal amplitude, that is, to suppress a rise in the nozzle head outer surface temperature and reduce the temperature difference.
[0006]
In order to suppress the rise in the outer surface temperature of the nozzle head, JP-A-62-166218 and JP-A-2000-65337 attach a casing made of a special material such as ceramics and special steel for marine diesel engines to the nozzle head. It is further disclosed that a heat insulator is provided between the casing and the nozzle head.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a nozzle head protection cover that can be manufactured at low cost without using a special material and that can be mounted without changing an existing nozzle head, unlike the above-described conventional technology.
[0008]
[Means for Solving the Problems]
The inventor of the present invention has made extensive studies on the above problems, and as a result, covering the outside of the nozzle head with a material having excellent heat resistance, and providing a multi-layer partition wall inside the cover around the nozzle head tip where the thermal amplitude is the largest. It has been found that the thermal fatigue of the nozzle head can be reduced by the heat insulating effect and the radiation scattering effect of the air between the partition walls. That is, the present invention comprises a cover body disposed outside the soot blower nozzle head, and a plurality of partition walls provided in layers and separated from the tip end of the cover body toward the tip end of the nozzle head. This is a soot blower nozzle head protection cover.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described using embodiments with reference to the drawings. FIG. 1 is a plan view of a nozzle head protective cover 1 of the present invention, and FIG. 2 is a cross-sectional view along the AA plane. The soot blower 11 to which the nozzle head protection cover 1 of the present invention is mounted is installed on a furnace wall as shown in FIG. 7, and a nozzle head section is provided in a pipe (wall sleeve) having a diameter of about 90 mm provided on the opposite side of the furnace from the furnace wall. Is stored.
[0010]
The cover main body 2 constituting the nozzle head protective cover 1 of the present invention covers the nozzle head opening 3 so as to wrap the nozzle head (the imaginary line 6 in FIG. 2) and not to close the steam injection area of the nozzle head. It has a shape cut out from the main body 2. The tip of the cover body 2 is formed into a curved surface with a curvature slightly larger than the nozzle head 6 (for example, 35 mmR). The cover body 2 is made of a material having excellent heat resistance, and prevents the nozzle head from being directly exposed to radiant heat. The material is generally SUS304, SUS310, or the like. Preferably, radiant heat transfer can be further reduced by making the cover body 2 a mirror finish or a heat ray reflective coating.
[0011]
In FIG. 1, two flat disk-shaped partition plates are attached to the cover main body 2 at a layer interval with the partition walls 4 constituting the nozzle head protective cover 1 of the present invention. There is some convective heat transfer between the partitions due to the heat insulation effect of the air, and the heat of the partitions is appropriately radiated to the cover body 2 and other partitions or nozzle heads. By this action, the temperature of the nozzle head does not rise for about one minute at the time of insertion, and when the steam is injected next and the cooling effect by the steam from the inner surface of the nozzle can be exerted, the partition wall 4 and the cover body 2 from the nozzle side. Acts to cool. Therefore, the return of the cover body 2 to the standby temperature is completed in about 10 minutes, there is no heat accumulation due to the operation cycle, and the protection cover is exposed to the high temperature for one minute from the start of insertion to the steam injection. Almost limited to the extent.
[0012]
The number of the partition walls 4 increases and decreases depending on the external environment, and is adjusted so that the heat amplitude of the inner and outer surfaces of the nozzle head 6 is 500 ° C. or less. The material of the partition is a material having excellent heat resistance, for example, SUS304, SUS310, or the like. In particular, it is preferable that the material of the partition wall 4 is the same as the material of the cover body 2 from the viewpoint that thermal distortion does not occur. Preferably, radiant heat transfer can be further reduced by forming the partition walls 4 into a mirror finish or a heat ray reflective coating.
[0013]
Explaining in detail, the main amount of heat received by the nozzle head protection cover via the nozzle housing pipe (wall sleeve) during standby is radiant heat, and the mirror surface finish or the heat ray reflective coating actively reduces radiant heat transfer, and furthermore, the surface is appropriately curved. When using a multi-layered partition wall with heat insulation and radiation scattering effect to prevent radiant heat transfer positively, heat that penetrates to the partition wall is transferred to the protective cover side. The heat can be dissipated, and the amount of heat that can finally reach the nozzle head due to the multi-layered partition wall acting in this manner is very small as compared with the case without the protective cover. This is an effect that can be achieved because the temperature of the heat insulating material around the nozzle housing pipe (wall sleeve) is lower than the temperature at which the tip of the protective cover is heated by radiant heat transfer.
[0014]
The same is true during the insertion process.The temperature around the wall sleeve is always low, and the heat mainly due to the radiation received by the protective cover and the multi-layer partition walls is moderately radiated from the side of the protective cover. The rise can be reduced as much as possible, and as a result, the rise in the nozzle head outer surface temperature can be suppressed.
[0015]
By providing the protective cover body and the partition wall, the temperature of the nozzle head during standby can be reduced as compared with the case without the protective cover. And proceed. Therefore, due to the protective cover, the double effect, that is, the temperature of the nozzle head is already lower in the standby state than in the standby state without the protective cover, and there is almost no temperature rise in the next insertion process, and the steam injection is performed as it is. Proceed to the process. This is due to the fact that the occurrence of cracks can be reduced to the utmost due to the significant decrease in the thermal amplitude of the inner and outer surfaces of the nozzle during steam injection, and the temperature of the nozzle head during standby, which occupies 90% or more of the operation time, decreases. The durability of the nozzle head can be improved.
[0016]
The partition wall 4 may be fixed to the cover main body 2 by point contact as shown in FIG. 2, or may be entirely fixed by surface contact. From the viewpoint of preventing deformation and breakage of the protective cover main body and the partition wall due to thermal deformation, point contact is preferable. The fixing method includes a fixing method such as welding and a detachable screwing means. Furthermore, when manufacturing the nozzle head protective cover 1, the cover main body 2 and the partition wall 4 may be integrally manufactured from the same material.
[0017]
As is clear from FIG. 2, one hole 5 having a diameter of about 2 mm is formed at a position slightly inside (for example, about 10 mm) from the outer periphery of the partition wall 4. The holes 5 function as gas vents, and prevent the cover main body 2 and the partition 4 from being deformed or damaged due to expansion and contraction of air during thermal amplitude. In addition, the shape of the hole 5 may be any shape as long as it is formed so as to be an entrance and exit when the insulating air in the protective cover 1 expands and contracts.
[0018]
FIG. 3 is a plan view of a nozzle head protection cover 1 according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along the line AA of FIG. The partition 4 has a convex curved surface with respect to the tip of the cover body 2. The curvature is arbitrary from a shape close to a flat plate to a shape equivalent to the tip of the nozzle head 2 and a shape larger than that. By providing the curved partition wall 4 in the cover main body 2, the protrusion size of the front end of the cover main body 2 can be shortened by about 15 mm as compared with the case of the plate shape. In the case of a plate-like shape, the front end of the cover main body 2 becomes longer due to the attachment, and is exposed to a high-temperature region both during standby and when inserted into the furnace, so that the amount of heat received increases. The curved shape can reduce the effect of the amount of heat received. Further, radiation scattering on the inner surface of the protective cover 1 can be promoted, which further contributes to extending the life of the nozzle head.
[0019]
After the nozzle opening 3 of the cover main body 2 and the opening of the nozzle head 6 (broken line) are matched and adjusted to the nozzle joint root-side joint pipe with the nozzle head protection cover 1, several spot welding locations 7 are formed. By providing a fixed structure (three places in FIG. 4), the protective cover 1 can be detached from the nozzle head 6 at appropriate times.
[0020]
FIGS. 5 and 6 show a modification of FIG. 3, in which a notch 8 is provided on the cover body 2 so that the nozzle head 6 can be adjusted to the screwing position of the nozzle joint with the nozzle head, and a detent for preventing rotation of about 5 mm in diameter. It is the same as FIG. 3 except that a hole 9 is provided. After adjusting the nozzle head opening 3 of the cover so as to coincide with the ejection port of the nozzle head 6, the nozzle head 6 is detachably fixed with screws or the like.
[0021]
【Example】
[Comparative Example 1]
In the general view of the soot blower installed in the furnace as shown in FIG. 7 (however, without the protective cover 2), when the temperature in the furnace is 1100 ° C., the nozzle tip of the nozzle head 6 without the protective cover is in a standby state. The temperature of the part was about 630 ° C. (575 ° C. inside the nozzle), and when it was inserted into the furnace for 1 minute, it became 810 ° C. (630 ° C. inside the nozzle). When steam was introduced in this state, the temperature difference between the inner and outer surfaces of the nozzle head became 550 ° C., and the durability was significantly reduced due to this thermal fatigue.
[0022]
[Example 1]
In the overall view shown in FIG. 7, when the temperature in the furnace is 1100 ° C., the temperature of the tip of the protective cover in the standby state of the nozzle head 6 with the protective cover shown in FIG. The temperature was slightly higher than the temperature at the tip of the nozzle head without the cover. However, the temperature of the tip of the nozzle head in the protective cover during standby is about 500 ° C. (490 ° C. inside the nozzle), and the temperature of the tip of the nozzle head is reduced by 130 ° C. in the standby state by attaching the protective cover. .
[0023]
Next, when this was inserted into the furnace for 1 minute from the standby state, the temperature of the tip of the protective cover was about 860 ° C, which was slightly higher than that of the nozzle without the protective cover as in the standby mode. The temperature at the tip of the nozzle head inside the cover remained at 500 ° C. (490 ° C. inside the nozzle), which was the same as during standby, and was lowered by 300 ° C. by the protective cover. Even if steam is injected at this point, the temperature difference between the inner and outer surfaces of the nozzle head is about 250 ° C., and the thermal fatigue due to the heat amplitude can be greatly reduced. improves.
[0024]
[Example 2]
The test was performed under the same conditions as in Example 1 except that the furnace temperature was changed from 1100 ° C. to 1400 ° C. Similarly, when the temperature was 1400 ° C., the temperature of the nozzle head portion in the protective cover was 500 ° C. (inside: 490 ° C.), which was the same as the temperature of the furnace 1100 ° C. Therefore, even when the temperature inside the furnace is 1400 ° C., the temperature at the tip of the nozzle head is improved by 500 ° C. by the protective cover, and the temperature difference between the inner and outer surfaces of the nozzle head due to steam injection is about 250 ° C.
[0025]
【The invention's effect】
By covering the outside of the nozzle head with a cover made of a material having excellent heat resistance, the nozzle head is prevented from being directly exposed to radiant heat. By providing a plurality of heat-resistant partitions in the cover at intervals, it is possible to reduce the temperature difference between the inside and outside due to the heat insulating effect of air between the partitions and the radiation scattering effect inside. Therefore, the life of the nozzle head can be extended. Further, if the partition wall is formed in a curved shape, it is possible to suppress an increase in the protrusion size of the cover tip and the amount of heat reception as compared with a plate-shaped one. Further, radiation scattering on the inner surface of the cover can be promoted, and the life of the nozzle head can be further extended. The convenience is great in that the nozzle head can be detachably attached to the outside without changing the existing nozzle head.
[Brief description of the drawings]
FIG. 1 is a plan view of a soot blower nozzle protection cover according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a plan view of a soot blower nozzle protection cover according to another embodiment of the present invention.
FIG. 4 is a sectional view taken along the line AA of FIG. 3;
FIG. 5 is a plan view of a soot blower nozzle protection cover according to still another embodiment of the present invention.
FIG. 6 is a sectional view taken along line AA of FIG. 5;
FIG. 7 is an overall view when a soot blower equipped with the nozzle head protection cover of the present invention is installed in a furnace.
[Explanation of symbols]
1: Nozzle head protection cover 2: Cover body 3: Nozzle head opening 4: Partition wall 5: Hole 6: Nozzle head 7: Spot welding point 8: Cover adjustment notch 9: Detent hole 10: Furnace wall 11: Soot blower

Claims (6)

スートブロワノズルヘッドの外側に配置されるカバー本体と、該カバー本体の先端から該ノズルヘッドの先端に向かって層状かつ離隔して内設された複数の隔壁とからなるスートブロワノズルヘッド保護カバー。A soot blower nozzle head protection cover comprising: a cover main body disposed outside a soot blower nozzle head; 前記保護カバー本体と前記隔壁とが同じ材質で構成されている、請求項1に記載のスートブロワノズルヘッド保護カバー。The soot blower nozzle head protection cover according to claim 1, wherein the protection cover main body and the partition are made of the same material. 前記保護カバーがスートブロワノズルヘッドに対して着脱自在である、請求項1または2に記載のスートブロワノズルヘッド保護カバー。The soot blower nozzle head protective cover according to claim 1 or 2, wherein the protective cover is detachable from the soot blower nozzle head. 前記隔壁が孔部を有する、請求項1〜3のいずれか一項に記載のスートブロワノズルヘッド保護カバー。The soot blower nozzle head protective cover according to any one of claims 1 to 3, wherein the partition has a hole. 前記隔壁が板状である、請求項1〜4のいずれか一項に記載のスートブロワノズルヘッド保護カバー。The soot blower nozzle head protective cover according to any one of claims 1 to 4, wherein the partition is plate-shaped. 前記隔壁が曲面状である、請求項1〜4のいずれか一項に記載のスートブロワノズルヘッド保護カバー。The soot blower nozzle head protective cover according to any one of claims 1 to 4, wherein the partition wall has a curved shape.
JP2002374412A 2002-12-25 2002-12-25 Soot blower nozzle protective cover Expired - Fee Related JP4204309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374412A JP4204309B2 (en) 2002-12-25 2002-12-25 Soot blower nozzle protective cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374412A JP4204309B2 (en) 2002-12-25 2002-12-25 Soot blower nozzle protective cover

Publications (2)

Publication Number Publication Date
JP2004205101A true JP2004205101A (en) 2004-07-22
JP4204309B2 JP4204309B2 (en) 2009-01-07

Family

ID=32812445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374412A Expired - Fee Related JP4204309B2 (en) 2002-12-25 2002-12-25 Soot blower nozzle protective cover

Country Status (1)

Country Link
JP (1) JP4204309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748802B1 (en) 2016-10-18 2017-06-19 주식회사 지스코 Soot blower and method for cleaning tubular heat exchanger using thereof
KR101847024B1 (en) * 2017-09-19 2018-04-09 이보엠텍 주식회사 Protective cover of air injection nozzle for fluidezed bed combustor

Also Published As

Publication number Publication date
JP4204309B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP0516322B1 (en) Shroud cooling assembly for gas turbine engine
US7104756B2 (en) Temperature tolerant vane assembly
JP5090686B2 (en) Cooled turbine shroud
JP3393184B2 (en) Shroud assembly for gas turbine engine
JP4172913B2 (en) Combustor wall segment and combustor
US7386980B2 (en) Combustion liner with enhanced heat transfer
US5220786A (en) Thermally protected venturi for combustor dome
JP2002089206A (en) Shroud cooling segment and assembly
US7137241B2 (en) Transition duct apparatus having reduced pressure loss
EP1905985B1 (en) Internal fuel manifold having temperature reduction feature
JP2004205101A (en) Soot blower nozzle protecting cover
CN107630768B (en) A kind of missile propulsive plant band thermal barrier coating grate structure
US11828249B2 (en) Exterior nozzle member for a turbomachine
JP4202038B2 (en) Method for selectively arranging turbine nozzle and shroud and gas turbine
US7845175B2 (en) Heat shield for mounting on a heat-radiating object, particularly on a rocket engine
CN115161578B (en) Thermal barrier coating spraying method for blade with air film Kong Guolun
JP2004245994A (en) Optical fiber probe
US20050241316A1 (en) Uniform effusion cooling method for a can combustion chamber
JPH08226304A (en) Ceramic stator blade
JPS6217307A (en) Air-cooled blade
JPS6128826B2 (en)
JPS58175720A (en) Catalyst layer supporting device for catalytic combustion device
JP2785291B2 (en) Gas turbine blades
JP3111830B2 (en) Exhaust manifold of internal combustion engine
CN114893299B (en) Anti-icing structure of composite material inlet part of aero-engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees