JP2004204195A - Biodegradable molding and preparation process therefor - Google Patents

Biodegradable molding and preparation process therefor Download PDF

Info

Publication number
JP2004204195A
JP2004204195A JP2002383494A JP2002383494A JP2004204195A JP 2004204195 A JP2004204195 A JP 2004204195A JP 2002383494 A JP2002383494 A JP 2002383494A JP 2002383494 A JP2002383494 A JP 2002383494A JP 2004204195 A JP2004204195 A JP 2004204195A
Authority
JP
Japan
Prior art keywords
irradiation
weight
biodegradable polymer
lactic acid
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383494A
Other languages
Japanese (ja)
Inventor
Jiyoukiyuu Gen
丞烋 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMG Inc
Original Assignee
BMG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMG Inc filed Critical BMG Inc
Priority to JP2002383494A priority Critical patent/JP2004204195A/en
Publication of JP2004204195A publication Critical patent/JP2004204195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable molding with excellent mechanical strengths, heat resistance, durability and capable of sterilization in a short period of time, and a process for preparing the same. <P>SOLUTION: The molding has characteristic features prepared from a crosslinked product of a biodegradable polymer and a polyfunctional triazine compound at 0.01-20 wt.% to that of the polymer. The process for its preparation has a characteristic feature of molding the composition containing the biodegradable polymer and the polyfunctional triazine compound at 0.01-20 wt.% to that of the biodegradable polymer followed by ra irradiation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性高分子からなる成形物に属する。本発明の成形物は、例えば、医療分野、食品分野、衣料分野、農業分野、土木分野、学術研究分野、その他一般工業分野において、好適に用いられうる。また本発明は、生分解性高分子からなる成形物の製造方法に属する。
【0002】
【従来の技術】
生分解性高分子は、生体内酵素による作用、土中菌による作用又は加水分解などによって分解され、生体内や土中に吸収されうる高分子である。そのため、生分解性高分子からなる成形物は、手術用縫合糸、骨折接合部材、衣服、食品容器、食品包装フィルムなどとしての利用が期待されている。
【0003】
しかし、従来の生分解性高分子からなる成形物は、熱に弱く、機械的強度も低い。さらに、水分により崩壊しやすいので、耐久性が低い。そのため、従来の生分解性の成形物では、用途が限定されている。
【0004】
機械的強度を高める方法としては、生分解性高分子についてではないが、例えばポリプロピレンに水添ロジンメチルエステルを配合して放射線架橋させる方法(例えば、特許文献1参照)、ポリプロピレンにスチレン系樹脂を配合して放射線架橋させる方法(例えば、特許文献2参照)、その他ポリエチレンに適当な架橋剤を配合して放射線架橋させる方法などが知られている。
【0005】
だが、これらの方法では、放射線照射によってフリーラジカルが発生し、そのフリーラジカルが高分子鎖を切断するので、あまり効果的ではない。まして生分解性高分子は崩壊しやすいので、フリーラジカルによる切断が激しく起こり、その結果、むしろ機械的強度が低下する。よって、上記の方法を生分解性高分子に直ちに適用することはできない。
【0006】
また、手術用縫合糸、食品容器などの医療分野・食品分野において利用される成形物は、滅菌される必要がある。滅菌方法としては、オートクレーブによる方法や放射線照射する方法が一般的であるが、従来の生分解性成形物では耐熱性が低く崩壊しやすいので、これらの方法を採用することができない。それゆえ、エチレンオキサイドガス(EOG)による滅菌方法を採用しているが、この方法によると3日もかかる上に残留EOGによる毒性の問題がある。
【0007】
さらに、ラップ等の食品包装フィルムでは、電子レンジで使用できる程度の耐熱性とともに、食品を包むための柔軟性も要求される。しかしながら、これらの条件を満たし、かつ生分解性高分子を材料としたフィルムは、従来は知られていない。
【0008】
【特許文献1】特開昭61−213243号公報
【特許文献2】特開平7−157922号公報
【0009】
【発明が解決しようとする課題】
本発明の課題は、機械的強度、耐熱性及び耐久性に優れ、短時間で滅菌可能な生分解性成形物及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の成形物は、生分解性高分子と、この高分子に対して0.01〜20重量%の多官能トリアジン化合物とを含有するとともに架橋結合させた材料からなることを特徴とする。
【0011】
本発明の成形物によると、耐熱性が向上するとともに、水分に対する耐久性又は耐水性が向上する。また、機械的強度も向上するため、従来よりも利用範囲が広がる。さらに本発明の成形物では、放射線滅菌することが可能なので、短時間で滅菌処理をすることができ、しかも毒性が無いため安全である。その上、本発明の成形物では、架橋結合させる際に放射線を照射すると、架橋結合処理と滅菌処理とを同時に行うことができる。
【0012】
本発明の成形物において、生分解性高分子としては、ポリ−DL−乳酸、ポリ−L−乳酸、ポリ−D−乳酸、ポリグリコール酸、ポリカプロラクトン、ポリジオキサノン、又はポリトリメチレンカーボネートが好ましい。またポリヒドロキシブチレート等の微生物産生脂肪族ポリエステルも好ましい。その他にも、ポリアミド、ポリウレタン、ポリエチレンサクシネートやポリブチレンサクシネートなどの脂肪族ポリエステルも好ましい。さらに、それらの共重合体やブレンドでも良い。共重合体としては、グリコリド/カプロラクトン共重合体、L−乳酸/カプロラクトン共重合体、L−乳酸/ジオキサノン共重合体、グルコリド/トリメチレンカーボネート共重合体が特に好ましい。本発明の成形物に柔軟性を付与するためには、L−乳酸/カプロラクトン共重合体が適している。
【0013】
その他にも、コラーゲン、ゼラチン、キチン、キトサン、絹、セルロース、ヒアルロン酸、アルブミン、デキストラン、ポリグルタミン酸、ポリデプシペプチド、ポリフォスファゼン、ポリブチレンサクシネート、又はそれらの共重合体を使用することができる。また生分解性高分子は、天然高分子でも合成高分子でも良い。
生分解性高分子の好ましい重量平均分子量は10万〜60万で、特に好ましいのは12万〜45万である。
【0014】
本発明の成形物における多官能トリアジン化合物としては、トリアリルイソシアヌレート又はその誘導体が好ましい。誘導体としては、トリメタアリルイソシアヌレート、トリ(2、3−ジブロモプロピル)イソシアヌレート等が挙げられる。
多官能トリアジン化合物の濃度は、生分解性高分子に対して0.01〜20重量%であるが、好ましい濃度は、0.5〜6.0重量%であり、特に好ましいのは1.0〜3.5重量%である。
【0015】
本発明の成形物における架橋結合の度合については、ゲル分率が30重量%以上になる程度が好ましく、より好ましいのは50重量%以上である。
本発明の成形物には、必要に応じて、ビタミンE、ビタミンC、カテキン類等の抗酸化剤、熱安定化剤、紫外線吸収剤、光安定剤、着色剤、帯電防止剤、滑剤、核剤、難燃剤、充填材などが加えられても良い。また、耐熱性や耐久性を向上させるため無機物、例えば層状ケイ酸塩、セラミックス、シリカガラス繊維、炭素繊維等をブレンドした複合体を形成させることも良い。
【0016】
本発明の成形物の形状は、特に限定されず、用途に応じて最も好ましい形状を選択すると良い。例えば、繊維状、糸状、ロッド状、シート状、フィルム状、袋状、シャーレ状、容器状、針状、チューブ状、パイプ状、成形体、発泡体、スポンジ状、多孔体などが挙げられる。
【0017】
本発明の成形物の用途については、医療分野、食品分野、衣料分野、農業分野、土木分野、学術分野、その他一般工業分野において、適用されうる。
医療分野では、手術用縫合糸、人工血管、骨折接合材、歯科材料、創傷被覆材、人工皮膚、コンタクトレンズ、眼内レンズ、人工靱帯、人工弁、人工関節擢動部材、メッシュ、医療用不織布、ステント、クリップ、ホッチキス、人工硬膜、組織再生用足場、癒養防止材、吻合用スプリント、ディスポーザブル用注射器、カテーテル、輸液チューブ、血液バッグ、チューブ、手術用手袋、ガウン、シーツ、フィルター、フィーディングチューブ、バルーンカテーテル、クリーンチューブ、スヒッツ、採血管、輸液点滴筒、採血針、義歯床、人工歯、尿バッグ、人工肛門、輸液回路、血液成分保存用凍結バッグなどが挙げられる。
【0018】
食品分野としては、ラップ等の包装フィルム、包装袋、食品容器などが挙げられる。この他にも、衣服、マルチ、肥料袋、寒冷紗、土嚢袋、樹木保護ネット、植樹ポット、法面保護シート、ごみ袋、試験管、細胞培養用器具、シャーレ、組織培養用バッグ、三方活栓、注射針、翼状針、導液針、自動車部品、情報媒体包装材、ゴルフボールなどに適用することができる。
【0019】
本発明の成形物の望ましい製造方法は、生分解性高分子と、この高分子に対して0.01〜20重量%の多官能トリアジン化合物とを含有する組成物を成形した後、放射線照射することを特徴とする。
【0020】
この製造方法では、放射線照射による架橋結合処理が滅菌処理を兼ねている。よって成形物の材料の特性を向上させると同時に滅菌することができ、そのため、生産効率が上がる。
【0021】
本発明の成形物の製造方法において、成形方法については特に限定されず、形状や用途に応じて適当な方法を採用すると良い。例えば、溶融紡糸、射出成形、押出し成形、プレス成形、中空成形、熱成形、圧縮成形、FRP成形、ロール成形などが挙げられる。
【0022】
照射される放射線の種類としては、α線、β線、γ線、中性子線及びx線などがある。特に好ましいのは、コバルト60からのγ線及び電子線である。また、放射線量については10〜50kGy程度が好ましく、照射時間については数秒から数時間が好ましい。
【0023】
【実施例】
本発明を下記の実施例で詳細に説明するが、その説明によって本発明は何ら限定されない。
【0024】
[実施例1]
十分に乾燥した重量平均分子量約18万のポリジオキサノン(ヘキサフルオロイソプロパノール(HFIP)の0.1g/dlの溶液における25℃の固有粘度2.5)のペレットに、ポリジオキサノンに対して2.5重量%のトリアリルイソシアヌレートを添加した後、簡易型溶融紡糸機にて紡糸、延伸し、そしてアニーリングしてモノフィラメントを得た。このモノフィラメントをアルミ/ポリエチレンラミネート袋に窒素置換パックした後、電子線を25kGy照射し滅菌した。
【0025】
この電子線照射後のモノフィラメントをHFIPに浸漬したところ、これに溶解せず膨潤し、そのゲル分率は約77重量%であった。また電子線照射前及び照射後のモノフィラメントについて、引張り強度及び伸度を測定した。引張強度試験はJIS−L1017に従って行い、(株)島津製作所製オートグラフ100型引張試験機を用いて25℃、65%RH恒温恒湿室にて、試料長250mm、引張り速度300mm/minで測定した。その結果、電子線照射前のモノフィラメントの引張り強度及び伸度は、それぞれ4.3g/d及び36%であったが、照射後は4.8g/d及び35%であった。
【0026】
比較のために、トリアリルイソシアヌレートを添加しない以外は、上記と同じくポリジオキサノンを紡糸、延伸、アニーリングした。そして、得られたモノフィラメントを同じくパックし電子線照射した。この照射後のモノフィラメントはHFIPに溶解し、ゲル分率は0重量%であった。また、照射後のモノフィラメントの引張り強度と伸度は、それぞれ3.1g/dと22%に低下していた。
【0027】
[実施例2]
十分に乾燥した重量平均分子量約34万のポリ−L−乳酸(PLLA)のペレットに、ポリ−L−乳酸に対して1.0重量%のトリアリルイソシアヌレートを添加した後、射出成形機によりφ10mm、長さ10cmのロッド状に成形した。さらに、このロッドを静水圧押出し成形機により140℃で押出比4に固体押出成形を行った。この成形物を窒素置換したアルミ/ポリエチレンラミネート袋にパックした後、コバルト60γ線を25kGy照射し滅菌した。
【0028】
このγ線照射後の成形物を塩化メチレンに浸漬したところ、これに溶解せず膨潤し、ゲル分率は約67重量%であった。また、照射前及び照射後の成形物についてJISK7171に準拠して3点圧縮曲げ強度を測定したところ、照射前は250MPaであったが、照射後は260MPaであった。また圧縮曲げ弾性率を測定したところ、照射前は6.2GPaであったが、照射後は8.5GPaに向上した。
【0029】
比較のために、トリアリルイソシアヌレートを添加しない以外は、上記と同じくPLLAを射出成形し、得られたロッドをさらに固体押出成形した。この成形物を同じくパックし、コバルト60γ線を25kGy照射した。このγ線照射後の成形物は塩化メチレンに溶解し、ゲル分率は0重量%であった。また、照射後の成形物の3点圧縮曲げ強度は180MPaと、また圧縮曲げ弾性率も4.3GPaと大きく低下していた。
【0030】
[実施例3]
十分に乾燥した重量平均分子量約12万のポリグリコール酸(フェノールと2.4.6トリクロロフェノールの10/7(重量比)混合溶媒の170℃でのηsp/c1.4)のペレットに、ポリグリコール酸に対して3.0重量%のトリアリルイソシアヌレートを添加した後、簡易溶融紡糸機にて紡糸、延伸そしてアニーリングして、マルチフィラメントを得た。このマルチフィラメントをアルミ/ポリエチレンラミネート袋に窒素置換パックした後、電子線を25kGy照射し滅菌した。
【0031】
この電子線照射後のマルチフィラメントを170℃のフェノール/2.4.6トリクロロフェノール(10/7(重量比))混合溶媒に浸漬したところ、これに溶解せず膨潤した。そのゲル分率は約58重量%であった。また、照射前及び照射後のマルチフィラメントについて、実施例1と同様に引張り強度及び伸度を測定した。その結果、照射前の引張り強度及び伸度は、それぞれ7.6g/d及び25%であったが、照射後もそれらの値は殆ど変わらなかった。
【0032】
比較のために、トリアリルイソシアヌレートを添加しない以外は、上記と同じくポリグリコール酸を紡糸、延伸、アニーリングした。そして、得られたマルチフィラメントを同じくパックし電子線照射した。この照射後のマルチフィラメントを170℃のフェノール/2,4,6トリクロロフェノール(10/7(重量比))混合溶媒に浸漬したところ、全て溶解した。また、このマルチフィラメントの引張り強度及び伸度は、それぞれ3.8g/d及び17%に低下していた。
【0033】
[実施例4]
十分に乾燥した重量平均分子量約42万のL−乳酸/カプロラクトン共重合体のペレットに、L−乳酸/カプロラクトン共重合体に対して1.8重量%のトリアリルイソシアヌレート及び0.2重量%のビタミンEを添加した後、簡易溶融紡糸機にて紡糸、延伸そしてアニーリングしてモノフィラメントを得た。このモノフィラメントをアルミ/ポリエチレンラミネート袋に窒素置換パックした後、電子線を25kGy照射し滅菌した。
【0034】
この照射後のモノフィラメントをクロロホルムに浸漬したところ、これに溶けず膨潤し、そのゲル分率は約63重量%であった。また、照射前及び照射後のモノフィラメントについて、実施例1と同様に引張り強度及び伸度を測定した。その結果、照射前の引張り強度及び伸度は、それぞれ5.9g/d及び32%であったが、照射後もそれらの値は殆ど変わらなかった。
【0035】
比較のために、トリアリルイソシアヌレートを添加しない以外は、上記と同じくL−乳酸/カプロラクトン共重合体を紡糸、延伸、アニーリングした。そして、得られたモノフィラメントを同じくパックし電子線照射した。この照射後のモノフィラメントをクロロホルムに浸漬したところ、全て溶解した。また、このモノフィラメントの引張り強度及び伸度は、それぞれ2.9g/d及び21%に低下していた。
【0036】
[実施例5]
十分に乾燥した重量平均分子量約26万のポリ−L−乳酸のペレットに、ポリ−L−乳酸に対して3.0重量%のトリアリルイソシアヌレートを添加した後、プレス成形機にて厚み1.0mmのシートを成形した。このシートを減圧パックした後に空気中で電子線を50kGy照射し滅菌した。
【0037】
この照射後のシートをクロロホルムに浸漬したところ、これに溶けず膨潤し、そのゲル分率は約100重量%であった。また、照射後のシートはガラス転移点である60℃以上でも軟化せず300℃まで形状が保たれ、耐熱性が向上していた。また照射前後において引張り強度を測定したところ、照射前は80MPaであったが、照射後は83MPaであった。さらに、37℃で加水分解実験を行ったところ、照射前は2ヶ月でクラックが生じ強度が0になったが、照射後は2ヶ月でもクラックの発生がなく、3ヶ月で強度が0になった。
【0038】
[実施例6]
十分に乾燥した重量平均分子量約38万のL−乳酸/カプロラクトン共重合体(共重合組成比(mol比)70/30)のペレットに、L−乳酸/カプロラクトン共重合体に対して3.0重量%のトリアリルイソシアヌレート及び2.0重量%のビタミンEを添加した後、溶融フィルム成形機にて厚み100μmのフィルムを成形した。このフィルムに空気中で電子線を30kGy照射し滅菌した。
【0039】
この照射後のフィルムをクロロホルムに浸漬したところ、これに溶けず膨潤し、そのゲル分率は約79重量%であった。また、照射後のフィルムで冷凍食品を包装し、家庭用電子レンジにて解凍した。その結果、フィルムの形状変化はなく、耐熱性が認められた。
【0040】
[実施例7]
十分に乾燥した重量平均分子量約26万のポリ−L−乳酸ペレットに、ポリ−L−乳酸に対して1.5重量%のトリアリルイソシアヌレートを添加した後、射出成形機にて細胞培養用シャーレを成形した。このシャーレを減圧パックした後、電子線を30KGy照射し滅菌した。
【0041】
このシャーレを繊維芽細胞の培養に使ったところ、従来のスチレン製シャーレと細胞増殖能は同等であったが、ポリスチレン製シャーレに比べて強度があり耐久性が認められた。
【0042】
[実施例8]
十分に乾燥した重量平均分子量約24万のポリ−L−乳酸ペレットに、ポリ−L−乳酸に対して2.0重量%のトリアリルイソシアヌレートを添加した後、溶融紡糸機にてマルチフィラメントを得た。またその後6倍に熱延伸した。この延伸マルチフィラメントに電子線を25KGy照射した。
【0043】
この照射後のマルチフィラメントをクロロホルムに浸漬したところ、これに溶けず膨潤し、そのゲル分率は約100重量%であった。照射前後において引張り強度を測定したところ、照射前は68kgf/mmであったが、照射後は71kgf/mmであった。また、50℃での加水分解性を検討したところ、照射前は1ヶ月で強度が0になったが、照射後は1ヶ月でも強度を保っており、その後1.5ヶ月後に強度が0になった。
【0044】
[実施例9]
十分に乾燥した重量平均分子量約28万のポリ−L−乳酸ペレットに、ポリ−L−乳酸に対して1.8重量%のトリアリルイソシアヌレートを添加した後、押し出し成形機を用い、Tダイにして500μmのフィルムを成形した後、逐次法にて二軸延伸ポリ−L−乳酸フィルムを得た。その後、電子線を20KGy照射し架橋されたフィルムを得た。
【0045】
二軸延伸フィルムは照射後も透明性を呈していた。照射前後においてフィルムの引張り強度を測定したところ、照射前は35kgf/mmであったが、照射後は38kgf/mmであった。また、耐熱性と耐熱水性も向上していた。
【0046】
【発明の効果】
本発明によると、生分解性成形物の機械的強度、耐熱性及び耐久性を向上させることができる。また、滅菌処理を短時間で行うことができ、生産効率の向上を図ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molded article made of a biodegradable polymer. The molded article of the present invention can be suitably used, for example, in the medical field, food field, clothing field, agriculture field, civil engineering field, academic research field, and other general industrial fields. The present invention also belongs to a method for producing a molded product made of a biodegradable polymer.
[0002]
[Prior art]
The biodegradable polymer is a polymer that can be decomposed by an action of an enzyme in a living body, an action of a soil bacterium, hydrolysis, or the like, and can be absorbed into a living body or soil. Therefore, molded articles made of the biodegradable polymer are expected to be used as surgical sutures, fracture joining members, clothes, food containers, food packaging films, and the like.
[0003]
However, conventional molded articles made of biodegradable polymers are weak to heat and have low mechanical strength. Furthermore, since it is easily disintegrated by moisture, durability is low. Therefore, the use of the conventional biodegradable molded product is limited.
[0004]
The method of increasing the mechanical strength is not for biodegradable polymers, but for example, a method of blending hydrogenated rosin methyl ester with polypropylene for radiation crosslinking (for example, see Patent Document 1), a method of adding a styrene resin to polypropylene. There are known a method of mixing and radiation-crosslinking (for example, see Patent Document 2), a method of mixing radiation-crosslinking by blending an appropriate crosslinking agent with polyethylene, and the like.
[0005]
However, these methods are not very effective because free radicals are generated by irradiation, and the free radicals break the polymer chains. Even more, the biodegradable polymer is easily broken down, so severe cleavage by free radicals occurs, and as a result, mechanical strength is rather lowered. Therefore, the above method cannot be immediately applied to a biodegradable polymer.
[0006]
Further, molded articles used in the medical field and the food field, such as surgical sutures and food containers, need to be sterilized. As a sterilization method, a method using an autoclave or a method of irradiating radiation is generally used. However, these methods cannot be adopted because conventional biodegradable molded articles have low heat resistance and easily disintegrate. Therefore, a sterilization method using ethylene oxide gas (EOG) is employed. However, this method requires three days and has a problem of toxicity due to residual EOG.
[0007]
Furthermore, food packaging films such as wraps are required to have sufficient heat resistance so that they can be used in a microwave oven and also have flexibility to wrap food. However, a film satisfying these conditions and using a biodegradable polymer as a material has not been hitherto known.
[0008]
[Patent Document 1] JP-A-61-213243 [Patent Document 2] JP-A-7-157922
[Problems to be solved by the invention]
An object of the present invention is to provide a biodegradable molded article having excellent mechanical strength, heat resistance and durability, which can be sterilized in a short time, and a method for producing the same.
[0010]
[Means for Solving the Problems]
The molded article of the present invention is characterized by comprising a material containing a biodegradable polymer and a polyfunctional triazine compound in an amount of 0.01 to 20% by weight based on the polymer and cross-linked.
[0011]
According to the molded article of the present invention, heat resistance is improved, and durability or water resistance to moisture is improved. Further, since the mechanical strength is also improved, the range of use is wider than before. Furthermore, since the molded article of the present invention can be sterilized by radiation, it can be sterilized in a short time, and is safe because it has no toxicity. In addition, in the molded article of the present invention, when radiation is applied during cross-linking, cross-linking treatment and sterilization treatment can be performed simultaneously.
[0012]
In the molded article of the present invention, the biodegradable polymer is preferably poly-DL-lactic acid, poly-L-lactic acid, poly-D-lactic acid, polyglycolic acid, polycaprolactone, polydioxanone, or polytrimethylene carbonate. Microbial aliphatic polyesters such as polyhydroxybutyrate are also preferred. In addition, aliphatic polyesters such as polyamide, polyurethane, polyethylene succinate and polybutylene succinate are also preferable. Further, a copolymer or a blend thereof may be used. As the copolymer, glycolide / caprolactone copolymer, L-lactic acid / caprolactone copolymer, L-lactic acid / dioxanone copolymer, and glucolide / trimethylene carbonate copolymer are particularly preferable. In order to impart flexibility to the molded article of the present invention, an L-lactic acid / caprolactone copolymer is suitable.
[0013]
In addition, collagen, gelatin, chitin, chitosan, silk, cellulose, hyaluronic acid, albumin, dextran, polyglutamic acid, polydepsipeptide, polyphosphazene, polybutylene succinate, or a copolymer thereof can be used. . The biodegradable polymer may be a natural polymer or a synthetic polymer.
The weight average molecular weight of the biodegradable polymer is preferably from 100,000 to 600,000, and particularly preferably from 120,000 to 450,000.
[0014]
As the polyfunctional triazine compound in the molded article of the present invention, triallyl isocyanurate or a derivative thereof is preferable. Derivatives include trimetaallyl isocyanurate, tri (2,3-dibromopropyl) isocyanurate and the like.
The concentration of the polyfunctional triazine compound is from 0.01 to 20% by weight based on the biodegradable polymer, and the preferred concentration is from 0.5 to 6.0% by weight, particularly preferably from 1.0 to 1.0% by weight. ~ 3.5% by weight.
[0015]
The degree of crosslinking in the molded article of the present invention is preferably such that the gel fraction is 30% by weight or more, and more preferably 50% by weight or more.
The molded article of the present invention may contain, if necessary, antioxidants such as vitamin E, vitamin C, and catechins, heat stabilizers, ultraviolet absorbers, light stabilizers, coloring agents, antistatic agents, lubricants, nuclei. Agents, flame retardants, fillers and the like may be added. It is also possible to form a composite in which an inorganic substance, for example, a layered silicate, ceramics, silica glass fiber, carbon fiber or the like is blended in order to improve heat resistance and durability.
[0016]
The shape of the molded product of the present invention is not particularly limited, and the most preferable shape may be selected according to the application. Examples include fibrous, thread-like, rod-like, sheet-like, film-like, bag-like, petri-dish, container-like, needle-like, tube-like, pipe-like, molded, foamed, sponge-like, and porous bodies.
[0017]
The use of the molded article of the present invention can be applied in the medical field, food field, clothing field, agricultural field, civil engineering field, academic field, and other general industrial fields.
In the medical field, surgical sutures, artificial blood vessels, fracture bonding materials, dental materials, wound dressings, artificial skin, contact lenses, intraocular lenses, artificial ligaments, artificial valves, artificial joint movement members, meshes, medical nonwoven fabrics , Stent, clip, stapler, artificial dura, tissue regeneration scaffold, anti-healing material, anastomotic splint, disposable syringe, catheter, infusion tube, blood bag, tube, surgical gloves, gown, sheets, filter, feeding Examples include a tube, a balloon catheter, a clean tube, a sheet, a blood collection tube, an infusion tube, a blood collection needle, a denture base, an artificial tooth, a urine bag, an ostomy, an infusion circuit, and a frozen bag for storing blood components.
[0018]
The food field includes packaging films such as wraps, packaging bags, food containers and the like. In addition, clothes, mulch, fertilizer bags, cold gauze, sandbags, tree protection nets, planting pots, slope protection sheets, garbage bags, test tubes, cell culture instruments, petri dishes, tissue culture bags, three-way cocks, It can be applied to injection needles, wing needles, liquid guide needles, automobile parts, information medium packaging materials, golf balls, and the like.
[0019]
A desirable method for producing the molded article of the present invention is to form a composition containing a biodegradable polymer and 0.01 to 20% by weight of the polyfunctional triazine compound with respect to the polymer, and then irradiate the composition with radiation. It is characterized by the following.
[0020]
In this manufacturing method, the crosslinking treatment by irradiation also serves as a sterilization treatment. Therefore, it is possible to improve the properties of the material of the molded product and at the same time to sterilize the material, thereby increasing the production efficiency.
[0021]
In the method for producing a molded article according to the present invention, the molding method is not particularly limited, and an appropriate method may be employed depending on the shape and application. Examples include melt spinning, injection molding, extrusion molding, press molding, hollow molding, thermoforming, compression molding, FRP molding, roll molding, and the like.
[0022]
Types of radiation to be irradiated include α-rays, β-rays, γ-rays, neutron rays, and x-rays. Particularly preferred are gamma rays and electron beams from cobalt 60. The radiation dose is preferably about 10 to 50 kGy, and the irradiation time is preferably several seconds to several hours.
[0023]
【Example】
The present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto.
[0024]
[Example 1]
A pellet of sufficiently dried polydioxanone having a weight average molecular weight of about 180,000 (intrinsic viscosity at 25 ° C. in a 0.1 g / dl solution of hexafluoroisopropanol (HFIP) at 2.5 ° C.) was added in an amount of 2.5% by weight based on the polydioxanone. After the addition of triallyl isocyanurate, spinning, drawing and annealing were performed with a simple melt spinning machine to obtain a monofilament. After the monofilament was packed in an aluminum / polyethylene laminate bag by nitrogen replacement, it was sterilized by irradiation with an electron beam at 25 kGy.
[0025]
When the monofilament irradiated with the electron beam was immersed in HFIP, it did not dissolve therein but swelled, and its gel fraction was about 77% by weight. Further, the tensile strength and elongation of the monofilament before and after electron beam irradiation were measured. The tensile strength test is performed in accordance with JIS-L1017, and is measured using an Autograph 100 type tensile tester manufactured by Shimadzu Corporation in a 25 ° C., 65% RH constant temperature and humidity chamber at a sample length of 250 mm and a tensile speed of 300 mm / min. did. As a result, the tensile strength and elongation of the monofilament before electron beam irradiation were 4.3 g / d and 36%, respectively, but were 4.8 g / d and 35% after irradiation.
[0026]
For comparison, polydioxanone was spun, stretched and annealed in the same manner as described above except that triallyl isocyanurate was not added. Then, the obtained monofilament was similarly packed and irradiated with an electron beam. The monofilament after this irradiation was dissolved in HFIP, and the gel fraction was 0% by weight. Further, the tensile strength and elongation of the monofilament after irradiation were reduced to 3.1 g / d and 22%, respectively.
[0027]
[Example 2]
To a sufficiently dried pellet of poly-L-lactic acid (PLLA) having a weight average molecular weight of about 340,000, 1.0% by weight of triallyl isocyanurate based on poly-L-lactic acid was added, and then the mixture was injected with an injection molding machine. It was formed into a rod shape having a diameter of 10 mm and a length of 10 cm. Further, the rod was subjected to solid extrusion at an extrusion ratio of 4 at 140 ° C. by an isostatic extruder. This molded product was packed in an aluminum / polyethylene laminate bag purged with nitrogen, and then sterilized by irradiation with cobalt 60γ rays at 25 kGy.
[0028]
When the molded product after the γ-ray irradiation was immersed in methylene chloride, it did not dissolve therein but swelled, and the gel fraction was about 67% by weight. The three-point compressive bending strength of the molded product before and after irradiation was measured in accordance with JIS K7171 and found to be 250 MPa before irradiation and 260 MPa after irradiation. Also, when the compression bending elastic modulus was measured, it was 6.2 GPa before irradiation, but improved to 8.5 GPa after irradiation.
[0029]
For comparison, PLLA was injection-molded in the same manner as described above except that triallyl isocyanurate was not added, and the obtained rod was further subjected to solid extrusion molding. This molded product was packed in the same manner and irradiated with cobalt 60γ rays at 25 kGy. The molded product after the γ-ray irradiation was dissolved in methylene chloride, and the gel fraction was 0% by weight. In addition, the three-point compression bending strength of the molded article after irradiation was 180 MPa, and the compression bending elastic modulus was greatly reduced to 4.3 GPa.
[0030]
[Example 3]
A pellet of sufficiently dried polyglycolic acid having a weight average molecular weight of about 120,000 (ηsp / c 1.4 at 170 ° C. in a mixed solvent of phenol and 2.4.6 trichlorophenol in a 10/7 (weight ratio) solvent) was added After adding 3.0% by weight of triallyl isocyanurate to glycolic acid, the mixture was spun, stretched and annealed by a simple melt spinning machine to obtain a multifilament. The multifilament was packed in an aluminum / polyethylene laminate bag with a nitrogen purge, and then sterilized by irradiation with an electron beam at 25 kGy.
[0031]
When the multifilament after the electron beam irradiation was immersed in a mixed solvent of phenol / 2.4.6 trichlorophenol (10/7 (weight ratio)) at 170 ° C., the multifilament swelled without being dissolved therein. The gel fraction was about 58% by weight. The tensile strength and elongation of the multifilament before and after irradiation were measured in the same manner as in Example 1. As a result, the tensile strength and elongation before irradiation were 7.6 g / d and 25%, respectively, but their values hardly changed after irradiation.
[0032]
For comparison, polyglycolic acid was spun, stretched and annealed in the same manner as above, except that triallyl isocyanurate was not added. Then, the obtained multifilament was similarly packed and irradiated with an electron beam. When the multifilament after the irradiation was immersed in a mixed solvent of phenol / 2,4,6, trichlorophenol (10/7 (weight ratio)) at 170 ° C., the whole was dissolved. Also, the tensile strength and elongation of this multifilament were reduced to 3.8 g / d and 17%, respectively.
[0033]
[Example 4]
A sufficiently dried pellet of an L-lactic acid / caprolactone copolymer having a weight average molecular weight of about 420,000 was mixed with 1.8% by weight of triallyl isocyanurate and 0.2% by weight based on the L-lactic acid / caprolactone copolymer. Was added, and the mixture was spun, stretched and annealed by a simple melt spinning machine to obtain a monofilament. After the monofilament was packed in an aluminum / polyethylene laminate bag by nitrogen replacement, it was sterilized by irradiation with an electron beam at 25 kGy.
[0034]
When the monofilament after this irradiation was immersed in chloroform, it did not dissolve therein and swelled, and its gel fraction was about 63% by weight. Further, the tensile strength and elongation of the monofilament before and after irradiation were measured in the same manner as in Example 1. As a result, the tensile strength and elongation before irradiation were 5.9 g / d and 32%, respectively, but their values hardly changed after irradiation.
[0035]
For comparison, an L-lactic acid / caprolactone copolymer was spun, drawn, and annealed in the same manner as described above except that triallyl isocyanurate was not added. Then, the obtained monofilament was similarly packed and irradiated with an electron beam. When the irradiated monofilament was immersed in chloroform, it was completely dissolved. Also, the tensile strength and elongation of this monofilament were reduced to 2.9 g / d and 21%, respectively.
[0036]
[Example 5]
To a sufficiently dried pellet of poly-L-lactic acid having a weight-average molecular weight of about 260,000, 3.0% by weight of triallyl isocyanurate based on poly-L-lactic acid was added, and then a thickness of 1 wt. A sheet of 0.0 mm was formed. After the sheet was packed under reduced pressure, the sheet was irradiated with 50 kGy of electron beam in the air and sterilized.
[0037]
When the sheet after irradiation was immersed in chloroform, it did not dissolve therein and swelled, and its gel fraction was about 100% by weight. Further, the sheet after irradiation did not soften even at a glass transition point of 60 ° C. or higher, and maintained its shape up to 300 ° C., thus improving heat resistance. When the tensile strength was measured before and after irradiation, it was 80 MPa before irradiation and was 83 MPa after irradiation. Further, when a hydrolysis experiment was performed at 37 ° C., cracks occurred in two months before irradiation and the intensity became 0, but no cracks occurred in 2 months after irradiation, and the intensity became 0 in 3 months. Was.
[0038]
[Example 6]
A sufficiently dried pellet of an L-lactic acid / caprolactone copolymer having a weight-average molecular weight of about 380,000 (copolymer composition ratio (mol ratio) 70/30) was added in an amount of 3.0 to the L-lactic acid / caprolactone copolymer. After adding wt% triallyl isocyanurate and 2.0 wt% vitamin E, a 100 μm thick film was formed by a melt film forming machine. The film was irradiated with 30 kGy of electron beam in air to sterilize it.
[0039]
When the film after the irradiation was immersed in chloroform, it did not dissolve therein and swelled, and its gel fraction was about 79% by weight. In addition, the frozen food was wrapped with the irradiated film and thawed in a household microwave oven. As a result, there was no change in the shape of the film, and heat resistance was observed.
[0040]
[Example 7]
To a sufficiently dried poly-L-lactic acid pellet having a weight average molecular weight of about 260,000, 1.5% by weight of triallyl isocyanurate with respect to poly-L-lactic acid was added, and then used for cell culture using an injection molding machine. A petri dish was formed. After the petri dish was packed under reduced pressure, it was irradiated with 30 KGy of electron beam and sterilized.
[0041]
When this petri dish was used for culturing fibroblasts, the cell growth ability was equivalent to that of a conventional styrene petri dish, but it was stronger and more durable than a polystyrene petri dish.
[0042]
Example 8
After adding 2.0% by weight of triallyl isocyanurate to poly-L-lactic acid to a sufficiently dried poly-L-lactic acid pellet having a weight average molecular weight of about 240,000, a multifilament is formed by a melt spinning machine. Obtained. Thereafter, it was hot stretched 6 times. The drawn multifilament was irradiated with an electron beam at 25 KGy.
[0043]
When the multifilament after the irradiation was immersed in chloroform, it did not dissolve therein and swelled, and its gel fraction was about 100% by weight. Was the tensile strength was measured in before and after irradiation, before irradiation was the 68kgf / mm 2, after the irradiation was 71kgf / mm 2. In addition, when the hydrolyzability at 50 ° C. was examined, the intensity was reduced to 0 in one month before irradiation, but was maintained for 1 month after irradiation, and then reduced to 0 after 1.5 months. became.
[0044]
[Example 9]
To a sufficiently dried poly-L-lactic acid pellet having a weight average molecular weight of about 280,000, 1.8% by weight of triallyl isocyanurate with respect to poly-L-lactic acid was added, and the T-die was formed using an extruder. After forming a 500 μm film, a biaxially stretched poly-L-lactic acid film was obtained by a sequential method. Thereafter, the film was irradiated with an electron beam at 20 KGy to obtain a crosslinked film.
[0045]
The biaxially stretched film exhibited transparency even after irradiation. When the tensile strength of the film was measured before and after irradiation, it was 35 kgf / mm 2 before irradiation, but was 38 kgf / mm 2 after irradiation. Further, heat resistance and hot water resistance were also improved.
[0046]
【The invention's effect】
According to the present invention, the mechanical strength, heat resistance and durability of a biodegradable molded product can be improved. Further, the sterilization can be performed in a short time, and the production efficiency can be improved.

Claims (7)

生分解性高分子と、この高分子に対して0.01〜20重量%の多官能トリアジン化合物とを含有するとともに架橋結合させた材料からなることを特徴とする成形物。A molded article comprising a material containing a biodegradable polymer and a polyfunctional triazine compound in an amount of 0.01 to 20% by weight based on the polymer and cross-linked. 前記生分解性高分子が、ポリ−DL−乳酸、ポリ−L−乳酸、ポリ−D−乳酸、ポリグリコール酸、ポリカプロラクトン、ポリジオキサノン、ポリトリメチレンカーボネート、微生物産生脂肪族ポリエステル、ポリアミド、ポリウレタン、ポリエチレンサクシネートやポリブチレンサクシネートなどの脂肪族ポリエステル、又はそれらの共重合体やブレンドである請求項1に記載の成形物。The biodegradable polymer is poly-DL-lactic acid, poly-L-lactic acid, poly-D-lactic acid, polyglycolic acid, polycaprolactone, polydioxanone, polytrimethylene carbonate, microorganism-produced aliphatic polyester, polyamide, polyurethane, The molded article according to claim 1, which is an aliphatic polyester such as polyethylene succinate or polybutylene succinate, or a copolymer or blend thereof. 前記多官能トリアジン化合物が、トリアリルイソシアヌレート又はその誘導体である請求項1又は2に記載の成形物。The molded article according to claim 1, wherein the polyfunctional triazine compound is triallyl isocyanurate or a derivative thereof. 前記多官能トリアジン化合物の範囲が、前記生分解性高分子に対して0.5〜6.0重量%である請求項1〜3のいずれかに記載の成形物。The molded product according to any one of claims 1 to 3, wherein the range of the polyfunctional triazine compound is 0.5 to 6.0% by weight based on the biodegradable polymer. ゲル分率が、30重量%以上である請求項1〜4のいずれかに記載の成形物。The molded article according to any one of claims 1 to 4, wherein the gel fraction is 30% by weight or more. 形状が、繊維状、糸状、シート状、成形体、多孔体、発泡体、又はフィルム状である請求項1〜5のいずれかに記載の成形物。The molded product according to any one of claims 1 to 5, wherein the molded product is in the form of a fiber, a thread, a sheet, a molded body, a porous body, a foam, or a film. 生分解性高分子と、この高分子に対して0.01〜20重量%の多官能トリアジン化合物とを含有する組成物を成形した後、放射線照射することを特徴とする成形物の製造方法。A method for producing a molded product, comprising: molding a composition containing a biodegradable polymer and 0.01 to 20% by weight of a polyfunctional triazine compound with respect to the polymer, followed by irradiation with radiation.
JP2002383494A 2002-12-20 2002-12-20 Biodegradable molding and preparation process therefor Pending JP2004204195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383494A JP2004204195A (en) 2002-12-20 2002-12-20 Biodegradable molding and preparation process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383494A JP2004204195A (en) 2002-12-20 2002-12-20 Biodegradable molding and preparation process therefor

Publications (1)

Publication Number Publication Date
JP2004204195A true JP2004204195A (en) 2004-07-22

Family

ID=32818190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383494A Pending JP2004204195A (en) 2002-12-20 2002-12-20 Biodegradable molding and preparation process therefor

Country Status (1)

Country Link
JP (1) JP2004204195A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126603A (en) * 2003-10-24 2005-05-19 Japan Atom Energy Res Inst Heat resistant crosslinked product having biodegradability and method for producing the same
WO2006103913A1 (en) * 2005-03-25 2006-10-05 Sumitomo Electric Fine Polymer, Inc. Process for producing polylactic acid composite and polylactic acid composite produced by the process
JP2008069342A (en) * 2006-08-14 2008-03-27 Sumitomo Electric Fine Polymer Inc Molding material comprising biodegradable resin composite powder, molded product using the same and manufacturing method thereof
JP2008178683A (en) * 2006-12-28 2008-08-07 Sri Sports Ltd Golf ball
JP2008264038A (en) * 2007-04-16 2008-11-06 Sri Sports Ltd Golf ball
WO2009119512A1 (en) 2008-03-24 2009-10-01 テルモ株式会社 Medical instrument, medical material, and method for production of the medical instrument and medical material
WO2010035763A1 (en) 2008-09-29 2010-04-01 テルモ株式会社 Medical device, medical material and methods for producing same
US8450397B2 (en) 2007-09-25 2013-05-28 Dunlop Sports Co. Ltd. Golf ball
JP2013526649A (en) * 2010-05-26 2013-06-24 ウニフェルジテイト・トゥウェンテ Method for producing degradable polymer network
US9868231B2 (en) 2015-03-30 2018-01-16 Kureha Corporation Polyglycolic acid molded article, component for downhole tool, and method of producing polyglycolic acid molded article
JP2021100990A (en) * 2019-12-24 2021-07-08 公立大学法人 滋賀県立大学 Resin composition, resin-molded article, and manufacturing method of resin-molded article
US20220213423A1 (en) * 2019-12-06 2022-07-07 Diversified Biotech, Inc. Polylactide cell culture containers and use in cell culture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126603A (en) * 2003-10-24 2005-05-19 Japan Atom Energy Res Inst Heat resistant crosslinked product having biodegradability and method for producing the same
WO2006103913A1 (en) * 2005-03-25 2006-10-05 Sumitomo Electric Fine Polymer, Inc. Process for producing polylactic acid composite and polylactic acid composite produced by the process
JP2008069342A (en) * 2006-08-14 2008-03-27 Sumitomo Electric Fine Polymer Inc Molding material comprising biodegradable resin composite powder, molded product using the same and manufacturing method thereof
US8063145B2 (en) 2006-12-28 2011-11-22 Sri Sports Limited Golf ball
JP2008178683A (en) * 2006-12-28 2008-08-07 Sri Sports Ltd Golf ball
JP2008264038A (en) * 2007-04-16 2008-11-06 Sri Sports Ltd Golf ball
US8450397B2 (en) 2007-09-25 2013-05-28 Dunlop Sports Co. Ltd. Golf ball
US8883923B2 (en) 2007-09-25 2014-11-11 Dunlop Sports Co. Ltd. Golf ball
JP5496083B2 (en) * 2008-03-24 2014-05-21 テルモ株式会社 MEDICAL TOOL, MEDICAL MATERIAL AND METHOD FOR PRODUCING THEM
US8278397B2 (en) 2008-03-24 2012-10-02 Terumo Kabushiki Kaisha Medical instrument, medical material, and method for production of the medical instrument and medical material
WO2009119512A1 (en) 2008-03-24 2009-10-01 テルモ株式会社 Medical instrument, medical material, and method for production of the medical instrument and medical material
CN101977641A (en) * 2008-03-24 2011-02-16 泰尔茂株式会社 Medical instrument, medical material, and method for production of the medical instrument and medical material
WO2010035763A1 (en) 2008-09-29 2010-04-01 テルモ株式会社 Medical device, medical material and methods for producing same
JP2013526649A (en) * 2010-05-26 2013-06-24 ウニフェルジテイト・トゥウェンテ Method for producing degradable polymer network
US9868231B2 (en) 2015-03-30 2018-01-16 Kureha Corporation Polyglycolic acid molded article, component for downhole tool, and method of producing polyglycolic acid molded article
US20220213423A1 (en) * 2019-12-06 2022-07-07 Diversified Biotech, Inc. Polylactide cell culture containers and use in cell culture
US11788045B2 (en) * 2019-12-06 2023-10-17 Diversified Biotech, Inc. Polylactide cell culture containers and use in cell culture
JP2021100990A (en) * 2019-12-24 2021-07-08 公立大学法人 滋賀県立大学 Resin composition, resin-molded article, and manufacturing method of resin-molded article
JP7374420B2 (en) 2019-12-24 2023-11-07 公立大学法人 滋賀県立大学 Resin composition, resin molded body, and method for producing resin molded body

Similar Documents

Publication Publication Date Title
JP5024694B2 (en) Radiation sterilizable medical material and its use
ES2527857T3 (en) Medical tissues and fibers of polyhydroxyalkanoate
Ikada et al. Biodegradable polyesters for medical and ecological applications
US3736646A (en) Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures
US9023379B2 (en) Biodegradable tissue composition with biodegradable cross-linkers
US5412068A (en) Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5152781A (en) Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
CN102973988B (en) Absorbable vessel ligature clamp and preparation method thereof
RU2574016C2 (en) Reinforced resorbable synthetic matrix for haemostatic applications
JP3474482B2 (en) Biodegradable composite fiber and method for producing the same
JP2010505029A (en) Polyester composition, method for producing the composition and articles made therefrom
IE53891B1 (en) Radiation sterilizable absorbable polymeric materials and methods for manufacturing the same
JPH09122227A (en) Medical material and manufacture thereof
JP2004204195A (en) Biodegradable molding and preparation process therefor
JPH03502651A (en) Medical devices made from homopolymers and copolymers containing repeating carbonate units
Adamus et al. Degradation of nerve guidance channels based on a poly (L-lactic acid) poly (trimethylene carbonate) biomaterial
KR101613571B1 (en) Method for manufacturing biodegradable polymer film and biodegradable polymer film for anti-adhesion
JP2002114921A (en) Biodegradable polymer composition excellent in heat decomposability
CN113694246A (en) Biodegradable surgical suture and preparation method thereof
KR101256550B1 (en) Surgical mesh composite with anti-adhesion property and method for producing the same
US20030091646A1 (en) Medical materials sterilized by radiation and their ways in use
RU2436595C1 (en) Surgical fibre, method of its production and articles made from it
JP2019505639A (en) Segmented p-dioxanone rich poly (p-dioxanone-co-ε-caprolactone) copolymer for medical applications and devices made therefrom
JP2010220746A (en) Ionizing radiation resistant material
CN109970957A (en) A kind of copolymer of the controllable biodegradable with alkaline copolymerization center

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A02