JP2004204354A - Metallic superfine particle and its manufacturing method - Google Patents

Metallic superfine particle and its manufacturing method Download PDF

Info

Publication number
JP2004204354A
JP2004204354A JP2004070563A JP2004070563A JP2004204354A JP 2004204354 A JP2004204354 A JP 2004204354A JP 2004070563 A JP2004070563 A JP 2004070563A JP 2004070563 A JP2004070563 A JP 2004070563A JP 2004204354 A JP2004204354 A JP 2004204354A
Authority
JP
Japan
Prior art keywords
metal
ultrafine
integer greater
ligand
organic sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070563A
Other languages
Japanese (ja)
Other versions
JP4623981B2 (en
Inventor
Masami Nakamoto
昌美 中許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Osaka City
Original Assignee
Daiken Kagaku Kogyo KK
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK, Osaka City filed Critical Daiken Kagaku Kogyo KK
Priority to JP2004070563A priority Critical patent/JP4623981B2/en
Publication of JP2004204354A publication Critical patent/JP2004204354A/en
Application granted granted Critical
Publication of JP4623981B2 publication Critical patent/JP4623981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material capable of more surely and easily forming a metal film. <P>SOLUTION: In a manufacturing method of metallic superfine particles, a quaternary ammonium salt type metal complex compound represented by general formula [R<SP>1</SP>R<SP>2</SP>R<SP>3</SP>R<SP>4</SP>N]<SB>x</SB>[M<SB>y</SB>(A)<SB>z</SB>] is used as a starting material and the central atom is reduced by the reductive elimination reaction of an organic sulfur ligand in the compound. Wherein, R<SP>1</SP>to R<SP>4</SP>are each a same or different hydrocarbon group and may have a substituent group; M is a transition metal; (A) is an organic sulfur ligand; x is an integer higher than zero; y is an integer higher than zero; and z is an integer higher than zero. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、金属超微粒子及びその製造方法に関する。   The present invention relates to ultrafine metal particles and a method for producing the same.

金属ペーストは、電子回路、電極等の導電膜の形成に用いられている。これらの導電膜は、金属ペーストをセラミックス、ガラス等の非導電性基板上に塗布し、塗膜を焼成・硬化することにより形成されている。近年、電子材料の多様化、需要増大等に伴って、金属ペーストの用途も急速に拡大しつつあるが、その一つとして金属粉末と樹脂成分とを混練して製造される金属導電膜形成用厚膜ペーストが知られている。   Metal paste is used for forming conductive films such as electronic circuits and electrodes. These conductive films are formed by applying a metal paste on a non-conductive substrate such as ceramics or glass and baking and curing the coating film. In recent years, with the diversification of electronic materials, increasing demand, etc., the use of metal paste is also rapidly expanding. One of them is for forming a metal conductive film formed by kneading a metal powder and a resin component. Thick film pastes are known.

しかしながら、従来における金属導電膜形成用厚膜ペーストでは、次のような問題がある。   However, the conventional thick film paste for forming a metal conductive film has the following problems.

第一に、金属粉末の粒子サイズが数ミクロンと大きいため、焼成温度が必然的に高くなり、最低でも500〜600℃という高温で焼成しなければ所定の導電膜を形成することが困難である。また、このように焼成温度が高いことから、耐熱性の低いプラスチック等の基材に適用することも困難である。   First, since the particle size of the metal powder is as large as several microns, the firing temperature is inevitably high, and it is difficult to form a predetermined conductive film unless fired at a high temperature of at least 500 to 600 ° C. . Further, since the firing temperature is high as described above, it is difficult to apply to a base material such as plastic having low heat resistance.

第二に、上記のように金属粉末の粒子サイズが大きいことから、形成される導電膜にもピンホールが発生しやすい。このため、ピンホールのない緻密な導電膜を得るためには、厚膜ペーストを塗布し、焼成するという一連の工程を何回も繰り返す必要がある。   Second, since the particle size of the metal powder is large as described above, pinholes are easily generated in the formed conductive film. For this reason, in order to obtain a dense conductive film without pinholes, it is necessary to repeat a series of steps of applying a thick film paste and firing it.

第三に、上記厚膜ペーストは、少なくとも金属粉末の調製、樹脂成分の調製及び両者の混練という工程が必要であり、その製造工程も効率的なものとは言えない。   Third, the above-mentioned thick film paste requires at least steps of preparing a metal powder, preparing a resin component, and kneading the two, and the manufacturing steps cannot be said to be efficient.

従って、本発明は、特に、金属膜の形成をより確実かつ容易に実現できる材料を提供することを主な目的とする。   Accordingly, an object of the present invention is, in particular, to provide a material capable of more reliably and easily realizing formation of a metal film.

本発明者は、かかる従来技術の問題点を解決するために鋭意研究を重ねた結果、特定の金属錯体化合物を用いる場合には上記目的を達成できることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies in order to solve the problems of the related art, and as a result, have found that the above object can be achieved when a specific metal complex compound is used, and have completed the present invention.

すなわち、本発明は、下記の金属超微粒子及びその製造方法に係るものである。   That is, the present invention relates to the following ultrafine metal particles and a method for producing the same.

1.一般式[R1234N]x[My(A)z](但し、R1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いもの、Mは遷移金属、Aは有機硫黄系配位子、xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数を示す。)で表わされる4級アンモニウム塩型金属錯体化合物を出発原料とし、当該化合物の有機硫黄系配位子の還元的脱離反応から中心金属を還元することを特徴とする金属超微粒子の製造方法。 1. General formula [R 1 R 2 R 3 R 4 N] x [M y (A) z] ( where, R 1 to R 4 is substituted by the same or different hydrocarbon radical M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A method for producing ultrafine metal particles, comprising using an ammonium salt type metal complex compound as a starting material, and reducing a central metal by a reductive elimination reaction of an organic sulfur-based ligand of the compound.

2.一般式[R1234N]x[My(A)z](但し、R1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いもの、Mは遷移金属、Aは有機硫黄系配位子、xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数を示す。)で表わされる4級アンモニウム塩型金属錯体化合物を熱処理することを特徴とする金属超微粒子の製造方法。 2. General formula [R 1 R 2 R 3 R 4 N] x [M y (A) z] ( where, R 1 to R 4 is substituted by the same or different hydrocarbon radical M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A method for producing ultrafine metal particles, comprising heat-treating an ammonium salt-type metal complex compound.

3.金属超微粒子とともにジスルフィドを生成させる上記第1項又は第2項に記載の製造方法。   3. 3. The production method according to the above item 1 or 2, wherein the disulfide is formed together with the ultrafine metal particles.

4.有機硫黄系配位子がチオレート配位子(SR’)又はチオアセチレン配位子(SC≡CR’)(いずれについても、R’は炭化水素基であって置換基を有していても良いものを示す。)である上記第1項〜第3項のいずれかに記載の製造方法。   4. Wherein the organic sulfur-based ligand is a thiolate ligand (SR ′) or a thioacetylene ligand (SC≡CR ′) (in each case, R ′ is a hydrocarbon group and may have a substituent; 4. The production method according to any one of the above items 1 to 3, wherein

5.Mが、Au,Pt、Cu、Ni又はPdである上記第1項〜第4項のいずれかに記載の製造方法。   5. 5. The method according to any one of the above items 1 to 4, wherein M is Au, Pt, Cu, Ni or Pd.

6.得られる金属超微粒子中の有機成分として4級アンモニウム塩型金属錯体化合物の対カチオンである[R1234N]に由来の炭化水素基成分を含む上記第1項〜第5項のいずれかに記載の製造方法。 6. The above-mentioned items 1 to 5, which contain a hydrocarbon group component derived from [R 1 R 2 R 3 R 4 N] which is a counter cation of a quaternary ammonium salt type metal complex compound as an organic component in the obtained ultrafine metal particles. Item.

7.得られる金属超微粒子中の金属成分の含有量が80〜95重量%となるように熱処理する上記第2項〜第6項のいずれかに記載の製造方法。   7. 7. The method according to any one of items 2 to 6, wherein the heat treatment is performed so that the content of the metal component in the obtained ultrafine metal particles is 80 to 95% by weight.

8.中心部とその周囲の保護層から構成される金属超微粒子であって、中心部が金属成分からなり、保護層が有機成分からなることを特徴とする金属超微粒子。   8. Ultrafine metal particles comprising a central portion and a protective layer around the central portion, wherein the central portion is composed of a metal component and the protective layer is composed of an organic component.

9.金属成分の含有量が80重量%以上である上記第7項に記載の金属超微粒子。
10.上記第8項又は第9項に記載の金属超微粒子を含む金属膜成形用材料。
9. 8. The ultrafine metal particles according to the above item 7, wherein the content of the metal component is 80% by weight or more.
10. Item 10. A material for forming a metal film, comprising the ultrafine metal particles according to Item 8 or 9.

本発明の製造方法によれば、ナノオーダーの粒径をもつ金属超微粒子を効率的かつ確実に製造することができる。   According to the production method of the present invention, ultrafine metal particles having a nano-order particle size can be produced efficiently and reliably.

本発明の金属超微粒子は、中心部が金属成分からなり、保護層が有機成分からなるという特異な構造を有しているので、凝集が起こりにくく、ナノオーダーの粒径を安定して維持することができる。   Since the metal ultrafine particles of the present invention have a unique structure in which the central portion is made of a metal component and the protective layer is made of an organic component, aggregation is unlikely to occur, and a nano-order particle size is stably maintained. be able to.

これにより、従来技術のような問題点のない金属膜を効率的かつ確実に形成することができる。特に、金属超微粒子を金属膜形成用に用いる場合は、その焼成温度が400℃以下という低温で金属膜を形成することができ、コスト面のみならず、幅広い種類の基材に適用できるという点でも有利である。   As a result, a metal film having no problem as in the related art can be efficiently and reliably formed. In particular, when ultrafine metal particles are used for forming a metal film, the metal film can be formed at a low firing temperature of 400 ° C. or less, and can be applied to a wide variety of substrates as well as cost. But it is advantageous.

本発明の製造方法は、一般式[R1234N]x[My(A)z](但し、R1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いもの、Mは遷移金属、Aは有機硫黄系配位子、xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数を示す。)で表わされる4級アンモニウム塩型金属錯体化合物を出発原料とし、当該化合物の有機硫黄系配位子の還元的脱離反応から中心金属を還元することを特徴とする。 Production method of the present invention have the general formula [R 1 R 2 R 3 R 4 N] x [M y (A) z] ( where, R 1 to R 4 are the same or different, hydrocarbon radicals M may be a substituent, M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0 ), Wherein the central metal is reduced by a reductive elimination reaction of an organic sulfur-based ligand of the compound as a starting material.

本発明の製造方法の出発原料(以下「前駆体」ともいう)である4級アンモニウム塩型金属錯体化合物は、一般式[R1234N]x[My(A)z]で表わされる。この一般式を有するものであれば、公知の製法で得られるもの又は市販品を用いることもできる。例えば、上記化合物が一般式[R4N][Au(SR’)2](Rはアルキル基、R’はアルキル基を示す。以下の1)及び2)においても同じ。)で示される4級アンモニウム塩型金属錯体化合物を製造する場合は次のような工程1)〜2)(溶媒中での反応)によって製造することができる。 The starting material (hereinafter referred to as "precursor") quaternary ammonium salt type metal complex compound which is a production method of the present invention have the general formula [R 1 R 2 R 3 R 4 N] x [M y (A) z ]. As long as it has this general formula, a product obtained by a known production method or a commercially available product can also be used. For example, the same applies to the above compound in the general formula [R 4 N] [Au (SR ′) 2 ] (R represents an alkyl group and R ′ represents an alkyl group; 1) and 2) below. In the case of producing the quaternary ammonium salt type metal complex compound represented by the formula (1), it can be produced by the following steps 1) and 2) (reaction in a solvent).

1)HAuCl4+R4NCl→[R4N][AuCl4]+HCl
2)[R4N][AuCl4]+4R’SNa→[R4N][Au(SR’)2
+R’S−SR’+4NaCl
すなわち、塩化金酸等の金属塩の溶液に炭化水素基を有する4級アンモニウム塩を反応させ、得られた生成物をナトリウムメチラートの存在下でチオール化合物を反応させることによって所定の4級アンモニウム塩型金属錯体化合物を得ることができる。従って、この場合は、4級アンモニウム塩型金属錯体化合物におけるR1〜R4は、上記の4級アンモニウム塩を適宜選択することによって決定することができる。また、中心金属に配位する配位子は、上記チオール化合物の種類によって決定することができる。溶媒は、用いる原料の種類等に応じて公知の溶媒から適宜採択すれば良い。
1) HAuCl 4 + R 4 NCl → [R 4 N] [AuCl 4 ] + HCl
2) [R 4 N] [AuCl 4 ] + 4R′SNa → [R 4 N] [Au (SR ′) 2 ]
+ R'S-SR '+ 4NaCl
That is, a quaternary ammonium salt having a hydrocarbon group is reacted with a solution of a metal salt such as chloroauric acid, and the resulting product is reacted with a thiol compound in the presence of sodium methylate to obtain a predetermined quaternary ammonium salt. A salt type metal complex compound can be obtained. Therefore, in this case, R 1 to R 4 in the quaternary ammonium salt type metal complex compound can be determined by appropriately selecting the above quaternary ammonium salt. The ligand coordinated to the central metal can be determined depending on the type of the thiol compound. The solvent may be appropriately selected from known solvents according to the type of raw materials used and the like.

本発明における4級アンモニウム塩型金属錯体化合物のR1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いものを適用できる。炭化水素基としては特に限定的ではないが、通常は炭素数1〜20のアルキル基であって置換基を有していても良いものことが好ましい。具体的には、[R1234N]部として[C1225(CH33N]、[C1429(CH33N]、[(C18372(CH32N]、[C613(CH33N]等の直鎖アルキル基をもつものが例示される。 In the present invention, R 1 to R 4 of the quaternary ammonium salt type metal complex compound may be the same or different hydrocarbon groups which may have a substituent. The hydrocarbon group is not particularly limited, but is preferably an alkyl group having 1 to 20 carbon atoms which may have a substituent. Specifically, [C 12 H 25 (CH 3 ) 3 N], [C 14 H 29 (CH 3 ) 3 N] and [(C 18 H 37 ) as [R 1 R 2 R 3 R 4 N] portions ) 2 (CH 3 ) 2 N] and those having a linear alkyl group such as [C 6 H 13 (CH 3 ) 3 N].

上記炭化水素基が置換基を有する場合、その置換基の種類も制限されない。例えば、メチル基、エチル基、OH基、ニトロ基、ハロゲン基(Cl、Br等)、メトキシ基、エトキシ基等が挙げられる。   When the hydrocarbon group has a substituent, the type of the substituent is not limited. For example, a methyl group, an ethyl group, an OH group, a nitro group, a halogen group (such as Cl and Br), a methoxy group, an ethoxy group and the like can be mentioned.

上記Mは遷移金属であり、上記4級アンモニウム塩型金属錯体化合物の中心金属を構成する。遷移金属としては、例えばAu、Pt、Cu、Ni、Pd、Co、Fe、Ti、Cr、Mn、Zr等が挙げられる。本発明では、特にAu、Pt、Cu、Ni又はPdが好ましい。   M is a transition metal and constitutes the central metal of the quaternary ammonium salt type metal complex compound. Examples of the transition metal include Au, Pt, Cu, Ni, Pd, Co, Fe, Ti, Cr, Mn, and Zr. In the present invention, Au, Pt, Cu, Ni or Pd is particularly preferable.

Aは有機硫黄系配位子を示す。硫黄原子を含む配位子であれば、その化学構造は特に限定されず、また単座配位子、二座配位子等のいずれであっても良い。   A represents an organic sulfur-based ligand. As long as the ligand contains a sulfur atom, its chemical structure is not particularly limited, and it may be any of a monodentate ligand, a bidentate ligand, and the like.

特に、本発明の有機硫黄系配位子としては、チオレート配位子(SR’)又はチオアセチレン配位子(SC≡CR’)(いずれについても、R’は炭化水素基であって置換基を有していても良いものを示す。)であることが好ましい。上記R’は、特に炭素数1〜20のアルキル基であって置換基を有していても良いものことが好ましい。置換基を有する場合、その置換基の種類も制限されず、前記と同様のものを適用できる。有機硫黄系配位子は、のいずれであっても良く、中心金属の種類等により適宜選択すれば良い。   In particular, as the organic sulfur-based ligand of the present invention, a thiolate ligand (SR ′) or a thioacetylene ligand (SC≡CR ′) (in each case, R ′ is a hydrocarbon group and a substituent Which may have the following.). R 'is particularly preferably an alkyl group having 1 to 20 carbon atoms which may have a substituent. When it has a substituent, the kind of the substituent is not limited, and the same as described above can be applied. The organic sulfur-based ligand may be any one of these, and may be appropriately selected depending on the type of the central metal and the like.

チオレート配位子としては、R’部としてCn2n+1(n=1〜20)で示されるものが好ましく、例えばC1225、C613、C1337等の直鎖アルキル基が適用できる。チオアセチレン配位子のR’部としては、例えばCn2n+1(n=1〜8)で示されるものが例示される。 The thiolate ligand, C n H 2n + 1 ( n = 1~20) is preferably one represented by, for example, C 12 H 25, C 6 H 13, C 13 linear H 37 such as R 'unit Alkyl groups can be applied. Examples of the R ′ part of the thioacetylene ligand include those represented by C n H 2n + 1 (n = 1 to 8).

置換基を有するチオアセチレン配位子は、C≡CR’部としてプロピン、2−プロピン−1−オール、1−ブチン−3−オール、3−メチル−1−ブチン−3−オール、3,3−ジメチル−1−ブチン、1−ペンチン、1−ペンチン−3−オール、4−ペンチン−1−オール、4−ペンチン−2−オール、4−メチル−1−ペンチン、3−メチル−1−ペンチン−3−オール、5−ヘキシン−1−オール、5−メチル−1−ヘキシン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、1−ヘプチン、1−ヘプチン−3−オール、5−ヘプチン−3−オール、3,6−ジメチル−1−ヘプチン−3−オール、3,6−ジメチル−1−ヘプチン−3−オール、1−オクチン、1−オクチン−3−オール等が例示される。   Thioacetylene ligands having a substituent include propyne, 2-propyn-1-ol, 1-butyn-3-ol, 3-methyl-1-butyn-3-ol, 3,3 -Dimethyl-1-butyne, 1-pentyne, 1-pentyn-3-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 4-methyl-1-pentyne, 3-methyl-1-pentyne -3-ol, 5-hexyn-1-ol, 5-methyl-1-hexyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-heptin, 1-heptin-3-ol , 5-heptin-3-ol, 3,6-dimethyl-1-heptin-3-ol, 3,6-dimethyl-1-heptin-3-ol, 1-octin, 1-octin-3-ol, and the like. Is exemplified.

また、例えば水酸基を有する環状炭化水素を含むチオアセチレン配位子も適用できる。このような配位子SC≡CR’は、C≡CR’部として1−エチニル−1−シクロプロパノール、1−エチニル−1−シクロブタノール、1−エチニル−1−シクロペンタノール、1−エチニル−1−シクロヘキサノール、1−プロピン−3−シクロプロパノール、1−プロピン−3−シクロブタノール、1−プロピン−3−シクロペンタノール、1−ブチン−4−シクロブタノール、1−ペンチン−5−シクロプロパノール等が例示される。   Further, for example, a thioacetylene ligand containing a cyclic hydrocarbon having a hydroxyl group can also be applied. Such a ligand SC @ CR 'has 1-ethynyl-1-cyclopropanol, 1-ethynyl-1-cyclobutanol, 1-ethynyl-1-cyclopentanol, 1-ethynyl- 1-cyclohexanol, 1-propyn-3-cyclopropanol, 1-propyn-3-cyclobutanol, 1-propyn-3-cyclopentanol, 1-butyne-4-cyclobutanol, 1-pentyne-5-cyclopropanol Etc. are exemplified.

上記xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数をそれぞれ示し、中心金属の種類、有機硫黄系配位子の種類等により適宜決定される。例えば、4級アンモニウム塩型金属錯体化合物の有機硫黄系配位子がチオレート配位子(SR’)又はチオアセチレン配位子(SC≡CR’)である場合において、中心金属MがAuのときはx=2、y=1及びz=2、MがAgのときはx=1、y=1及びz=2、MがPtのときはx=2、y=1及びz=4、MがCuのときはx=1、y=1及びz=2(又はx=2、y=1及びz=3)、MがPdのときはx=2、y=1及びz=4、MがNiのときはx=2、y=1及びz=4等とすれば良い。   X represents an integer greater than 0, y represents an integer greater than 0, and z represents an integer greater than 0, and is appropriately determined depending on the type of the central metal, the type of the organic sulfur-based ligand, and the like. For example, when the organic sulfur-based ligand of the quaternary ammonium salt-type metal complex compound is a thiolate ligand (SR ′) or a thioacetylene ligand (SC≡CR ′) and the central metal M is Au X = 2, y = 1 and z = 2, x = 1, y = 1 and z = 2 when M is Ag, x = 2, y = 1 and z = 4, M when M is Pt When x is Cu, x = 1, y = 1 and z = 2 (or x = 2, y = 1 and z = 3), and when M is Pd, x = 2, y = 1 and z = 4, M When x is Ni, x = 2, y = 1, z = 4, and the like may be set.

本発明の製造方法では、上記のような4級アンモニウム塩型金属錯体化合物を出発原料として用い、この化合物の有機硫黄系配位子の還元的脱離反応から中心金属を還元する。   In the production method of the present invention, the quaternary ammonium salt-type metal complex compound as described above is used as a starting material, and the central metal is reduced by the reductive elimination reaction of the organic sulfur-based ligand of this compound.

例えば、出発原料として[R4N][Au(SC12252](Rはアルキル基)を用いる場合の反応は、下記のように進行する。
[R4N][Au(SC12252]→Au(−R)+R3N+(SC12252
すなわち、チオレート配位子が還元的脱離を起こし、ジスルフィドを生成するとともに金を生成するが、同時に起こる4級アンモニウム塩の分解(熱分解)により生じるアルキル基の一部又は全部が金のまわりに保護層を形成し、平均粒径が10数ナノメータの金超微粒子(Au(−R))となる。
For example, when [R 4 N] [Au (SC 12 H 25 ) 2 ] (R is an alkyl group) is used as a starting material, the reaction proceeds as follows.
[R 4 N] [Au (SC 12 H 25 ) 2 ] → Au (−R) + R 3 N + (SC 12 H 25 ) 2
That is, the thiolate ligand undergoes reductive elimination to generate disulfide and gold, but a part or all of the alkyl group generated by the simultaneous decomposition (thermal decomposition) of the quaternary ammonium salt is surrounded by gold. To form ultrafine gold particles (Au (-R)) having an average particle size of more than 10 nanometers.

本発明の製造方法においては、上記のような還元的脱離反応が起こる限り、いずれの操作方法によって上記出発原料を処理しても良いが、通常は出発原料の熱処理によって実施することができる。   In the production method of the present invention, as long as the above-described reductive elimination reaction occurs, the above-mentioned starting material may be treated by any operation method, but it can be usually carried out by heat treatment of the starting material.

熱処理における条件は、かかる反応が生ずる限り特にその条件に制限はなく、出発原料の種類、最終製品の用途・使用目的等に応じて適宜設定すれば良い。特に、金属超微粒子の金属成分の含有量が80重量%以上となるように熱処理するのが好ましい。上記含有量の上限は特に限定されないが、通常は95重量%程度(炭化水素基成分が5重量%以上)となるようにすれば良い。換言すれば、金属成分の含有量が80〜95重量%程度となるように熱処理すれば良い。   The conditions for the heat treatment are not particularly limited as long as such a reaction occurs, and may be appropriately set according to the type of the starting material, the use and purpose of the final product, and the like. In particular, heat treatment is preferably performed so that the content of the metal component in the ultrafine metal particles is 80% by weight or more. Although the upper limit of the content is not particularly limited, it may be usually about 95% by weight (the hydrocarbon group component is 5% by weight or more). In other words, the heat treatment may be performed so that the content of the metal component is about 80 to 95% by weight.

従って、加熱温度、加熱時間、加熱雰囲気等も、出発原料の種類、所望の粒径・金属成分含有量、最終製品の用途等との関係で設定すれば良い。例えば、出発材料として[C1225N(CH33][Au(SC12252]を用いる場合は、窒素ガス等の不活性ガス雰囲気中160℃で7時間程度加熱すれば、粒径30〜40nmの粒子が多く分布する金超微粒子(金含有量90重量%以上)を得ることができる。 Therefore, the heating temperature, the heating time, the heating atmosphere, and the like may be set in relation to the type of the starting material, the desired particle size, the content of the metal component, the use of the final product, and the like. For example, when [C 12 H 25 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ] is used as a starting material, heating at 160 ° C. for about 7 hours in an atmosphere of an inert gas such as nitrogen gas may be used. And ultrafine gold particles (gold content of 90% by weight or more) in which a large number of particles having a particle size of 30 to 40 nm are distributed.

還元的脱離反応が完了した後、生成した金属超微粒子は、一般には副生したジスルフィドとともに存在する。生成したジスルフィドは通常は液状であり、その中に沈殿するようなかたちで金属超微粒子が生成する。この場合は、濾過、遠心分離等の通常の固液分離方法に従って金属超微粒子を回収し、必要に応じて水、溶剤等で洗浄すれば良い。さらに、必要に応じて金属超微粒子を自然乾燥又は強制乾燥させても良い。   After the reductive elimination reaction is completed, the generated ultrafine metal particles generally exist together with by-product disulfide. The produced disulfide is usually in a liquid state, and ultrafine metal particles are formed in such a manner as to precipitate therein. In this case, the ultrafine metal particles may be collected according to an ordinary solid-liquid separation method such as filtration and centrifugation, and may be washed with water, a solvent, or the like, if necessary. Further, if necessary, the ultrafine metal particles may be air-dried or force-dried.

本発明の金属超微粒子は、中心部とその周囲の保護層から構成される金属超微粒子であって、中心部が金属成分からなり、保護層が有機成分からなることを特徴とする。   The ultrafine metal particles of the present invention are ultrafine metal particles composed of a central portion and a protective layer around the central portion, wherein the central portion is composed of a metal component, and the protective layer is composed of an organic component.

金属超微粒子の保護層を構成する有機成分は、本発明の製造方法により製造される場合には、通常は出発原料の対カチオンてある4級アンモニウム塩に由来の炭化水素基成分を含有する。但し、有機硫黄系配位子の由来する成分が含まれていても差し支えない。本発明では、特に、炭素数1〜20アルキル基成分が含まれていることが好ましい。   When the organic component constituting the protective layer of the metal ultrafine particles is produced by the production method of the present invention, it usually contains a hydrocarbon group component derived from a quaternary ammonium salt which is a counter cation of a starting material. However, a component derived from an organic sulfur-based ligand may be included. In the present invention, it is particularly preferable that an alkyl group component having 1 to 20 carbon atoms is contained.

本発明の金属超微粒子の金属成分としては特に限定されず、通常は遷移金属(好ましくはAu、Pt、Cu、Ni又はPd)のいずれかを適用できる。本発明の製造方法により製造される場合には、出発原料として用いる4級アンモニウム塩型金属錯体化合物の中心金属に由来する金属成分が存在する。   The metal component of the ultrafine metal particles of the present invention is not particularly limited, and usually, any of transition metals (preferably, Au, Pt, Cu, Ni, or Pd) can be applied. When produced by the production method of the present invention, there is a metal component derived from the central metal of the quaternary ammonium salt type metal complex compound used as a starting material.

金属成分の含有量は、最終製品の用途、出発原料の種類等により適宜変更できるが、通常は80重量%以上(好ましくは80〜95重量%、より好ましくは80〜90重量%)とすれば良い。   The content of the metal component can be appropriately changed depending on the use of the final product, the type of the starting material, and the like, but is usually 80% by weight or more (preferably 80 to 95% by weight, more preferably 80 to 90% by weight). good.

本発明の金属超微粒子の平均粒径は特に限定されず、通常は100nm以下(数10〜数nm)の範囲内で最終製品の用途・使用目的等に応じて適宜設定できる。特に、本発明では、平均粒径50nm以下の金属超微粒子を製造することもできる。金属超微粒子の形態も特に限定されず、球状、多角形状、フレーク状、柱状等のいずれであっても良いが、通常は球状又はそれに近い形状であることが好ましい。   The average particle size of the ultrafine metal particles of the present invention is not particularly limited, and can be appropriately set within the range of usually 100 nm or less (several tens to several nm) according to the use and purpose of the final product. In particular, in the present invention, ultrafine metal particles having an average particle size of 50 nm or less can be produced. The form of the ultrafine metal particles is not particularly limited, and may be any of a spherical shape, a polygonal shape, a flake shape, a columnar shape, and the like.

本発明の金属超微粒子は、例えば本発明の上記製造方法によってより効率良くかつ確実に製造することができる。すなわち、本発明の金属超微粒子は、上記製造方法によって製造されるものであることが特に好ましい。   The ultrafine metal particles of the present invention can be more efficiently and reliably produced by, for example, the production method of the present invention. That is, the ultrafine metal particles of the present invention are particularly preferably produced by the above production method.

本発明の金属超微粒子は、金属膜形成用、装飾用、触媒用等のあらゆる分野での利用が可能である。特に、金属膜成形用材料(具体的には、電子回路、電極等の電子材料用、その他装飾用)として最適である。その使用形態は特に限定的でないが、本発明の金属超微粒子はそのままでも用いることができ、また必要に応じて溶剤に分散させて用いることもできる。また、本発明の効果を妨げない範囲内で、樹脂成分、溶剤等と混練してペースト化することも可能である。上記材料中における金属超微粒子の含有量は、用いる金属超微粒子の種類、最終製品の用途等に応じて適宜決定すれば良い。   The ultrafine metal particles of the present invention can be used in all fields, such as for forming a metal film, for decoration, and for a catalyst. In particular, it is most suitable as a metal film forming material (specifically, for electronic materials such as electronic circuits and electrodes, and for other decoration purposes). The form of use is not particularly limited, but the ultrafine metal particles of the present invention can be used as they are, or can be used by dispersing them in a solvent as needed. Further, as long as the effects of the present invention are not impaired, it is also possible to knead with a resin component, a solvent and the like to form a paste. The content of the ultrafine metal particles in the above material may be appropriately determined according to the type of the ultrafine metal particles used, the use of the final product, and the like.

このように、本発明の金属膜成形用材料は本発明の金属超微粒子を含むものである。この材料は、実質的にあらゆる基材に適用できる。例えば、プラスチック、セラミックス、ガラス、紙類、金属等に適用可能である。特に、本発明材料は、比較的低温で金属膜を形成することができるので、耐熱性の低いプラスチック等に好適である。基材に適用する際には、公知の電子回路、電極等の形成方法に従って塗布、乾燥、焼成等を行えば良く、これによって所望の金属膜を得ることができる。   Thus, the material for forming a metal film of the present invention contains the ultrafine metal particles of the present invention. This material can be applied to virtually any substrate. For example, it is applicable to plastics, ceramics, glass, papers, metals and the like. In particular, since the material of the present invention can form a metal film at a relatively low temperature, it is suitable for plastics having low heat resistance. When applied to a substrate, application, drying, baking, etc. may be performed according to a known method for forming an electronic circuit, an electrode, or the like, whereby a desired metal film can be obtained.

以下に実施例を示し、本発明の特徴をより一層明確にする。本発明は、これら実施例の範囲に限定されるものではない。   Examples are shown below to further clarify the features of the present invention. The present invention is not limited to the scope of these examples.

製造例1
前駆体として[C1429N(CH33][Au(SC12252]の合成を行った。
Production Example 1
[C 14 H 29 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ] was synthesized as a precursor.

塩化金酸HAuCl4・4H2O(3.94g、9.56mmol)のメタノール溶液(30cm3)に、ミリスチルトリメチルアンモニウムブロミド[C1429N(CH33]Br(3.22g、9.57mmol)のメタノール溶液(30cm3)を滴下により加え、3時間攪拌した。その後、メタノールを減圧下で除き、濃縮し、蒸留水(30cm3)を加えた後、桐山ロートでろ過し、蒸留水(30cm3)、続いてメタノール(15cm3)で洗浄し、減圧下で乾燥させて[C1225N(CH33]「AuCl4」を得た。これにメタノール(40cm3)を加えて懸濁液とし、1−ドデカンチオールC1225SH(7.74g、38.2mmol)とナトリウムメチラートCH3ONa(2.07g、38.2mmol)を含むメタノール溶液(30cm3)を室温で滴下しながら加えて反応させた。13時間の攪拌後、生じた黄白色の沈殿を桐山ロートでろ別し、蒸留水で2回(30cm3×2)、続いてメタノールで2回(30cm3×2)、さらにジエチルエーテルで3回(30cm3×3)洗浄し、減圧下で乾燥させ、下記の物性をもつ標記前駆体を得た。 Gold chloride acid HAuCl 4 · 4H 2 O (3.94g , 9.56mmol) in methanol (30 cm 3) of myristyl bromide [C 14 H 29 N (CH 3) 3] Br (3.22g, 9 (3.57 mmol) in methanol (30 cm 3 ) was added dropwise and stirred for 3 hours. Thereafter, the methanol was removed under reduced pressure, concentrated, and distilled water (30 cm 3 ) was added. After that, the mixture was filtered with a Kiriyama funnel, washed with distilled water (30 cm 3 ), and subsequently with methanol (15 cm 3 ). It was dried to obtain [C 12 H 25 N (CH 3 ) 3 ] “AuCl 4 ”. To this was added methanol (40 cm 3 ) to form a suspension, and 1-dodecanethiol C 12 H 25 SH (7.74 g, 38.2 mmol) and sodium methylate CH 3 ONa (2.07 g, 38.2 mmol) were added. A methanol solution (30 cm 3 ) was added dropwise at room temperature to react. After stirring for 13 hours, the resulting yellow-white precipitate was filtered off with a Kiriyama funnel, twice with distilled water (30 cm 3 × 2), then twice with methanol (30 cm 3 × 2), and further three times with diethyl ether. (30 cm 3 × 3), washed and dried under reduced pressure to obtain the title precursor having the following physical properties.

[C1429N(CH33][Au(SC12252
収量:7.19g
収率:87.9%
融点:97.5〜99.5℃
4188NS2Au:計算値C,57.51%;H,10.36%;N,1.64%、実測値C,57.49%;H,9.95%;N,1.91%
1H−NMR:δ=0.88(t,9H,C 3CH2)、1.24〜1.26(m,52H,CH3 2 2CH2)、1.39〜1.32(m、6H,NCH2CH2 2CH2,SCH2CH2 2CH2)、1.66(p,4H,SCH2 2CH2)、1.78(p,2H,NCH2 2CH2)、2.76(t,4H,SC 2CH2)、3.40(s,9H,NC 3)、3.54〜3.62(m,2H,NC 2CH2)(なお、NMRスペクトル測定は、重クロロホルム(CDCl3)を溶媒とし、内部基準としてテトラメチルシランを用いた。以下同じ。)
製造例2
前駆体[C1225N(CH33][Au(SC12252]の合成は、実施例1と同様にして[C1225N(CH33][AuCl4]のメタノール懸濁液を調製し、これに1−ドデカンチオールとナトリウムメチラートを含むメタノール溶液を反応させて合成した。
[C1225N(CH33][Au(SC12252
収量:7.19g
収率:90.8%
融点:96.4〜98.2℃
3984NS2Au:計算値C,56.56%;H,10.22%;N,1.69%、実測値C,55.01%;H,9.92%;N,1.91%
1H−NMR:δ=0.88(t,9H,C 3CH2)、1.24〜1.27(m,48H,CH3CH2CH2CH2)、1.32〜1.39(m、6H,NCH2 2 2CH2,SCH2CH2 2CH2)、1.67(p,4H,SCH2 2CH2)、1.79(p,2H,NCH2 2CH2)、2.76(t,4H,SC 2CH2)、3.41(s,9H,NC 3)、3.53〜3.60(m,2H,NC 2CH2
製造例3
前駆体[(C18372N(CH32][Au(SC12252]の合成は、実施例1と同様にして[(C18372N(CH32][AuCl4]のメタノール懸濁液を調製し、これに1−ドデカンオールとナトリウムメチラートを含むメタノール溶液を反応させて合成した。
[C 14 H 29 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ]
Yield: 7.19 g
Yield: 87.9%
Melting point: 97.5-99.5 ° C
C 41 H 88 NS 2 Au: Calculated C, 57.51%; H, 10.36%; N, 1.64%, found C, 57.49%; H, 9.95%; N, 1 .91%
1 H-NMR: δ = 0.88 (t, 9H, C H 3 CH 2), 1.24~1.26 (m, 52H, CH 3 C H 2 C H 2 CH 2), 1.39~ 1.32 (m, 6H, NCH 2 CH 2 C H 2 CH 2, SCH 2 CH 2 C H 2 CH 2), 1.66 (p, 4H, SCH 2 C H 2 CH 2), 1.78 ( p, 2H, NCH 2 C H 2 CH 2), 2.76 (t, 4H, SC H 2 CH 2), 3.40 (s, 9H, NC H 3), 3.54~3.62 (m , 2H, NC H 2 CH 2 ) ( Note, NMR spectrum measurement, deuterated chloroform (CDCl 3) was used as a solvent, with tetramethylsilane as an internal standard. hereinafter the same.)
Production Example 2
The precursor [C 12 H 25 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ] was synthesized in the same manner as in Example 1 [C 12 H 25 N (CH 3 ) 3 ] [AuCl 4 Was prepared and reacted with a methanol solution containing 1-dodecanethiol and sodium methylate.
[C 12 H 25 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ]
Yield: 7.19 g
Yield: 90.8%
Melting point: 96.4-98.2 ° C
C 39 H 84 NS 2 Au: Calculated C, 56.56%; H, 10.22%; N, 1.69%, found C, 55.01%; H, 9.92%; N, 1 .91%
1 H-NMR: δ = 0.88 (t, 9H, C H 3 CH 2), 1.24~1.27 (m, 48H, CH 3 CH 2 CH 2 CH 2), 1.32~1. 39 (m, 6H, NCH 2 C H 2 C H 2 CH 2, SCH 2 CH 2 C H 2 CH 2), 1.67 (p, 4H, SCH 2 C H 2 CH 2), 1.79 (p , 2H, NCH 2 C H 2 CH 2), 2.76 (t, 4H, SC H 2 CH 2), 3.41 (s, 9H, NC H 3), 3.53~3.60 (m, 2H, NC H 2 CH 2 )
Production Example 3
The synthesis of the precursor [(C 18 H 37 ) 2 N (CH 3 ) 2 ] [Au (SC 12 H 25 ) 2 ] was carried out in the same manner as in Example 1, [C 18 H 37 ) 2 N (CH 3 2 ) [AuCl 4 ] in methanol was prepared, and the suspension was reacted with a methanol solution containing 1-dodecaneol and sodium methylate.

[(C18372N(CH33][Au(SC12252
収量:8.80
収率:74.2%
融点:86.0〜91.0℃
62130NS2Au:計算値C,64.71%;H,11.39%;N,1.22%、実測値C,63.22%;H,11.23%;N,1.53%
1H−NMR:δ=0.88(t,12H,C 3CH2)、1.24〜1.35(m,88H,CH3 2 2CH2)、1.35〜1.38(m、8H,NCH2CH2 2CH2,SCH2CH2 2CH2)、1.64〜1.75(m,8H,NCH2 2CH2,SCH2 2CH2)、2.76(t,4H,SC 2CH2)、3.32(s,6H,NC 3)、3.45〜3.52(m,4H,NC 2CH2
実施例1
製造例1で得られた前駆体[C1429N(CH33][Au(SC12252]の還元的脱離反応による金超微粒子の製造を行った。
[(C 18 H 37 ) 2 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ]
Yield: 8.80
Yield: 74.2%
Melting point: 86.0-91.0 ° C
C 62 H 130 NS 2 Au: Calculated C, 64.71%; H, 11.39%; N, 1.22%, found C, 63.22%; H, 11.23%; N, 1 .53%
1 H-NMR: δ = 0.88 (t, 12H, C H 3 CH 2), 1.24~1.35 (m, 88H, CH 3 C H 2 C H 2 CH 2), 1.35~ 1.38 (m, 8H, NCH 2 CH 2 C H 2 CH 2, SCH 2 CH 2 C H 2 CH 2), 1.64~1.75 (m, 8H, NCH 2 C H 2 CH 2, SCH 2 C H 2 CH 2), 2.76 (t, 4H, SC H 2 CH 2), 3.32 (s, 6H, NC H 3), 3.45~3.52 (m, 4H, NC H 2 CH 2 )
Example 1
Was produced ultrafine gold particles by reductive elimination reaction of the precursor obtained in Production Example 1 [C 14 H 29 N ( CH 3) 3] [Au (SC 12 H 25) 2].

[C1429N(CH33][Au(SC12252](7.74g、9.04mmol)をパイレックス製三ツ口フラスコにとり、油浴により130℃まで加熱して完全に融解させた後、160℃まで徐々に加熱した。その後、160℃で9時間反応を持続させた後、放冷した。生成した褐色の粉末を液状のジスルフィド(SC12252を分離し、エタノールで2回(30cm3×2)で洗浄し、桐山ロートでろ別し、減圧下で乾燥させ、褐色の金超微粒子を得た。得られた金超微粒子の透過型電子顕微鏡(TEM)により観察し、その観察結果に基づいて粒度分布を求めた。得られた金超微粒子の粒度分布を図1に示す。 [C 14 H 29 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ] (7.74 g, 9.04 mmol) was placed in a Pyrex three-necked flask and heated to 130 ° C. in an oil bath to completely melt. After that, it was gradually heated to 160 ° C. Thereafter, the reaction was maintained at 160 ° C. for 9 hours, and then allowed to cool. The resulting brown powder was separated from liquid disulfide (SC 12 H 25 ) 2 , washed twice with ethanol (30 cm 3 × 2), filtered off with a Kiriyama funnel, dried under reduced pressure, and dried under brown gold. Fine particles were obtained. The obtained ultrafine gold particles were observed with a transmission electron microscope (TEM), and the particle size distribution was determined based on the observation results. FIG. 1 shows the particle size distribution of the obtained ultrafine gold particles.

図1に示すように、4級アンモニウム塩型金属錯体化合物を熱処理(熱分解)することによって、粒径30〜40nmの中心分布をもつ金属超微粒子が得られることがわかる。   As shown in FIG. 1, it can be seen that heat treatment (thermal decomposition) of the quaternary ammonium salt type metal complex compound provides ultrafine metal particles having a central distribution with a particle size of 30 to 40 nm.

実施例2
加熱温度180℃及び180℃での保持時間9時間としたほかは、製造例1で得られた前駆体を用いて実施例1と同様にして金超微粒子の製造を行った。得られた金超微粒子の粒度分布を実施例1と同様にして求めた。その結果を図1に示す。図1の結果からも明らかなように、本発明では、加熱温度及び加熱時間により金属超微粒子の粒径を制御できることもわかる。
Example 2
Except that the heating temperature was 180 ° C. and the holding time at 180 ° C. was 9 hours, ultrafine gold particles were produced in the same manner as in Example 1 using the precursor obtained in Production Example 1. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG. As is clear from the results shown in FIG. 1, it can be seen that in the present invention, the particle size of the ultrafine metal particles can be controlled by the heating temperature and the heating time.

図2には、実施例2で得られた金超微粒子を透過型電子顕微鏡により観察した結果(TEM像)を示す。図2によれば、約50nm以下の粒径をもつほぼ球状の金超微粒子が生成していることがわかる。   FIG. 2 shows the result (TEM image) of the ultrafine gold particles obtained in Example 2 observed with a transmission electron microscope. According to FIG. 2, it can be seen that substantially spherical ultrafine gold particles having a particle size of about 50 nm or less are generated.

実施例3
製造例2で得られた前駆体[C1225N(CH33][Au(SC12252]を用い、加熱温度160℃及び160℃での保持時間7時間としたほかは、実施例1と同様にして金超微粒子の製造を行った。得られた金超微粒子の粒度分布を実施例1と同様にして求めた。その結果を図1に示す。
Example 3
Using the precursor [C 12 H 25 N (CH 3 ) 3 ] [Au (SC 12 H 25 ) 2 ] obtained in Production Example 2, the heating temperature was 160 ° C. and the holding time at 160 ° C. was 7 hours. Produced ultrafine gold particles in the same manner as in Example 1. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

実施例4
製造例3で得られた前駆体[(C18372N(CH32][Au(SC12252]を用い、加熱温度170℃及び170℃での保持時間6時間としたほかは、実施例1と同様にして金超微粒子の製造を行った。得られた金超微粒子の粒度分布を実施例1と同様にして求めた。その結果を図1に示す。
Example 4
Using the precursor [(C 18 H 37 ) 2 N (CH 3 ) 2 ] [Au (SC 12 H 25 ) 2 ] obtained in Production Example 3, a heating temperature of 170 ° C. and a holding time at 170 ° C. of 6 hours Other than that, ultrafine gold particles were produced in the same manner as in Example 1. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

また、図3には、実施例4で得られた金超微粒子の粉末X線回折分析を行った結果を示す。   FIG. 3 shows the results of powder X-ray diffraction analysis of the ultrafine gold particles obtained in Example 4.

実施例5
加熱温度を190℃及び190℃での保持時間6時間としたほかは、製造例3で得られた前駆体を用いて実施例4と同様にして金超微粒子の製造を行った。得られた金超微粒子の粒度分布を実施例1と同様にして求めた。その結果を図1に示す。
Example 5
Except that the heating temperature was 190 ° C. and the holding time at 190 ° C. was 6 hours, ultrafine gold particles were produced in the same manner as in Example 4 using the precursor obtained in Production Example 3. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

各実施例で得られた金超微粒子の粒度分布を示す図である。FIG. 3 is a diagram showing the particle size distribution of ultrafine gold particles obtained in each example. 実施例2で得られた金超微粒子のTEM像を示す。3 shows a TEM image of ultrafine gold particles obtained in Example 2. 実施例4で得られた金超微粒子の粉末X線回折分析結果を示す図である。FIG. 9 is a view showing the result of powder X-ray diffraction analysis of the ultrafine gold particles obtained in Example 4.

Claims (6)

一般式[R1234N]x[My(A)z](但し、R1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いもの、Mは遷移金属、Aは有機硫黄系配位子、xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数を示す。)で表わされる4級アンモニウム塩型金属錯体化合物を出発原料とし、当該化合物の有機硫黄系配位子の還元的脱離反応から中心金属を還元することを特徴とする金属超微粒子の製造方法。 General formula [R 1 R 2 R 3 R 4 N] x [M y (A) z] ( where, R 1 to R 4 is substituted by the same or different hydrocarbon radical M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A method for producing ultrafine metal particles, comprising using an ammonium salt type metal complex compound as a starting material, and reducing a central metal by a reductive elimination reaction of an organic sulfur-based ligand of the compound. 一般式[R1234N]x[My(A)z](但し、R1〜R4は、同一又は別異の炭化水素基であって置換基を有していても良いもの、Mは遷移金属、Aは有機硫黄系配位子、xは0よりも大きい整数、yは0よりも大きい整数、zは0よりも大きい整数を示す。)で表わされる4級アンモニウム塩型金属錯体化合物を、得られる金属超微粒子中の金属成分の含有量が80〜95重量%となるように熱処理することを特徴とする金属超微粒子の製造方法。 General formula [R 1 R 2 R 3 R 4 N] x [M y (A) z] ( where, R 1 to R 4 is substituted by the same or different hydrocarbon radical M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A method for producing ultrafine metal particles, comprising subjecting an ammonium salt type metal complex compound to a heat treatment so that the content of the metal component in the obtained ultrafine metal particles is 80 to 95% by weight. 金属超微粒子とともにジスルフィドを生成させる請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein disulfide is generated together with the ultrafine metal particles. 有機硫黄系配位子がチオレート配位子(SR’)又はチオアセチレン配位子(SC≡CR’)(いずれについても、R’は炭化水素基であって置換基を有していても良いものを示す。)である請求項1〜3のいずれかに記載の製造方法。 Wherein the organic sulfur-based ligand is a thiolate ligand (SR ′) or a thioacetylene ligand (SC≡CR ′) (in each case, R ′ is a hydrocarbon group and may have a substituent; The production method according to any one of claims 1 to 3. Mが、Au、Pt、Cu、Ni又はPdである請求項1〜4のいずれかに記載の製造方法。 The method according to claim 1, wherein M is Au, Pt, Cu, Ni, or Pd. 得られる金属超微粒子中の有機成分として4級アンモニウム塩型金属錯体化合物の対カチオンである[R1234N]に由来の炭化水素基成分を含む請求項1〜5のいずれかに記載の製造方法。 The organic ultrafine particle obtained contains a hydrocarbon group component derived from [R 1 R 2 R 3 R 4 N] which is a counter cation of a quaternary ammonium salt type metal complex compound as an organic component. The production method described in Crab.
JP2004070563A 2004-03-12 2004-03-12 Method for producing metal ultrafine particles Expired - Fee Related JP4623981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070563A JP4623981B2 (en) 2004-03-12 2004-03-12 Method for producing metal ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070563A JP4623981B2 (en) 2004-03-12 2004-03-12 Method for producing metal ultrafine particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37722099A Division JP3579765B2 (en) 1999-12-29 1999-12-29 Ultrafine metal particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004204354A true JP2004204354A (en) 2004-07-22
JP4623981B2 JP4623981B2 (en) 2011-02-02

Family

ID=32822266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070563A Expired - Fee Related JP4623981B2 (en) 2004-03-12 2004-03-12 Method for producing metal ultrafine particles

Country Status (1)

Country Link
JP (1) JP4623981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538948A (en) * 2006-05-31 2009-11-12 ライニッシュ−ヴェストフェリッシェ・テクニッシェ・ホッホシューレ・アーヘン Preparation and production of coating solutions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102504A (en) * 1981-12-14 1983-06-18 Fuji Photo Film Co Ltd Surface treatment for ferromagnetic fine powder
JPS6156201A (en) * 1984-08-24 1986-03-20 Ube Ind Ltd Surface treatment of magnetic metallic powder
JPH08259843A (en) * 1995-03-17 1996-10-08 Daiken Kagaku Kogyo Kk Double coated inorganic powder and its production
JPH10195505A (en) * 1997-01-09 1998-07-28 Mitsui Chem Inc Metallic superfine particle and production thereof
JP2000504374A (en) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ Monodisperse microcrystals of organically functionalized metals
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102504A (en) * 1981-12-14 1983-06-18 Fuji Photo Film Co Ltd Surface treatment for ferromagnetic fine powder
JPS6156201A (en) * 1984-08-24 1986-03-20 Ube Ind Ltd Surface treatment of magnetic metallic powder
JPH08259843A (en) * 1995-03-17 1996-10-08 Daiken Kagaku Kogyo Kk Double coated inorganic powder and its production
JP2000504374A (en) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ Monodisperse microcrystals of organically functionalized metals
JPH10195505A (en) * 1997-01-09 1998-07-28 Mitsui Chem Inc Metallic superfine particle and production thereof
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538948A (en) * 2006-05-31 2009-11-12 ライニッシュ−ヴェストフェリッシェ・テクニッシェ・ホッホシューレ・アーヘン Preparation and production of coating solutions

Also Published As

Publication number Publication date
JP4623981B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
Bootharaju et al. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing
Zeng et al. Transformation chemistry of gold nanoclusters: from one stable size to another
TWI242478B (en) Metal nanoparticle and process for producing the same
JP5527734B2 (en) Method for producing metal thin film
Dong et al. Investigation of pyrolysis temperature in the one-step synthesis of L1 0 FePt nanoparticles from a FePt-containing metallopolymer
Krishnadas et al. Metal–ligand interface in the chemical reactions of ligand-protected noble metal clusters
JP2011256460A (en) Increased throughput for large-scale production of low melting organoamine stabilized silver nano-particle
Dirk et al. Synthesis of nitrile-terminated potential molecular electronic devices
Lassoued et al. Synthesis, crystal structure, vibrational spectroscopy and photoluminescence of new hybrid compound containing chlorate anions of stanate (II)
JP3579765B2 (en) Ultrafine metal particles and method for producing the same
TW200902748A (en) Cobalt-containing film-forming material and method for forming cobalt silicide film using the material
WO2016181918A1 (en) Chemical vapor deposition starting material comprising heterogeneous polynuclear complex, and chemical vapor deposition method using said chemical vapor deposition starting material
CN107923038B (en) Raw material for chemical vapor deposition comprising binuclear ruthenium complex and chemical vapor deposition method using same
JP5732520B1 (en) Silver particle production method and silver particles produced by the method
JPWO2005089986A1 (en) Noble metal nanoparticles and production method thereof
JP4436093B2 (en) Ultrafine metal particles and method for producing the same
JP4623981B2 (en) Method for producing metal ultrafine particles
WO2009081797A1 (en) Material for formation of nickel-containing film, and method for production thereof
Tuchscherer et al. Simple and Efficient: Ethylene Glycol Isonitrile Gold (I) Chlorides for the Formation and Stabilization of Gold Nanoparticles
Preuß et al. Synthesis of β‐Ketoiminato Copper (II) Complexes and Their Use in Copper Deposition
WO2019078195A1 (en) Cyclopentadienyl nickel complex compound
JP4326005B2 (en) Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.
KR100704464B1 (en) Copper aminoalkoxide complexes, preparation method thereof and process for the formation of copper thin film using the same
Preuß et al. A β-ketoiminato palladium (II) complex for palladium deposition
JP2018162492A (en) Raw material for chemical vapor deposition composed of iridium complex, and chemical vapor deposition method using the raw material for chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081001

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees