JP2004201756A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2004201756A
JP2004201756A JP2002371721A JP2002371721A JP2004201756A JP 2004201756 A JP2004201756 A JP 2004201756A JP 2002371721 A JP2002371721 A JP 2002371721A JP 2002371721 A JP2002371721 A JP 2002371721A JP 2004201756 A JP2004201756 A JP 2004201756A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
frequency magnetic
irradiation
irradiation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371721A
Other languages
Japanese (ja)
Other versions
JP2004201756A5 (en
JP4293784B2 (en
Inventor
Kenji Takiguchi
賢治 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002371721A priority Critical patent/JP4293784B2/en
Publication of JP2004201756A publication Critical patent/JP2004201756A/en
Publication of JP2004201756A5 publication Critical patent/JP2004201756A5/ja
Application granted granted Critical
Publication of JP4293784B2 publication Critical patent/JP4293784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic resonance imaging apparatus which emits RF magnetic fields showing a good power efficiency and RF magnetic fields of a good distribution of magnetic field uniformity by switching them. <P>SOLUTION: An RF emission coil (6) comprises a plurality of RF emission coils (6a, 6b), and is equipped with a switching means (15) to switch the connection between the plurality of RF magnetic field emission coils (6a, 6b) and an RF magnetic field power source (7). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置(以下、MRI装置と呼ぶ)に係り、特に、電力効率の良い高周波磁場と磁場均一度分布の良い高周波磁場を切り替えて照射するMRI装置に関する。
【0002】
【従来の技術】
MRI装置は、均一な静磁場内に置かれた被検体に高周波磁場を照射したときに被検体を構成する原子の原子核に生じる核磁気共鳴現象を利用し、被検体からの核磁気共鳴信号(以下、NMR信号という。)を検出し、このNMR信号を使って画像再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像(以下、MRI画像という。)を得るものである。
【0003】
高周波磁場を照射するための高周波磁場照射コイル(以下、RF照射コイルという。)の性能は、照射する高周波磁場の電力効率と、磁場均一度によって決まるため、従来、RF照射コイルの形状、配置は、電力効率と磁場均一度の各々について、求められる性能を満足させるように設計されている。電力効率の良いRF照射コイルは、高周波磁場電源のコストを低減することが出来る。一方、磁場均一度の良いRF照射コイルは画質を向上することができる。
【0004】
しかしながら、電力効率と磁場均一度は相反する性能となっている。すなわち、1個のRF照射コイルにおいて、電力効率を向上させると磁場均一度は低下し、磁場均一度を向上させると電力効率は低下する。ここで、電力効率とは、単位電力あたりにどの程度強い高周波磁場を発生できるかを示し、磁場均一度とは、発生した高周波磁場がどの程度空間的に均一かを示す。
【0005】
したがって、従来一個のRF照射コイルにおいては、それぞれの性能を適度に満たすように最適化されていた。言い換えると従来は、両方の性能が同じに最良の状態となるようになっていなかった。
【0006】
一方、撮影に用いるパルスシーケンスによって、高周波磁場の照射の電力効率を優先させたい場合、磁場均一度を優先させたい場合が異なっていた。例えば、スピンエコー法では高周波磁場として180°パルスという大きなエネルギーのパルスを用いるため、電力効率を優先させたRF照射コイルが必要となるが、グラディエントエコー法では高周波磁場としては、フリップ角の小さい90°以下のパルスを用いるため、電力効率は小さくても良い。むしろ磁場均一度を優先させた高周波磁場が望まれていた。
【0007】
コイル特性の相反する性能に関する問題は、傾斜磁場コイルについても同様であった。例えば傾斜磁場コイルの場合は、発生する傾斜磁場の高い線形性と、速い速度での駆動は両立しなかった。
【0008】
これを解決する傾斜磁場コイルにおける公知技術として、傾斜磁場コイルと前記傾斜磁場コイルを線形性を補正する補正コイルを併設したMRI装置がある。ここでは、線形性の高い傾斜磁場が必要な場合と、速い速度での駆動が必要な場合で、補正コイルの使用をON,OFFしていた(特許文献1参照)。
【0009】
【特許文献1】
特表2002-528148号公報
【0010】
【発明が解決しようとする課題】
しかしながら、RF照射コイルにおいて上記相反する性能に関する問題を解決する技術は提案されていなかった。
本発明の目的は、高周波磁場において、電力効率の良い高周波磁場と磁場均一度分布の良い高周波磁場を切り替えて照射することが可能な磁気共鳴イメージング装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は、被検体の撮影部位に静磁場を発生させる静磁場発生手段と、前記撮影部位に傾斜磁場を発生させる傾斜磁場コイルと、前記撮影部位に高周波磁場を照射する高周波磁場照射コイルと、前記高周波磁場照射コイルに駆動電流を供給する高周波磁場電源と、前記撮影部位より発生された核磁気共鳴信号を検出する高周波磁場受信コイルと、前記高周波磁場受信コイルで受信した受信信号から得られる情報をもとに画像を表示する表示手段とからなる磁気共鳴イメージング装置において、前記高周波磁場照射コイルが、複数個の高周波磁場照射コイルから成り、前記複数個の高周波磁場照射コイルと、前記高周波磁場電源との接続の選択を切り替える手段を備えたことを特徴とする磁気共鳴イメージング装置によって達成される。
【0012】
また、前記複数個の高周波磁場照射コイルが、電力効率の良い高周波磁場を照射する高周波磁場照射コイルと、磁場均一度の良い高周波磁場を照射する高周波磁場照射コイルを含む磁気共鳴イメージング装置によって達成される。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に沿って具体的に説明する。
図1に、本発明に係る垂直磁場方式を採用したMRI装置の全体構成を示す。MRI装置は、被検体12の撮影部位に静磁場を発生させる静磁場発生手段(超電導コイル、常電導コイル、永久磁石等を含む)1と、前記撮影部位にXYZ直交座標系において、X方向に傾斜磁場を発生させるX方向傾斜磁場発生コイル2と、Y方向に傾斜磁場を発生させるY方向傾斜磁場発生コイル3と、Z方向に傾斜磁場を発生させるZ方向傾斜磁場発生コイル4と、前記傾斜磁場発生コイル2〜4に電力を供給する傾斜磁場電源5と、前記撮影部位に高周波磁場を照射するRF照射コイル6と、RF照射コイル6に高周波磁場照射のための電力を供給する高周波磁場電源7と、前記撮影部位の生体組織の核磁気共鳴により放出される高周波磁場を受信するRF受信コイル8と、前記高周波磁場の送受信を行う高周波送受信部9と、前記傾斜磁場の発生や高周波磁場の送受信の制御をパルスシーケンスに従って行うとともに、前記高周波磁場を受信して得られた受信信号をもとに画像再構成演算を行う計算機10と、計算機10で生成された画像を表示する表示部11を具備する。
【0014】
次に、本発明に係るMRI装置の第一の実施形態におけるRF照射コイルの断面構造の拡大図を図2に示す。6aは、被検体12の撮影部位に高周波磁場を照射するための第1のRF照射コイル、6bは、前記撮影部位に高周波磁場を照射するための第2のRF照射コイルであり、RF照射コイル6は2段の構造になっている。更に15は、第1のRF照射コイル、第2のRF照射コイルのどちらを高周波磁場電源7に接続するかを計算機10からの命令で切り替えるためのスイッチ、16は高周波磁場が傾斜磁場コイル2〜4側への漏洩による、傾斜磁場コイル2〜4等との不要なカップリングを防ぐためのRFシールドである。
【0015】
更に、第1のRF照射コイル6aと第2のRF照射コイル6bをZ方向から見た平面図を、図3に示す。図3(a)は、第1のRF照射コイル6aの平面図、図3(b)は第2のRF照射コイル6bの平面図である。ただし、各RF照射コイルは共に2重リングのマルチエレメント型で同じ形であるが、第1のRF照射コイル6aの外形d1は、第2のRF照射コイル6bの外形d2より小さい相似形となっている(d1<d2)。
【0016】
この場合、各コイルの単位電力あたりの磁場分布を、X軸に沿って示した模式図を、図4に示す。図4(a)は、第1のRF照射コイル6aの磁場分布、図4(b)は、第2のRF照射コイル6bの磁場分布の模式図である。これによれば、磁場強度ピーク値を比較すると、第1の照射コイル6aの方がピーク値が高いことがわかる。なぜならば、第1のRF照射コイル6aの方が小さいコイルなので、電力効率が高いからである。一方、磁場均一度の分布を比較すると、第2のRF照射コイル6bの方が第1のRF照射コイル6aより大きなコイルなので、大きな空間に一様な高周波磁場を発生でき、磁場均一度の良いコイルであることがわかる。すなわち、d1<d2の場合、第1のRF照射コイル6aは電力効率の良いコイル、第2のRF照射コイル6bは磁場均一度の良いコイルである。
【0017】
以上構成により、電力効率の良い第1のRF照射コイル6aと磁場均一度の良い第2のRF照射コイル6bをスイッチ15を切り替えて用いることによって、使用するシーケンスによって異なる特性を持つ高周波磁場を照射することができる。
【0018】
例えばここで、まず被検体をスピンエコー法により撮影し、次にグラディエントエコー法により撮影する場合を考える。スピンエコー法では上記のとおり180°パルスを必要とするため、電力効率が優先されるので、計算機10によりスイッチ15が切り替えられ、第1のRF照射コイル6aと高周波磁場電源8が接続される。次にグラディエントエコー法では、フリップ角の大きな180°パルスを必要とせず、むしろ磁場均一度が優先されるので、計算機10がスイッチ15を切り替え、第2のRF照射コイル6bと高周波磁場電源8が接続される。
【0019】
次に、本発明に係るMRI装置の第二の実施形態におけるRF照射コイルの断面構造の拡大図を図5に示す。本実施形態は、第一の実施形態における第1のRF照射コイル6aと同じ、小さい大きさのコイルを2対(6cと6d)上下に並列に配置した例である。本実施形態では、電力効率の良いコイル(6cと6d)を2個所異なる位置に配置したので、異なる撮影部位(領域AとB近傍)を撮影する際に、それぞれ撮影部位に電力効率の良い高周波磁場を、スイッチ15で切り替えて照射することができる。また、両方のコイル6cと6dに同時に電力を供給できるようにスイッチ15を切り替えれば、電力効率の良い高周波磁場を幅の広い領域に照射することもできる。
【0020】
次に、本発明に係るMRI装置の第三の実施形態におけるRF照射コイルの断面構造の拡大図を図6に示す。本実施形態は、第一の実施形態における第1のRF照射コイル6aと同じ、小さい大きさのコイルを1対、モーターで水平方向に移動させた例である。本実施形態により、領域Aを撮影したい場合、領域Bを撮影したい場合、その中間の任意の位置の撮影部位について、電力効率の良い高周波磁場を、モーター17で移動させることによって、照射することができる。
【0021】
本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々に変形して実施できるものである。例えば、上記第一の実施形態では内リング径を変えた2段構造の第1と第2のRF照射コイルについて説明したが、同一平面内に第1のRF照射コイルと第2のRF照射コイルが、電力効率と磁場均一度を変えて配置した場合にも、本発明は適用可能である。また、上記実施形態ではRF照射コイルが上下2対の場合について説明したが、3対以上の場合にも、本発明は適用可能である。また、RF照射コイルの形状についても種々に変更可能である。
例えば、上記実施形態では垂直磁場方式を採用したMRI装置について説明したが、水平磁場方式を採用したMRI装置にも本発明は適用でき、その場合RF照射コイルの形状はトンネル形状となる。
【0022】
【発明の効果】
以上、本発明によるMRI装置によれば、電力効率の良い高周波磁場と磁場均一度分布の良い高周波磁場を切り換えて照射することが可能となった。
【図面の簡単な説明】
【図1】本発明における垂直磁場方式を採用したMRI装置の全体構成。
【図2】本発明に係るMRI装置の第1の実施形態におけるRF照射コイルの断面構造の拡大図。
【図3】第1のRF照射コイルと第2のRF照射コイルをZ方向から見た平面図。
【図4】各コイルの単位電力あたりの磁場分布を、X軸に沿って示した模式図。
【図5】本発明に係るMRI装置の第2の実施形態におけるRF照射コイルの断面構造の拡大図。
【図6】本発明に係るMRI装置の第3の実施形態におけるRF照射コイルの断面構造の拡大図。
【符号の説明】
6a…第1のRF照射コイル
6b…第2のRF照射コイル
10…計算機
15…スイッチ
d1…第1のRF照射コイルの外径
d2…第2のRF照射コイルの外径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus), and more particularly to an MRI apparatus that switches between a high-frequency magnetic field having good power efficiency and a high-frequency magnetic field having good magnetic field uniformity distribution.
[0002]
[Prior art]
An MRI apparatus uses a nuclear magnetic resonance phenomenon that occurs in nuclei of atoms constituting a subject when a subject placed in a uniform static magnetic field is irradiated with a high-frequency magnetic field, and generates a nuclear magnetic resonance signal from the subject ( Hereafter, an NMR signal is detected, and an image is reconstructed using the NMR signal, thereby obtaining a magnetic resonance image (hereinafter, referred to as an MRI image) representing the physical properties of the subject.
[0003]
The performance of a high-frequency magnetic field irradiation coil (hereinafter referred to as an RF irradiation coil) for irradiating a high-frequency magnetic field is determined by the power efficiency of the irradiating high-frequency magnetic field and the uniformity of the magnetic field. , Power efficiency and magnetic field uniformity are designed to satisfy required performance. A power-efficient RF irradiation coil can reduce the cost of a high-frequency magnetic field power supply. On the other hand, an RF irradiation coil with good magnetic field uniformity can improve image quality.
[0004]
However, the power efficiency and the magnetic field uniformity have conflicting performances. That is, in one RF irradiation coil, when the power efficiency is improved, the magnetic field uniformity is reduced, and when the magnetic field uniformity is improved, the power efficiency is reduced. Here, the power efficiency indicates how strong a high-frequency magnetic field can be generated per unit power, and the magnetic field uniformity indicates how spatially the generated high-frequency magnetic field is spatially uniform.
[0005]
Therefore, conventionally, a single RF irradiation coil has been optimized so as to appropriately satisfy the respective performances. In other words, conventionally, both performances have not been equally optimized.
[0006]
On the other hand, depending on the pulse sequence used for imaging, there is a difference between a case where priority is given to the power efficiency of irradiation of the high-frequency magnetic field and a case where priority is given to magnetic field uniformity. For example, in the spin echo method, a high-energy pulse of 180 ° pulse is used as a high-frequency magnetic field, so that an RF irradiation coil giving priority to power efficiency is required.In the gradient echo method, a high-frequency magnetic field having a small flip angle is required. Since a pulse of less than or equal to ° is used, the power efficiency may be small. Rather, a high-frequency magnetic field giving priority to magnetic field uniformity has been desired.
[0007]
The problem regarding the conflicting performance of the coil characteristics was the same for the gradient coil. For example, in the case of a gradient magnetic field coil, high linearity of the generated gradient magnetic field and driving at a high speed are not compatible.
[0008]
As a well-known technique for solving this problem, there is an MRI apparatus provided with a gradient coil and a correction coil for correcting the linearity of the gradient coil. Here, the use of the correction coil is turned on and off when a gradient magnetic field with high linearity is required and when driving at a high speed is required (see Patent Document 1).
[0009]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2002-528148
[Problems to be solved by the invention]
However, there has not been proposed any technique for solving the above-described problem regarding the conflicting performance in the RF irradiation coil.
An object of the present invention is to provide a magnetic resonance imaging apparatus capable of switching and irradiating a high-frequency magnetic field having good power efficiency and a high-frequency magnetic field having good magnetic field uniformity distribution in a high-frequency magnetic field.
[0011]
[Means for Solving the Problems]
The above object is a static magnetic field generating means for generating a static magnetic field in the imaging region of the subject, a gradient magnetic field coil for generating a gradient magnetic field in the imaging region, and a high frequency magnetic field irradiation coil for irradiating the imaging region with a high frequency magnetic field, A high-frequency magnetic field power supply for supplying a drive current to the high-frequency magnetic field irradiation coil, a high-frequency magnetic field reception coil for detecting a nuclear magnetic resonance signal generated from the imaging region, and information obtained from a reception signal received by the high-frequency magnetic field reception coil A magnetic resonance imaging apparatus comprising: a display unit for displaying an image based on the high frequency magnetic field irradiation coil, wherein the high frequency magnetic field irradiation coil comprises a plurality of high frequency magnetic field irradiation coils; This is achieved by a magnetic resonance imaging apparatus characterized by comprising means for switching the selection of connection with the magnetic resonance imaging apparatus.
[0012]
The plurality of high-frequency magnetic field irradiation coils are achieved by a magnetic resonance imaging apparatus including a high-frequency magnetic field irradiation coil for irradiating a high-frequency magnetic field with high power efficiency and a high-frequency magnetic field irradiation coil for irradiating a high-frequency magnetic field with good magnetic field uniformity. You.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
FIG. 1 shows an overall configuration of an MRI apparatus employing a vertical magnetic field system according to the present invention. The MRI apparatus includes a static magnetic field generating means (including a superconducting coil, a normal conducting coil, a permanent magnet, and the like) 1 for generating a static magnetic field in an imaging region of the subject 12, and an XYZ orthogonal coordinate system for the imaging region. An X direction gradient magnetic field generating coil 2 for generating a gradient magnetic field, a Y direction gradient magnetic field generating coil 3 for generating a gradient magnetic field in the Y direction, a Z direction gradient magnetic field generating coil 4 for generating a gradient magnetic field in the Z direction, A gradient magnetic field power supply 5 for supplying power to the magnetic field generating coils 2 to 4; an RF irradiation coil 6 for irradiating the imaging region with a high frequency magnetic field; and a high frequency magnetic field power supply for supplying power to the RF irradiation coil 6 for high frequency magnetic field irradiation 7, an RF receiving coil 8 for receiving a high-frequency magnetic field emitted by nuclear magnetic resonance of the living tissue of the imaging region, a high-frequency transmitting and receiving unit 9 for transmitting and receiving the high-frequency magnetic field, and generating the gradient magnetic field and generating a high-frequency magnetic field. Control of transmission and reception Performs in accordance with the pulse sequence, and the computer 10 to perform the original to the image reconstruction calculation reception signal obtained by receiving the radio frequency magnetic field comprises a display unit 11 for displaying an image generated by the computer 10.
[0014]
Next, an enlarged view of a cross-sectional structure of the RF irradiation coil in the first embodiment of the MRI apparatus according to the present invention is shown in FIG. 6a is a first RF irradiation coil for irradiating a radio frequency magnetic field to the imaging site of the subject 12, 6b is a second RF irradiation coil for irradiating the radio frequency magnetic field to the imaging site, RF irradiation coil 6 has a two-stage structure. Further, 15 is a switch for switching which of the first RF irradiation coil and the second RF irradiation coil is connected to the high-frequency magnetic field power supply 7 by an instruction from the computer 10, and 16 is a switch for changing the high-frequency magnetic field from the gradient coil 2 to An RF shield for preventing unnecessary coupling with the gradient magnetic field coils 2 to 4 due to leakage to the 4 side.
[0015]
FIG. 3 is a plan view of the first RF irradiation coil 6a and the second RF irradiation coil 6b viewed from the Z direction. FIG. 3A is a plan view of the first RF irradiation coil 6a, and FIG. 3B is a plan view of the second RF irradiation coil 6b. However, each RF irradiation coil is a double ring multi-element type and has the same shape, but the outer shape d1 of the first RF irradiation coil 6a is a similar shape smaller than the outer shape d2 of the second RF irradiation coil 6b. (D1 <d2).
[0016]
In this case, a schematic diagram showing the magnetic field distribution per unit power of each coil along the X axis is shown in FIG. FIG. 4A is a schematic diagram of a magnetic field distribution of the first RF irradiation coil 6a, and FIG. 4B is a schematic diagram of a magnetic field distribution of the second RF irradiation coil 6b. According to this, comparing the magnetic field intensity peak values, it can be seen that the first irradiation coil 6a has a higher peak value. This is because the first RF irradiation coil 6a is a smaller coil, and therefore has higher power efficiency. On the other hand, comparing the distribution of the magnetic field homogeneity, the second RF irradiation coil 6b is larger than the first RF irradiation coil 6a, so a uniform high-frequency magnetic field can be generated in a large space, and the magnetic field uniformity is good. It turns out that it is a coil. That is, when d1 <d2, the first RF irradiation coil 6a is a coil having good power efficiency, and the second RF irradiation coil 6b is a coil having good magnetic field uniformity.
[0017]
With the above configuration, by switching the switch 15 between the first RF irradiation coil 6a having good power efficiency and the second RF irradiation coil 6b having good magnetic field uniformity, a high frequency magnetic field having different characteristics depending on the sequence to be used is irradiated. can do.
[0018]
For example, here, a case is considered in which the subject is first photographed by the spin echo method, and then photographed by the gradient echo method. Since the 180 ° pulse is required in the spin echo method as described above, the power efficiency is prioritized. Therefore, the switch 15 is switched by the computer 10, and the first RF irradiation coil 6a and the high frequency magnetic field power supply 8 are connected. Next, the gradient echo method does not require a 180 ° pulse with a large flip angle, but rather gives priority to magnetic field uniformity, so the computer 10 switches the switch 15, and the second RF irradiation coil 6b and the high-frequency magnetic field power supply 8 Connected.
[0019]
Next, an enlarged view of the cross-sectional structure of the RF irradiation coil in the second embodiment of the MRI apparatus according to the present invention is shown in FIG. This embodiment is an example in which the same small-sized coils as the first RF irradiation coil 6a in the first embodiment are vertically arranged in two pairs (6c and 6d). In the present embodiment, two power-efficient coils (6c and 6d) are arranged at different positions, so that when photographing different photographed parts (near areas A and B), power-efficient high-frequency The magnetic field can be switched by the switch 15 for irradiation. Further, if the switch 15 is switched so that power can be supplied simultaneously to both coils 6c and 6d, a high-frequency magnetic field having good power efficiency can be irradiated to a wide area.
[0020]
Next, an enlarged view of the cross-sectional structure of the RF irradiation coil in the third embodiment of the MRI apparatus according to the present invention is shown in FIG. This embodiment is an example in which a pair of small-sized coils, which are the same as the first RF irradiation coil 6a in the first embodiment, are moved in the horizontal direction by a motor. According to the present embodiment, when an image of the region A is to be imaged, and when an image of the region B is to be imaged, a high-frequency magnetic field with high power efficiency is moved by the motor 17 for an imaging region at an arbitrary position in the middle, so that irradiation can be performed. it can.
[0021]
The present invention is not limited to the above embodiment, and can be implemented in various modifications without departing from the gist of the present invention. For example, in the first embodiment, the first and second RF irradiation coils having a two-stage structure in which the inner ring diameter is changed have been described, but the first RF irradiation coil and the second RF irradiation coil are in the same plane. However, the present invention is also applicable to a case where power efficiency and magnetic field uniformity are changed. Further, in the above embodiment, the case where the upper and lower RF irradiation coils are two pairs has been described. However, the present invention is also applicable to the case where three or more pairs are used. Further, the shape of the RF irradiation coil can be variously changed.
For example, in the above embodiment, the MRI apparatus using the vertical magnetic field method has been described. However, the present invention can be applied to an MRI apparatus using the horizontal magnetic field method, in which case the shape of the RF irradiation coil is a tunnel shape.
[0022]
【The invention's effect】
As described above, according to the MRI apparatus of the present invention, it is possible to switch between a high-frequency magnetic field having good power efficiency and a high-frequency magnetic field having good magnetic field uniformity for irradiation.
[Brief description of the drawings]
FIG. 1 is an overall configuration of an MRI apparatus employing a vertical magnetic field method according to the present invention.
FIG. 2 is an enlarged view of a cross-sectional structure of an RF irradiation coil in the first embodiment of the MRI apparatus according to the present invention.
FIG. 3 is a plan view of a first RF irradiation coil and a second RF irradiation coil as viewed from a Z direction.
FIG. 4 is a schematic diagram showing a magnetic field distribution per unit power of each coil along an X axis.
FIG. 5 is an enlarged view of a cross-sectional structure of an RF irradiation coil in a second embodiment of the MRI apparatus according to the present invention.
FIG. 6 is an enlarged view of a cross-sectional structure of an RF irradiation coil in a third embodiment of the MRI apparatus according to the present invention.
[Explanation of symbols]
6a: first RF irradiation coil 6b: second RF irradiation coil 10: computer 15: switch d1: outer diameter of first RF irradiation coil d2: outer diameter of second RF irradiation coil

Claims (1)

被検体の撮影部位に静磁場を発生させる静磁場発生手段と、前記撮影部位に傾斜磁場を発生させる傾斜磁場コイルと、前記撮影部位に高周波磁場を照射する高周波磁場照射コイルと、前記高周波磁場照射コイルに駆動電流を供給する高周波磁場電源と、前記撮影部位より発生された核磁気共鳴信号を検出する高周波磁場受信コイルと、前記高周波磁場受信コイルで受信した受信信号から得られる情報をもとに画像を表示する表示手段とからなる磁気共鳴イメージング装置において、前記高周波磁場照射コイルが、複数個の高周波磁場照射コイルから成り、前記複数個の高周波磁場照射コイルと、前記高周波磁場電源との接続の選択を切り替える手段を備えたことを特徴とする磁気共鳴イメージング装置。Static magnetic field generating means for generating a static magnetic field in an imaging region of a subject, a gradient coil for generating a gradient magnetic field in the imaging region, a high frequency magnetic field irradiation coil for irradiating the imaging region with a high frequency magnetic field, and applying the high frequency magnetic field A high-frequency magnetic field power supply for supplying a driving current to the coil, a high-frequency magnetic field receiving coil for detecting a nuclear magnetic resonance signal generated from the imaging region, and information obtained from the received signal received by the high-frequency magnetic field receiving coil. In a magnetic resonance imaging apparatus comprising display means for displaying an image, the high-frequency magnetic field irradiation coil is composed of a plurality of high-frequency magnetic field irradiation coils, and the plurality of high-frequency magnetic field irradiation coils are connected to the high-frequency magnetic field power supply. A magnetic resonance imaging apparatus comprising means for switching selection.
JP2002371721A 2002-12-24 2002-12-24 Magnetic resonance imaging system Expired - Fee Related JP4293784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371721A JP4293784B2 (en) 2002-12-24 2002-12-24 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371721A JP4293784B2 (en) 2002-12-24 2002-12-24 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2004201756A true JP2004201756A (en) 2004-07-22
JP2004201756A5 JP2004201756A5 (en) 2006-02-09
JP4293784B2 JP4293784B2 (en) 2009-07-08

Family

ID=32810535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371721A Expired - Fee Related JP4293784B2 (en) 2002-12-24 2002-12-24 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4293784B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034839A1 (en) * 2005-07-26 2007-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transmitting and receiving coil arrangement for generating electromagnetic alternating field within sample for NMR analysis, comprises coils formed in cylindrical or conical shape and arranged to form light gap with respect to sample
JP2009279390A (en) * 2008-04-25 2009-12-03 Toshiba Corp Magnetic resonance imaging apparatus
US7868614B2 (en) 2006-01-16 2011-01-11 Hitachi, Ltd. Magnetic resonance system and method
JP2012213459A (en) * 2011-03-31 2012-11-08 Ge Medical Systems Global Technology Co Llc Coil device and magnetic resonance imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034839A1 (en) * 2005-07-26 2007-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transmitting and receiving coil arrangement for generating electromagnetic alternating field within sample for NMR analysis, comprises coils formed in cylindrical or conical shape and arranged to form light gap with respect to sample
DE102005034839B4 (en) * 2005-07-26 2009-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transmitting and receiving coil arrangement
US7868614B2 (en) 2006-01-16 2011-01-11 Hitachi, Ltd. Magnetic resonance system and method
JP2009279390A (en) * 2008-04-25 2009-12-03 Toshiba Corp Magnetic resonance imaging apparatus
US8779767B2 (en) 2008-04-25 2014-07-15 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method of controlling contrast by applying radio frequency intermediate pulse
JP2012213459A (en) * 2011-03-31 2012-11-08 Ge Medical Systems Global Technology Co Llc Coil device and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4293784B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP3902591B2 (en) Efficiently shielded MRI gradient coil with discontinuous or continuously variable field of view
JP3935843B2 (en) MRI gradient coil assembly with continuously variable field of view, image forming apparatus, image forming method and method of designing a gradient coil system for an image forming system
JP3164278B2 (en) Modular whole body gradient coil
US8390288B2 (en) Method and RF transmitter arrangement for generating RF fields
EP1794608B1 (en) Adjustment of rf-field homogeneity in magnetic resonance imaging
JP2006506155A (en) Self-shielded gradient coil for magnetic resonance imaging
EP2030036A2 (en) Three-dimensional asymmetric transverse gradient coils
JP2008093445A (en) Magnetic field generating apparatus and mri apparatus
JP2005040612A (en) Method for avoiding surrounding disturbance signal in magnetic resonance tomography using spin echo sequence and magnetic resonance tomography device
KR100781421B1 (en) Magnet system and mri system
EP3737955B1 (en) Active b1+ shimming of transmission coils
JP2004201756A (en) Magnetic resonance imaging apparatus
JP2007512039A (en) MRI system with variable field of view magnet
JP2004136091A (en) Gradient coil apparatus for magnetic resonance imaging
JP2008119357A (en) Rf coil for mri apparatus, method of usage of rf coil for mri apparatus, and mri apparatus
JP4494751B2 (en) Magnetic resonance imaging device
JP3814184B2 (en) MRI equipment
JP2004065398A (en) Magnetic resonance imaging apparatus having hybrid magnet composed of permanent magnet and electromagnet
JP4030676B2 (en) Magnetic resonance imaging device
JP2022158004A (en) magnetic resonance imaging system
JP2002052006A (en) High frequency coil for nuclear magnetic resonance imaging apparatus and nuclear magnetic resonance imaging apparatus
JP2003144409A (en) Magnetic resonance imaging device
JP4350889B2 (en) High frequency coil and magnetic resonance imaging apparatus
JP4497686B2 (en) Magnetic resonance imaging system
JPH06217957A (en) Nuclear magnetic resonance image diagnostic device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees