JP2004200853A - High frequency circuit apparatus - Google Patents

High frequency circuit apparatus Download PDF

Info

Publication number
JP2004200853A
JP2004200853A JP2002364866A JP2002364866A JP2004200853A JP 2004200853 A JP2004200853 A JP 2004200853A JP 2002364866 A JP2002364866 A JP 2002364866A JP 2002364866 A JP2002364866 A JP 2002364866A JP 2004200853 A JP2004200853 A JP 2004200853A
Authority
JP
Japan
Prior art keywords
reception
transmission
band
antenna
gsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364866A
Other languages
Japanese (ja)
Inventor
Motoo Nakagawa
元雄 中川
Kunihiko Kanazawa
邦彦 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002364866A priority Critical patent/JP2004200853A/en
Publication of JP2004200853A publication Critical patent/JP2004200853A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency circuit apparatus used for a multi-band mobile phone for reducing an insertion loss and preventing increase in current consumption even in the EDGE (enhanced data rates for GSM evolution) system wherein the phase of a transmitted carrier wave is required to be finely controlled. <P>SOLUTION: The high frequency circuit apparatus consists of: a transmission path 20 for transmission/reception signals of respective frequency bands from a plurality of communication systems; a branching circuit 22 for branching the signals to a reception path 19; a reception changeover switch 30 for switching the reception path to each of reception sections; and SAW filters 10, 11, 12 connected to the respective reception sections 16 via transmission lines 33, 34, 35. The branching circuit 22 is configured to include isolators 7, 8 on respective transmission paths with different frequencies. Thus, a diplexer and a high frequency switch usually installed in a range from a power amplifier to an antenna on the transmission paths can be eliminated, and hence increase in the current consumption is prevented, and the circuit board of the high frequency circuit apparatus and the mobile phone itself can be downsized and cost-reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、異なる周波数帯に対応した複数の通信システムに対応した高周波回路装置に関する。
【0002】
【従来の技術】
現在、欧州では移動体通信として複数の周波数、例えば900MHz帯を使用したGSM(Global System for Mobile Communications)方式と1.8GHz帯を使用したDCS(Digital Cellular System)方式、さらに1.9GHz帯を使用した北米のPCS(Personal Communications Service)方式とで動作可能なマルチバンド携帯電話機が実用化されている。
【0003】
図7はマルチバンド対応携帯電話機の送受信部分を示すブロック図であり、900MHz帯のGSM方式と1.8GHz帯のDCS方式、1.9GHz帯のPCS方式の3つの通信システムに対応した場合の一例を示したものである。
【0004】
マルチバンド対応携帯電話機の送受信部分にはアンテナ1、ダイプレクサ2、2つの高周波スイッチ3,4、低域通過フィルタ5,6から成り、低域通過フィルタ5,6はそれぞれ電力増幅器(PA:Power Amplifier)13,14などで構成されるGSM/DCS/PCS方式の送信部15に接続され、GSM/DCS/PCS方式の受信経路は通常弾性表面波(SAW:Surface Acoustic Wave)フィルタが使用される帯域通過フィルタ(BPF:Band Pass Filter)10,11,12さらに低雑音増幅器(LNA:Low Noise Amplifier)などで構成されるGSM/DCS/PCS方式の受信部16に接続される。
【0005】
ダイプレクサ2は低域通過フィルタ(LPF:Low Pass Filter)と高域通過フィルタ(HPF:High Pass Filter)の2つの働きを持つ素子で、受信の際にはGSM方式あるいはDCS方式の受信信号を分配する働きを担い、送信の際には帯域外の信号を減衰させる働きを担う。
【0006】
高周波スイッチ3はアンテナ1とGSM方式の送信経路上の低域通過フィルタ5及びアンテナ1とGSM方式の受信経路60との切り替えを担い、高周波スイッチ4はアンテナ1とDCS/PCS方式の送信経路上の低域通過フィルタ6、及びアンテナ1とDCS方式の受信経路61及びPCS方式の受信経路62とを切り換える働きを担う。
【0007】
通常、この高周波スイッチはλ/4のストリップラインとPINダイオードを組み合わせたダイオードスイッチやGaAsFETを利用したFETスイッチ等が利用されている。
【0008】
次にダイプレクサの働きについて詳細に説明する。ダイプレクサは先述の通り、LPF(GSM側)とHPF(DCS/PCS側)を組み合わせた働きを持つ3端子素子で、入力端子から入力された信号を周波数によって2つの出力端子に分配する働きを持つ。この特性を利用して、受信の際には2つの周波数帯域の信号をそれぞれの端子に分配する働きを担う。また、送信の際には高周波スイッチ内部による高調波や送信回路部のPAからの高調波がアンテナ1を通じて送信されないようにする働きも担っている。特に900MHz帯のGSM方式の第2次高調波は1800MHzとなり、DCS方式と同じ周波数帯域となる。この結果、DCS方式の受信信号よりも大きなGSM方式の第2次高調波が出力されると、妨害電波となりDCS帯域の通信に障害が生じるため、高調波を抑える働きが重要となる。
【0009】
ここで図7を用いてマルチバンド携帯電話機の動作について詳細に説明する。まずGSM方式の場合を説明する。送信の際には、GSM方式の送信部からの送信信号は低域通過フィルタ5を通り送信回路部のGSMのPA13からの高調波成分を除去される。次に高周波スイッチ3にて接続されたダイプレクサ2に送り、高調波を減衰し、アンテナ1から送信する。受信の際にはアンテナ1から受信した受信信号をダイプレクサ2で高周波スイッチ3へ分配し、GSM方式の受信経路60を通り受信回路部へ送る。
【0010】
次に、DCS方式の場合を説明する。送信の際には、DCS/PCS方式の送信部からの送信信号は、低域通過フィルタ6を通り送信回路部のDCS/PCSのPA14からの高調波成分が除去される。その後、高周波スイッチ4にて接続されたダイプレクサ2に送り、DCS帯域より低い周波数成分を減衰し、アンテナ1から送信される。受信の際にはアンテナ1で受信した受信信号をダイプレクサ2で高周波スイッチ4へ分配し、DCS方式の受信経路61を通り受信回路部へ送る。
【0011】
次に、PCS方式の場合を説明する。送信の際には、DCS/PCS方式の送信部からの送信信号は、低域通過フィルタ6を通り送信回路部のDCS/PCSのPA14からの高調波成分が除去される。高周波スイッチ4にて接続されたダイプレクサ2に送り、その後PCS帯域より低い周波数成分を減衰し、アンテナ1から送信される。受信の際にはアンテナ1で受信した受信信号をダイプレクサ2で高周波スイッチ4へ分配し、PCS方式の受信経路62を通り受信回路部へ送る。
【0012】
図8に、実際のGSM/DCS/PCSマルチバンド対応携帯電話機における従来の高周波回路装置の実現例を示す(例えば特許文献1参照。)。
【0013】
マルチバンド対応携帯端末ではシングルバンド対応携帯端末に比して部品点数の増加が必然であり、部品点数、コストの削減、小型化を目的とした、複合高周波部品が実現・使用されている。図8は、図7におけるアンテナ直下のダイプレクサ、高周波スイッチ、低域通過フィルタを一体化したアンテナスイッチモジュール(ASM)27とGSM/DCS/PCSのPA13,14とカプラ(結合器)17,18を一体化したパワーアンプモジュール(PAM)26が使用されている例である。
【0014】
近年、データレートの増加に対して従来のGSM/DCS/PCS方式とは変調方式の異なるEDGE(Enhanced Data rates for GSM Evolution)方式が提案、実用化されつつある。EDGE方式は多値位相変調方式(MPSK:Multiple Phase Shift Keying)における8相PSK変調方式であり、広い電力レベル範囲において信号の線形性が必要となる。このため、実際の送受信回路の構成では従来のGSM/DCS/PCS方式では必要の無かったアイソレータを、PAMとASM間に付加する必要がある。
【0015】
アイソレータの必要性について詳細に説明する。アイソレータは図9に示すように端子1(Port1)から端子2(Port2)への信号は通過させ、端子2から端子1への反射信号は吸収する働きをもつ。この働きにより、手で触れるなどの環境変化によりインピーダンス変動の大きいアンテナとPAMを分離し、アンテナからPAMへの反射信号を吸収することができる。よって広い電力範囲においてPAMの線形動作を可能にし、EDGE方式で使用される8相PSK変調方式のような複雑な変調方式において信号のエラー率を改善することが出来る。
【0016】
図9はアイソレータの等価回路であり、理想サーキュレータの各入出力端子Port1,Port2とグラウンド間にインダクタとキャパシタの並列回路42を接続し、さらに理想サーキュレータの接地端子をインダクタとキャパシタの抵抗の並列回路41で接地することにより終端した形で表され、実際にはガーネット等のフェライト材、整合用キャパシタ、ケース等を組み立てた構造により実現されており、5mm×5mm×1.5mm程度の大きさである。
【0017】
【特許文献1】
特開2002−101005号公報(第4−5頁、第1図)
【0018】
【発明が解決しようとする課題】
図10に現在のマルチバンド通信端末でEDGE方式対応のためにアイソレータを付加した例を示す。この場合、アイソレータ7,8とPAM26の間、アイソレータ7,8とASM27との間のインピーダンスマッチングが必要となり、整合回路によるロスが大きくなる問題がある。また、PAM26から見たアイソレータ7,8のインピーダンスは通過帯域においては50Ωに調整されているが、二倍波、三倍波などの高調波帯域においては、50Ωから離れており、そのために前段にあるASM27に内蔵される高調波抑圧用低域通過フィルタ5,6の減衰特性の劣化も生じるため、インピーダンスマッチングが難しく複雑になり、結果、送信特性の劣化が起こる。
【0019】
上述したように従来の移動体通信装置の技術を用いた、EDGE方式対応マルチバンド携帯電話機に用いられる高周波回路装置によれば、PAMとASM内にある高調波抑圧用の低域通過フィルタの間にアイソレータを付加しなければならない。このため、アイソレータとPAMの間、アイソレータとASMの間のインピーダンスマッチングが必要となり、新たな整合回路付加によるロスが大きくなる問題がある。また、PAMから見たアイソレータのインピーダンスは通過帯域においては50Ωに調整されているが、二倍波、三倍波などの高調波帯域においては、50Ωから離れており、そのために前段にあるASMに内蔵される高調波抑圧用低域通過フィルタの減衰特性の劣化も生じるため、インピーダンスマッチングによるロス削減と高調波抑圧が難しく複雑になり、結果、送信特性の劣化が起こる。
【0020】
特にロスが増加することにより、携帯端末の通話時間が短くなり高調波の抑圧も同時に難しくなる。例えばGSM方式(EDGE方式)では、PAMからアンテナまでのロスが0.1dBから0.2dB増加した場合、アンテナから同じ送信信号出力を得ようとすると、PAMの出力を増す必要があり、消費電流が増加し一般的には、送信部の消費電流が約1.3〜1.4倍になる。また、送信部の出力を上げると送信部で発生する高調波が大きくなり、これを抑えるために例えばASM前に低域通過フィルタを追加し高調波帯域での減衰量を大きくしなければならない。高調波帯域での減衰量を大きくすると通過帯域での挿入損失も増大する。このため、さらに送信部の出力を上げなければならず、さらなる消費電流の増大につながる。
【0021】
本発明はこれらの問題点を解決するためになされたものであり、送信する搬送波の位相を細かくコントロールする必要のある多値位相変調方式であるEDGE方式においても、挿入損失を低減し、且つ消費電流の増大を防ぎ、回路基板、携帯電話機自身の小型化、低コスト化を可能としたマルチバンド携帯電話機に用いられる高周波回路装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
前記従来の課題を解決するため、本発明の高周波回路装置は、異なる周波数帯に対応した複数の通信システムを有し、前記複数の通信システムからの送信信号をアンテナへ送出すると共に、前記アンテナから受信信号を受信して、送受信号を前記複数の通信システムのそれぞれの周波数帯の送信経路と、受信経路に分波するアンテナ端子を有する分波回路と、前記分波回路から受信経路に分波された受信信号を異なる周波数の通信システムのそれぞれの受信部に切り替える受信切替スイッチと、前記受信切替スイッチから前記複数の通信システムのそれぞれの受信部へ伝送線路を介して接続された複数のバンドパスフィルタから構成され、前記分波回路は、前記送信経路に分波する手段として、異なる周波数の通信システムのそれぞれの送信経路にアイソレータを有することを特徴とする。
【0023】
この構成により送信経路上のPAMからアンテナまでの間の、ダイプレクサ、高周波スイッチを除去することが可能となり、消費電流の増大を防ぎ、さらに本発明の高周波回路装置を用いた回路基板、携帯電話機自身の小型化、低コスト化を可能とする。
【0024】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を参照しながら説明する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1におけるGSM/DCS/PCS帯でのEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図である。
【0026】
アンテナ1は分波回路22のアンテナ端子21に接続され、分波回路22はアンテナ端子21から、GSM帯のアイソレータ7とDCS/PCS帯のアイソレータ8にそれぞれ接続される送信経路20と、GSM/DCS/PCS受信切替スイッチである高周波スイッチ30に接続される受信経路19に分かれる。
【0027】
さらに、GSM帯アイソレータ7は、GSM送信信号の二倍波、三倍波を抑圧する低域通過フィルタ31に接続された後、GSMのカプラ17を経てGSMの電力増幅器PA13に接続される。
【0028】
DCS/PCS帯アイソレータ8は、GSM送信信号の二倍波、三倍波を抑圧する低域通過フィルタ32に接続された後、DCS/PCSのカプラ18を経てDCS/PCSの電力増幅器PA14に接続される。
【0029】
ここでGSMのカプラ17,GSMのPA13,DCS/PCSのカプラ18,DCS/PCSのPA14は同一の基板上にパワーモジュール(PA module)26として一体構成されている。
【0030】
受信経路19は、高周波スイッチ30に接続し、GSM/DCS/PCS各々の受信用伝送線路33,34,35に接続される。伝送線路33,34,35はGSM/DCS/PCSの各々の帯域外信号を除去する帯域通過フィルタ10,11,12に接続され、その後各々の帯域の受信部16につながる。
【0031】
まず、本発明の回路構成にてGSMの信号を送信する場合(880−915MHz)について説明する。
【0032】
GSMのPA13にて増幅された送信信号はカプラ17を通過し、低域通過フィルタ31を通過して二倍波、三倍波を除去した後、GSM帯アイソレータ7を経て、アンテナ端子21と接続する。この場合、点21からDCS/PCSの送信経路を見た場合、GSM帯を阻止するDCS/PCS帯アイソレータ8があり周波数帯域が異なるため、DCS/PCS送信経路へはGSM送信信号は漏れない。
【0033】
同様に、点21から受信経路19を見た場合、高周波スイッチ30はオフ状態であるので、オープンの状態に見える。そのため、受信経路19にはGSM送信信号は漏れない。よって、GSM送信信号はすべてアンテナ1へ送信される。
【0034】
次に、本発明の回路構成にてDCSの信号を送信する場合(1710−1785MHz、1850−1910MHz)について説明する。
【0035】
DCS/PCSのPA14にて増幅された送信信号はカプラ18を通過し、低域通過フィルタ32を通過して二倍波、三倍波を除去した後、DCS/PCS帯アイソレータ8を経て、アンテナ端子21と接続する。この場合、点21からGSMの送信経路を見た場合、DCS/PCS帯を阻止するGSM帯アイソレータ7があり周波数帯域が異なるため、GSM送信経路へはDCS/PCS送信信号は漏れない。同様に、点21から受信経路19を見た場合、高周波スイッチ30はオフ状態であるので、オープンの状態に見える。そのため、受信経路19にはDCS/PCS送信信号は漏れない。よって、DCS/PCS送信信号はすべてアンテナ1へ送信される。PCSの信号を送信する場合もDCSと同様の機構でアンテナ1へ送信される。
【0036】
次に、GSMの信号を受信する場合(925−960MHz)について説明する。アンテナ1で受信されたGSM受信信号は、アンテナ端子21から受信経路19を経て、高周波スイッチ30にてGSM受信用伝送路33に送られ、GSMの帯域通過フィルタ10を通過し受信回路部へ送られる。この場合、点21からDCS/PCSの送信経路を見た場合、GSM帯を阻止するDCS/PCS帯アイソレータ8があるためにDCS/PCS送信経路へはGSM受信信号は漏れない。また点21からGSM送信回路を見た場合、図9で示したアイソレータの接地端子に接続された並列回路41の終端抵抗が見えるため、図3(a)のようなインピーダンスとなっており、GSM受信帯域は50Ωでも、オープンでもないインピーダンスにある。一方、点21からGSM受信経路を見た場合、後段が、通常SAWフィルタで実現される非常に狭帯域な帯域通過フィルタ10が、位相回転用線路の機能も兼ねた伝送線路33の後ろに接続されているために、図3(b)のようなインピーダンスとなる。したがって、点21よりGSM送信経路とGSM受信経路を見たGSM受信帯域のインピーダンスにより50Ωに整合され、GSM受信信号は、良好な通過特性にて帯域通過フィルタ10を経て受信部16へ送られる。
【0037】
次に、DSCの信号を受信する場合(1805−1880MHz)について説明する。アンテナ1で受信されたDCS受信信号は、アンテナ端子21から受信経路19を経て、高周波スイッチ30にてDCS受信用伝送路34に送られ、DCSの帯域通過フィルタ11を通過し受信部16へ送られる。この場合、点21からGSMの送信経路を見た場合、DCS帯を阻止するGSM帯アイソレータ7があるために、GSM送信経路へはDCS受信信号は漏れない。また点21からDCS/PCS送信回路を見た場合、図9で示したアイソレータの接地端子に接続された並列回路41の終端抵抗が見えるため、図3(a)のGSM受信帯域と同様、DCS受信帯域は50Ωでも、オープンでもないインピーダンスにある。一方、点21からDCS受信経路を見た場合、後段が、通常SAWフィルタで実現される非常に狭帯域な帯域通過フィルタ11が、位相回転用線路の機能も兼ねた伝送線路34の後ろに接続されているために、図3(b)のGSM受信帯域と同様なインピーダンスとなる。したがって、点21より見たDCS受信帯域のインピーダンスと、点21よりDSC送信経路とDSC受信経路を見たDCS受信帯域のインピーダンスにより50Ωに整合され、DCS受信信号は良好な通過特性にて帯域通過フィルタ11を経て受信回路へ送られる。
【0038】
PCS受信信号はDCSと同様な機構により、アンテナ端子1から受信経路19、高周波スイッチ30、伝送線路35、帯域通過フィルタ12を経て受信部16へと、良好な通過特性にて送られる。
【0039】
以上のように、本実施の形態1の構成により、GSM,DCS,PCSの送受信を良好に行うことができる。図10で示した従来技術を用いた回路構成と比べて、PAMからアンテナまでの間の、ダイプレクサ、高周波スイッチを除去することが可能となり、挿入損失を低減し、且つ消費電流の増大を防ぎ、回路基板、携帯電話機自身の小型化、低コスト化を可能としたマルチバンド携帯電話機を提供することが可能となる。
【0040】
図1において、分波回路22のブロック、送信LPF31,32と送信PAモジュール26と高周波スイッチ30および伝送線路33,34,35を含んだブロック23、分波回路22とブロック23を囲んだブロック24、ブロック24に受信用SAWフィルタ10,11,12を囲んだブロック25のいずれかのブロックを複合化した高周波複合部品として実現してもかまわない。
【0041】
また、図1中の伝送線路33,34,35には位相調整のためにインダクタやキャパシタを装荷しても同様である。更に、後段の低域通過フィルタ10,11,12の機能をアイソレータ7,8内で実現しても同様である。
【0042】
(実施の形態2)
図2は本発明の実施の形態2におけるGSM/DCS/PCS帯でのEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図である。
【0043】
アンテナ1にはDCS/PCS帯域を阻止するノッチフィルタ36を接続したGSM帯のアイソレータ7と、GSM帯域を阻止するノッチフィルタ37を接続したDCS/PCS帯のアイソレータ8と、GSM/DCS/PCSの受信用伝送線路33,34,35に接続される高周波スイッチ30に接続される受信経路19が接続されている。分波回路22内にアンテナ端子21からの送信経路20にはアイソレータ7,8の前にノッチフィルタ36,37がそれぞれ接続されていることが実施の形態1と異なるだけでその他の接続回路構成は実施の形態1と同様である。
【0044】
ノッチフィルタ36,37は特定の周波数に急峻な減衰を与えるフィルタであるために、GSMの信号を送信する場合については、アンテナ端子21からDCS/PCSの送信経路を見た場合、GSM帯を阻止するノッチフィルタ37があるためにオープンの状態に見えるためDCS/PCS送信経路へはGSM送信信号は漏れない。同様に、DCSの信号を送信する場合もアンテナ端子21からGSMの送信経路を見た場合、DCS/PCS帯を阻止するノッチフィルタ36があるためにオープンの状態に見えるためGSM送信経路へはDCS/PCS送信信号は漏れない。また、GSMの信号を受信する場合も同様にアンテナ端子21からDCS/PCSの送信経路を見た場合、GSM帯を阻止するノッチフィルタ37があるためにオープンの状態に見えるためDCS/PCS送信経路へはGSM受信信号は漏れない。さらにまたDCSの信号を受信する場合もアンテナ端子21からGSMの送信経路を見た場合、DCS帯を阻止するノッチフィルタ36があるためにオープンの状態に見えるためGSM送信経路へはDCS受信信号は漏れない。PCS受信信号はDCSと同様である。
【0045】
以上のように、実施の形態2の構成のように、GSM帯のアイソレータ7とアンテナ端子21間にDCS/PCS帯域を阻止するノッチフィルタ36を接続し、DCS/PCS帯のアイソレータ8とアンテナ端子21間にGSM帯域を阻止するノッチフィルタ37を接続しているため、実施の形態1よりも容易に確実に十分なインピーダンス整合が可能となり、それぞれGSM,DCS,PCSの送受信を良好に行うことができる。従来技術を用いた回路構成(図10)と比べて、PAMからアンテナまでの間の、ダイプレクサ、高周波スイッチを除去することが可能となり、挿入損失を低減し、且つ消費電流の増大を防ぎ、回路基板、携帯電話機自身の小型化、低コスト化を可能としたマルチバンド携帯電話機を提供することが可能となる。
【0046】
(実施の形態3)
図4は本発明の実施の形態3におけるGSM/DCS/PCS帯でのEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図である。実施の形態2でノッチフィルタ36,37により実現していた位相の調整を、帯域通過フィルタ38,39にて実現した点で異なる。この帯域通過フィルタ38,39は狭帯域な高Q値のフィルタを用いると実現が容易である。この構成により、実施の形態1よりも容易に確実に十分なインピーダンス整合が可能となり、それぞれGSM,DCS,PCSの送受信を良好に行うことができる。
【0047】
なお、実施の形態2と実施の形態3でのノッチフィルタ36,37及び帯域通過フィルタ38,39は、インダクタンスL,キャパシタC,抵抗R等の複数のリアクタンス素子を組み合わせてフィルタとして構成される。
【0048】
(実施の形態4)
図5は本発明の実施の形態4におけるGSM/DCS/PCS帯でのEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図である。ノッチフィルタ36,37や狭帯域な高Q値の帯域通過フィルタ38,39にて構成した位相調整の機構を高周波半導体スイッチ40を用いて実現した点で異なる。この構成により、実施の形態1よりも容易に確実に十分なインピーダンス整合が可能となり、それぞれGSM,DCS,PCSの送受信を良好に行うことができる。
【0049】
(実施の形態5)
図6は本発明の実施の形態5におけるGSM/DCS/PCS帯でのEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図である。実施の形態1と異なるところは、GSM帯アイソレータ7は、GaAsFET等の半導体スイッチ素子を用いた高周波スイッチ50を経てGSM送信信号の二倍波、三倍波を抑圧する低域通過フィルタ31に接続された後、GSMのカプラ17を経てGSMの電力増幅器13に接続される。また、DCS/PCS帯アイソレータ8はGaAs−FET等の半導体スイッチ素子を用いた高周波スイッチ51を経て、GSM送信信号の二倍波、三倍波を抑圧する低域通過フィルタ32に接続された後、DCS/PCSのカプラ18を経てDCS/PCSの電力増幅器14に接続される。
【0050】
アイソレータ7,8だけでインピーダンス整合を行うと、PAモジュール26として電力増幅器13,14を組み立てた場合には、PA間が近くなるためバーストの漏れが発生する場合があるが、高周波スイッチ50,51により確実にオープンの状態にできるのでバーストの漏れを無くすことができる。
【0051】
【発明の効果】
以上のように、本発明のマルチバンド携帯電話機に用いられる高周波回路装置によれば、通信システムが送信する搬送波の位相を細かくコントロールする必要のあるEDGE方式のような多値位相変調方式において、GSM,DCS,PCSの送受信が良好に行うことができる。電力増幅器からアンテナまでの間の、ダイプレクサ、高周波スイッチを除去することが可能となり、挿入損失を低減し、且つ消費電流の増大を防ぎ、回路基板、携帯電話機自身の小型化、低コスト化を可能としたマルチバンド携帯電話機を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【図2】本発明の実施の形態2におけるEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【図3】本発明においてGSM信号を受信時する際のインピーダンスを示す図
【図4】本発明の実施の形態3におけるEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【図5】本発明の実施の形態4におけるEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【図6】本発明の実施の形態5におけるEDGE対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【図7】マルチバンド対応携帯電話機の送受信部分を示すブロック図
【図8】従来のマルチバンド端末の送受信部の高周波回路装置のブロック図
【図9】アイソレータの等価回路図
【図10】従来のEDGE方式対応マルチバンド端末の送受信部の高周波回路装置のブロック図
【符号の説明】
1 アンテナ
2 ダイプレクサ
7,8 アイソレータ
10,11,12 SAWフィルタ
13,14 パワーアンプ
15 送信部
16 受信部
17,18 カプラ
22 分波回路
30 受信切替スイッチ
31,32 低域通過フィルタ
33,34,35 受信用伝送線路
36,37 ノッチフィルタ
38,39 帯域通過フィルタ
40 半導体スイッチ素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency circuit device corresponding to a plurality of communication systems corresponding to different frequency bands.
[0002]
[Prior art]
Currently, in Europe, a plurality of frequencies are used as mobile communication, for example, a GSM (Global System for Mobile Communications) system using a 900 MHz band, a DCS (Digital Cellular System) system using a 1.8 GHz band, and a 1.9 GHz band. A multi-band mobile phone operable with the North American PCS (Personal Communications Service) system has been put to practical use.
[0003]
FIG. 7 is a block diagram showing a transmission / reception part of a multi-band compatible mobile phone, and is an example of a case where three communication systems of a 900 MHz band GSM system, a 1.8 GHz band DCS system, and a 1.9 GHz band PCS system are supported. It is shown.
[0004]
The transmitting / receiving portion of the multi-band compatible mobile phone includes an antenna 1, a diplexer 2, two high-frequency switches 3, 4, and low-pass filters 5, 6, each of which is a power amplifier (PA). ) Is connected to a GSM / DCS / PCS transmission unit 15 composed of 13, 14 and the like, and the reception path of the GSM / DCS / PCS system is a band in which a normal surface acoustic wave (SAW) filter is used. It is connected to a GSM / DCS / PCS receiving section 16 composed of band-pass filters (BPFs) 10, 11, and 12, and a low-noise amplifier (LNA).
[0005]
The diplexer 2 is an element having two functions of a low-pass filter (LPF: Low Pass Filter) and a high-pass filter (HPF: High Pass Filter), and distributes a GSM or DCS received signal during reception. It performs the function of attenuating out-of-band signals during transmission.
[0006]
The high-frequency switch 3 switches between the antenna 1 and the low-pass filter 5 on the GSM transmission path and the antenna 1 and the GSM reception path 60, and the high-frequency switch 4 switches between the antenna 1 and the DCS / PCS transmission path. And the function of switching the antenna 1 and the receiving path 61 of the DCS system and the receiving path 62 of the PCS system.
[0007]
Usually, a diode switch combining a λ / 4 strip line and a PIN diode, an FET switch using a GaAs FET, or the like is used as the high frequency switch.
[0008]
Next, the operation of the diplexer will be described in detail. As described above, the diplexer is a three-terminal element having a function of combining an LPF (GSM side) and an HPF (DCS / PCS side), and has a function of distributing a signal input from an input terminal to two output terminals according to frequency. . Utilizing this characteristic, it has a function of distributing signals of two frequency bands to respective terminals during reception. Further, at the time of transmission, it also has a function of preventing higher harmonics from inside the high-frequency switch and higher harmonics from the PA of the transmission circuit unit from being transmitted through the antenna 1. In particular, the second harmonic of the 900 MHz band of the GSM system is 1800 MHz, which is the same frequency band as the DCS system. As a result, if the second harmonic of the GSM system that is larger than the received signal of the DCS system is output, it becomes a jamming wave and causes a failure in communication in the DCS band. Therefore, the function of suppressing the harmonics is important.
[0009]
Here, the operation of the multi-band mobile phone will be described in detail with reference to FIG. First, the case of the GSM system will be described. At the time of transmission, the transmission signal from the GSM transmission unit passes through the low-pass filter 5 to remove harmonic components from the GSM PA 13 in the transmission circuit unit. Next, the signal is sent to the diplexer 2 connected by the high-frequency switch 3 to attenuate harmonics, and transmitted from the antenna 1. At the time of reception, the received signal received from the antenna 1 is distributed to the high-frequency switch 3 by the diplexer 2 and sent to the receiving circuit section through the GSM receiving path 60.
[0010]
Next, the case of the DCS method will be described. At the time of transmission, the transmission signal from the DCS / PCS transmission unit passes through the low-pass filter 6 and the harmonic components from the DCS / PCS PA 14 of the transmission circuit unit are removed. Thereafter, the signal is sent to the diplexer 2 connected by the high-frequency switch 4, attenuates frequency components lower than the DCS band, and transmitted from the antenna 1. At the time of reception, the received signal received by the antenna 1 is distributed to the high-frequency switch 4 by the diplexer 2 and sent to the receiving circuit unit through the DCS receiving path 61.
[0011]
Next, the case of the PCS method will be described. At the time of transmission, the transmission signal from the DCS / PCS transmission unit passes through the low-pass filter 6 and the harmonic components from the DCS / PCS PA 14 of the transmission circuit unit are removed. The signal is sent to the diplexer 2 connected by the high-frequency switch 4, then attenuated at a frequency component lower than the PCS band, and transmitted from the antenna 1. At the time of reception, the received signal received by the antenna 1 is distributed to the high-frequency switch 4 by the diplexer 2 and sent to the receiving circuit unit through the receiving path 62 of the PCS system.
[0012]
FIG. 8 shows an implementation example of a conventional high-frequency circuit device in an actual GSM / DCS / PCS multi-band compatible mobile phone (for example, see Patent Document 1).
[0013]
Multi-band compatible mobile terminals require an increase in the number of components compared to single-band compatible mobile terminals, and composite high-frequency components have been realized and used for the purpose of reducing the number of components, cost, and miniaturization. FIG. 8 shows an antenna switch module (ASM) 27 which integrates a diplexer, a high-frequency switch, and a low-pass filter directly below the antenna in FIG. 7, the PAs 13 and 14 of GSM / DCS / PCS, and couplers (couplers) 17 and 18. This is an example in which an integrated power amplifier module (PAM) 26 is used.
[0014]
In recent years, an EDGE (Enhanced Data rates for GSM Evolution) system, which has a different modulation system from the conventional GSM / DCS / PCS system, has been proposed and put into practical use in response to an increase in data rate. The EDGE system is an eight-phase PSK modulation system in a multiple phase shift keying (MPSK) system, and requires signal linearity in a wide power level range. For this reason, it is necessary to add an isolator between the PAM and the ASM, which is not necessary in the conventional GSM / DCS / PCS system in the configuration of the actual transmitting / receiving circuit.
[0015]
The necessity of the isolator will be described in detail. As shown in FIG. 9, the isolator has a function of passing a signal from the terminal 1 (Port 1) to the terminal 2 (Port 2) and absorbing a reflected signal from the terminal 2 to the terminal 1. By this function, the antenna and the PAM having a large impedance variation due to environmental changes such as touching with hands can be separated from the PAM, and a reflected signal from the antenna to the PAM can be absorbed. Therefore, linear operation of the PAM can be performed in a wide power range, and the error rate of a signal can be improved in a complicated modulation scheme such as an 8-phase PSK modulation scheme used in the EDGE scheme.
[0016]
FIG. 9 shows an equivalent circuit of an isolator. A parallel circuit 42 of an inductor and a capacitor is connected between each input / output terminal Port1 and Port2 of the ideal circulator and the ground, and a ground terminal of the ideal circulator is connected to a parallel circuit of the resistance of the inductor and the capacitor. It is represented by a form terminated by grounding at 41, and is actually realized by a structure in which a ferrite material such as garnet, a matching capacitor, and a case are assembled, and has a size of about 5 mm × 5 mm × 1.5 mm. is there.
[0017]
[Patent Document 1]
JP-A-2002-101005 (pages 4 to 5, FIG. 1)
[0018]
[Problems to be solved by the invention]
FIG. 10 shows an example in which an isolator is added to the current multiband communication terminal to support the EDGE system. In this case, impedance matching between the isolators 7, 8 and the PAM 26 and impedance between the isolators 7, 8 and the ASM 27 are required, and there is a problem that the loss due to the matching circuit increases. Further, the impedance of the isolators 7 and 8 viewed from the PAM 26 is adjusted to 50Ω in the pass band, but is separated from 50Ω in the harmonic band such as the second harmonic and the third harmonic. Since the attenuation characteristics of the low-pass filters 5 and 6 for suppressing harmonics contained in a certain ASM 27 also deteriorate, impedance matching becomes difficult and complicated, and as a result, the transmission characteristics deteriorate.
[0019]
As described above, according to the high-frequency circuit device used in the EDGE-compatible multi-band mobile phone using the technology of the conventional mobile communication device, the high-frequency circuit device between the PAM and the ASM has a low-pass filter for suppressing harmonics. Must have an isolator. For this reason, impedance matching between the isolator and the PAM and between the isolator and the ASM is required, and there is a problem that the loss due to the addition of a new matching circuit increases. In addition, the impedance of the isolator viewed from the PAM is adjusted to 50Ω in the pass band, but is separated from 50Ω in the harmonic band such as the second harmonic and the third harmonic. Since the attenuation characteristic of the built-in harmonic suppression low-pass filter also deteriorates, loss reduction and harmonic suppression by impedance matching are difficult and complicated, and as a result, transmission characteristics deteriorate.
[0020]
In particular, as the loss increases, the talk time of the portable terminal becomes short, and it becomes difficult to suppress harmonics at the same time. For example, in the GSM system (EDGE system), if the loss from the PAM to the antenna increases from 0.1 dB to 0.2 dB, in order to obtain the same transmission signal output from the antenna, it is necessary to increase the output of the PAM. In general, the current consumption of the transmission unit becomes about 1.3 to 1.4 times. Also, when the output of the transmission unit is increased, harmonics generated in the transmission unit increase. To suppress this, a low-pass filter must be added before ASM, for example, to increase the attenuation in the harmonic band. Increasing the attenuation in the harmonic band also increases the insertion loss in the pass band. For this reason, the output of the transmission unit must be further increased, which leads to a further increase in current consumption.
[0021]
The present invention has been made in order to solve these problems. Even in the EDGE system which is a multi-level phase modulation system in which the phase of a carrier to be transmitted needs to be finely controlled, insertion loss is reduced and power consumption is reduced. It is an object of the present invention to provide a high-frequency circuit device used for a multi-band mobile phone that prevents an increase in current and that can reduce the size and cost of the circuit board and the mobile phone itself.
[0022]
[Means for Solving the Problems]
In order to solve the conventional problem, the high-frequency circuit device of the present invention has a plurality of communication systems corresponding to different frequency bands, and transmits transmission signals from the plurality of communication systems to an antenna, and transmits the signals from the antenna. Receiving a received signal, transmitting and receiving signals in a transmission path of each frequency band of the plurality of communication systems, a branching circuit having an antenna terminal for branching to a receiving path, and branching the signal from the branching circuit to a receiving path. And a plurality of bandpasses connected from the reception changeover switch to the respective reception units of the plurality of communication systems via transmission lines. A demultiplexing circuit configured as a demultiplexer, configured to demultiplex to the transmission path, transmitting each signal of a communication system of a different frequency. And having an isolator road.
[0023]
With this configuration, it is possible to eliminate the diplexer and the high-frequency switch between the PAM and the antenna on the transmission path, prevent an increase in current consumption, and further use a circuit board using the high-frequency circuit device of the present invention and the mobile phone itself. Size and cost can be reduced.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
(Embodiment 1)
FIG. 1 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal in a GSM / DCS / PCS band according to Embodiment 1 of the present invention.
[0026]
The antenna 1 is connected to an antenna terminal 21 of a demultiplexing circuit 22. The demultiplexing circuit 22 is connected from the antenna terminal 21 to a transmission path 20 connected to the GSM band isolator 7 and the DCS / PCS band isolator 8, respectively. The reception path 19 is connected to a high-frequency switch 30 which is a DCS / PCS reception switch.
[0027]
Further, the GSM band isolator 7 is connected to a low-pass filter 31 that suppresses a second harmonic and a third harmonic of a GSM transmission signal, and is then connected to a GSM power amplifier PA13 via a GSM coupler 17.
[0028]
The DCS / PCS band isolator 8 is connected to the low-pass filter 32 for suppressing the second and third harmonics of the GSM transmission signal, and then connected to the DCS / PCS power amplifier PA14 via the DCS / PCS coupler 18. Is done.
[0029]
Here, the GSM coupler 17, the GSM PA 13, the DCS / PCS coupler 18, and the DCS / PCS PA 14 are integrally formed as a power module (PA module) 26 on the same substrate.
[0030]
The receiving path 19 is connected to the high-frequency switch 30 and connected to the receiving transmission lines 33, 34, 35 of GSM / DCS / PCS. The transmission lines 33, 34, 35 are connected to bandpass filters 10, 11, 12 for removing out-of-band signals of GSM / DCS / PCS, respectively, and thereafter connected to the receiving unit 16 of each band.
[0031]
First, the case of transmitting a GSM signal (880-915 MHz) with the circuit configuration of the present invention will be described.
[0032]
The transmission signal amplified by the GSM PA 13 passes through the coupler 17, passes through the low-pass filter 31 to remove the second harmonic and the third harmonic, and then connects to the antenna terminal 21 via the GSM band isolator 7. I do. In this case, when the transmission path of the DCS / PCS is viewed from the point 21, there is the DCS / PCS band isolator 8 that blocks the GSM band and the frequency band is different, so that the GSM transmission signal does not leak to the DCS / PCS transmission path.
[0033]
Similarly, when the reception path 19 is viewed from the point 21, the high-frequency switch 30 is in an off state, and thus appears to be in an open state. Therefore, the GSM transmission signal does not leak to the reception path 19. Therefore, all GSM transmission signals are transmitted to antenna 1.
[0034]
Next, a case where a DCS signal is transmitted (1710-1785 MHz, 1850-1910 MHz) with the circuit configuration of the present invention will be described.
[0035]
The transmission signal amplified by the DCS / PCS PA 14 passes through the coupler 18, passes through the low-pass filter 32 to remove the second harmonic and the third harmonic, passes through the DCS / PCS band isolator 8, and passes through the antenna. Connect to terminal 21. In this case, when the GSM transmission path is viewed from the point 21, the DCS / PCS transmission signal does not leak to the GSM transmission path because there is a GSM band isolator 7 that blocks the DCS / PCS band and has a different frequency band. Similarly, when the reception path 19 is viewed from the point 21, the high-frequency switch 30 is in an off state, and thus appears to be in an open state. Therefore, the DCS / PCS transmission signal does not leak to the reception path 19. Therefore, all DCS / PCS transmission signals are transmitted to antenna 1. When transmitting a PCS signal, the signal is transmitted to the antenna 1 by the same mechanism as that of the DCS.
[0036]
Next, a case where a GSM signal is received (925-960 MHz) will be described. The GSM reception signal received by the antenna 1 is transmitted from the antenna terminal 21 via the reception path 19 to the transmission path 33 for GSM reception by the high frequency switch 30, passes through the GSM band pass filter 10, and is transmitted to the reception circuit unit. Can be In this case, when the transmission path of the DCS / PCS is viewed from the point 21, the GSM reception signal does not leak to the DCS / PCS transmission path because there is the DCS / PCS band isolator 8 that blocks the GSM band. When the GSM transmission circuit is viewed from the point 21, the termination resistance of the parallel circuit 41 connected to the ground terminal of the isolator shown in FIG. 9 is seen, and the impedance is as shown in FIG. The receiving band is at an impedance that is neither 50Ω nor open. On the other hand, when looking at the GSM reception path from the point 21, the subsequent stage is connected to the very narrow band-pass filter 10, which is usually realized by a SAW filter, behind the transmission line 33 also serving as a phase rotation line. Therefore, the impedance becomes as shown in FIG. Therefore, the impedance is matched to 50Ω by the impedance of the GSM reception band as viewed from the point 21 in the GSM transmission path and the GSM reception path, and the GSM reception signal is sent to the reception unit 16 via the bandpass filter 10 with good pass characteristics.
[0037]
Next, the case of receiving a DSC signal (1805-1880 MHz) will be described. The DCS reception signal received by the antenna 1 is transmitted from the antenna terminal 21 via the reception path 19 to the transmission path 34 for DCS reception by the high frequency switch 30, passes through the DCS band-pass filter 11, and is transmitted to the reception unit 16. Can be In this case, when the GSM transmission path is viewed from the point 21, the DCS reception signal does not leak to the GSM transmission path because there is the GSM band isolator 7 that blocks the DCS band. When the DCS / PCS transmission circuit is viewed from the point 21, the termination resistance of the parallel circuit 41 connected to the ground terminal of the isolator shown in FIG. 9 can be seen, so that the DCS / PCS transmission circuit is similar to the GSM reception band in FIG. The receiving band is at an impedance that is neither 50Ω nor open. On the other hand, when looking at the DCS receiving path from the point 21, the subsequent stage is such that the very narrow band-pass filter 11 realized by a normal SAW filter is connected behind the transmission line 34 also serving as a phase rotation line. Therefore, the impedance becomes similar to that of the GSM reception band in FIG. Therefore, the impedance of the DCS reception band viewed from the point 21 and the impedance of the DCS reception band viewed from the point 21 on the DSC transmission path and the DSC reception path are matched to 50Ω, and the DCS reception signal is band-passed with good pass characteristics. The signal is sent to the receiving circuit via the filter 11.
[0038]
The PCS reception signal is transmitted from the antenna terminal 1 to the reception unit 16 through the reception path 19, the high-frequency switch 30, the transmission line 35, and the band-pass filter 12 with a good pass characteristic by the same mechanism as the DCS.
[0039]
As described above, with the configuration of the first embodiment, transmission and reception of GSM, DCS, and PCS can be performed well. Compared with the circuit configuration using the prior art shown in FIG. 10, the diplexer and the high frequency switch between the PAM and the antenna can be removed, the insertion loss can be reduced, and the current consumption can be prevented from increasing. It is possible to provide a multi-band mobile phone capable of reducing the size and cost of the circuit board and the mobile phone itself.
[0040]
In FIG. 1, the block of the demultiplexing circuit 22, the block 23 including the transmission LPFs 31, 32, the transmission PA module 26, the high-frequency switch 30, and the transmission lines 33, 34, 35, and the block 24 surrounding the demultiplexing circuit 22 and the block 23 Alternatively, any one of the blocks 25 surrounding the receiving SAW filters 10, 11, 12 may be realized as a high-frequency composite component.
[0041]
The same applies to the case where an inductor or a capacitor is loaded on the transmission lines 33, 34, 35 in FIG. 1 for phase adjustment. Further, the same applies when the functions of the low-pass filters 10, 11, and 12 at the subsequent stage are realized in the isolators 7 and 8.
[0042]
(Embodiment 2)
FIG. 2 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal in the GSM / DCS / PCS band according to Embodiment 2 of the present invention.
[0043]
The antenna 1 has a GSM band isolator 7 connected to a notch filter 36 for blocking the DCS / PCS band, a DCS / PCS band isolator 8 connected to a notch filter 37 for blocking the GSM band, and a GSM / DCS / PCS. The receiving path 19 connected to the high-frequency switch 30 connected to the receiving transmission lines 33, 34, 35 is connected. Notch filters 36 and 37 are connected to the transmission path 20 from the antenna terminal 21 in the branching circuit 22 in front of the isolators 7 and 8, respectively. This is the same as in the first embodiment.
[0044]
Since the notch filters 36 and 37 are filters that give steep attenuation to specific frequencies, when transmitting a GSM signal, the GSM band is blocked when the transmission path of the DCS / PCS is viewed from the antenna terminal 21. The GSM transmission signal does not leak to the DCS / PCS transmission path because the notch filter 37 appears to be open due to the presence of the notch filter 37. Similarly, when transmitting a DCS signal, when the GSM transmission path is viewed from the antenna terminal 21, the GSM transmission path appears to be open due to the presence of the notch filter 36 that blocks the DCS / PCS band. The / PCS transmission signal does not leak. Similarly, when a GSM signal is received, when the DCS / PCS transmission path is viewed from the antenna terminal 21, the DCS / PCS transmission path appears open because of the presence of the notch filter 37 that blocks the GSM band. The GSM reception signal does not leak to. Furthermore, when the GSM transmission path is viewed from the antenna terminal 21 when receiving the DCS signal, the GSM transmission path appears to be open because of the notch filter 36 that blocks the DCS band. No leakage. The PCS reception signal is similar to the DCS.
[0045]
As described above, the notch filter 36 for blocking the DCS / PCS band is connected between the GSM band isolator 7 and the antenna terminal 21 as in the configuration of the second embodiment, and the DCS / PCS band isolator 8 and the antenna terminal are connected. Since the notch filter 37 for blocking the GSM band is connected between the power supply terminals 21 and 21, sufficient impedance matching can be performed more easily and reliably than in the first embodiment, and transmission and reception of GSM, DCS, and PCS can be performed well. it can. Compared with the circuit configuration using the prior art (FIG. 10), the diplexer and the high-frequency switch between the PAM and the antenna can be eliminated, the insertion loss can be reduced, and the current consumption can be prevented from increasing. It is possible to provide a multi-band mobile phone capable of reducing the size and cost of the substrate and the mobile phone itself.
[0046]
(Embodiment 3)
FIG. 4 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal in the GSM / DCS / PCS band according to Embodiment 3 of the present invention. The difference is that the phase adjustment realized by the notch filters 36 and 37 in the second embodiment is realized by the band-pass filters 38 and 39. The bandpass filters 38 and 39 can be easily realized by using narrow band high Q value filters. With this configuration, sufficient impedance matching can be achieved more easily and reliably than in the first embodiment, and transmission and reception of GSM, DCS, and PCS can be performed well.
[0047]
The notch filters 36 and 37 and the band-pass filters 38 and 39 in the second and third embodiments are configured as filters by combining a plurality of reactance elements such as an inductance L, a capacitor C, and a resistor R.
[0048]
(Embodiment 4)
FIG. 5 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal in the GSM / DCS / PCS band according to Embodiment 4 of the present invention. The difference is that the phase adjustment mechanism constituted by the notch filters 36 and 37 and the bandpass filters 38 and 39 having a narrow band and a high Q value is realized by using a high-frequency semiconductor switch 40. With this configuration, sufficient impedance matching can be achieved more easily and reliably than in the first embodiment, and transmission and reception of GSM, DCS, and PCS can be performed well.
[0049]
(Embodiment 5)
FIG. 6 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal in the GSM / DCS / PCS band according to Embodiment 5 of the present invention. The difference from the first embodiment is that the GSM band isolator 7 is connected to a low-pass filter 31 for suppressing a second harmonic and a third harmonic of a GSM transmission signal via a high frequency switch 50 using a semiconductor switching element such as a GaAs FET. After that, it is connected to the GSM power amplifier 13 via the GSM coupler 17. After the DCS / PCS band isolator 8 is connected to the low-pass filter 32 for suppressing the second and third harmonics of the GSM transmission signal via the high frequency switch 51 using a semiconductor switching element such as a GaAs-FET. , Through a DCS / PCS coupler 18 to the DCS / PCS power amplifier 14.
[0050]
If the impedance matching is performed only by the isolators 7 and 8, when the power amplifiers 13 and 14 are assembled as the PA module 26, there is a case where the leakage between the PAs occurs because the PAs are close to each other. Thus, the open state can be surely achieved, so that the leakage of the burst can be eliminated.
[0051]
【The invention's effect】
As described above, according to the high-frequency circuit device used in the multi-band mobile phone of the present invention, in the multi-level phase modulation system such as the EDGE system in which the phase of the carrier transmitted by the communication system needs to be finely controlled, the GSM , DCS and PCS can be transmitted and received satisfactorily. The diplexer and high-frequency switch between the power amplifier and the antenna can be eliminated, reducing insertion loss and preventing increase in current consumption, enabling downsizing and cost reduction of circuit boards and mobile phones themselves. It is possible to provide a multi-band mobile phone set as described above.
[Brief description of the drawings]
FIG. 1 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal according to a first embodiment of the present invention.
FIG. 2 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal according to a second embodiment of the present invention.
FIG. 3 is a diagram showing impedance when a GSM signal is received in the present invention.
FIG. 4 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal according to a third embodiment of the present invention.
FIG. 5 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal according to a fourth embodiment of the present invention.
FIG. 6 is a block diagram of a high-frequency circuit device of a transmission / reception unit of an EDGE-compatible multiband terminal according to a fifth embodiment of the present invention.
FIG. 7 is a block diagram showing a transmission / reception part of a multi-band compatible mobile phone.
FIG. 8 is a block diagram of a high-frequency circuit device of a transmission / reception unit of a conventional multiband terminal.
FIG. 9 is an equivalent circuit diagram of the isolator.
FIG. 10 is a block diagram of a high-frequency circuit device of a transmitting / receiving unit of a conventional EDGE-compatible multiband terminal.
[Explanation of symbols]
1 antenna
2 Diplexers
7,8 Isolator
10,11,12 SAW filter
13,14 Power amplifier
15 Transmission section
16 Receiver
17,18 coupler
22 demultiplexing circuit
30 Reception switch
31, 32 Low-pass filter
33, 34, 35 Reception transmission line
36, 37 Notch filter
38,39 Bandpass filter
40 Semiconductor switch element

Claims (9)

異なる周波数帯に対応した複数の通信システムを有し、前記複数の通信システムからの送信信号をアンテナへ送出すると共に、前記アンテナから受信信号を受信して、送受信号を前記複数の通信システムのそれぞれの周波数帯の送信経路と、受信経路に分波するアンテナ端子を有する分波回路と、
前記分波回路から受信経路に分波された受信信号を異なる周波数の通信システムのそれぞれの受信部に切り替える受信切替スイッチと、
前記受信切替スイッチから前記複数の通信システムのそれぞれの受信部へ伝送線路を介して接続された複数のバンドパスフィルタから構成され、
前記分波回路は、前記送信経路に分波する手段として、異なる周波数の通信システムのそれぞれの送信経路にアイソレータを有することを特徴とする高周波回路装置。
Having a plurality of communication systems corresponding to different frequency bands, sending out transmission signals from the plurality of communication systems to an antenna, receiving a reception signal from the antenna, and transmitting and receiving signals of each of the plurality of communication systems A transmission path of the frequency band of, and a demultiplexing circuit having an antenna terminal for demultiplexing to the reception path,
A reception changeover switch that switches a reception signal demultiplexed to a reception path from the demultiplexing circuit to each reception unit of a communication system of a different frequency,
It comprises a plurality of band-pass filters connected via a transmission line to the respective receiving units of the plurality of communication systems from the reception changeover switch,
The high-frequency circuit device, wherein the demultiplexing circuit has an isolator in each transmission path of a communication system having a different frequency as a unit for demultiplexing the signal into the transmission path.
前記分波回路は前記アイソレータと前記アンテナとの間にノッチフィルタを接続したことを特徴とする請求項1記載の高周波回路装置。2. The high-frequency circuit device according to claim 1, wherein the branching circuit has a notch filter connected between the isolator and the antenna. 前記分波回路は前記アイソレータと前記アンテナとの間に帯域通過フィルタを接続したことを特徴とする請求項1記載の高周波回路装置。The high-frequency circuit device according to claim 1, wherein the branching circuit has a band-pass filter connected between the isolator and the antenna. 前記分波回路は前記アイソレータと前記アンテナとの間に高周波スイッチを接続したことを特徴とする請求項1記載の高周波回路装置。2. The high-frequency circuit device according to claim 1, wherein the branching circuit has a high-frequency switch connected between the isolator and the antenna. 前記高周波回路装置は、複数の通信システムのそれぞれの送信部からの送信信号を増幅する複数の増幅器と、前記増幅器により増幅された信号を結合器を介して接続される複数の低域通過フィルタと、前記低域通過フィルタから前記分波回路に接続され、前記低域通過フィルタは前記アイソレータに接続したことを特徴とする請求項1から4のいずれか一項記載の高周波回路装置。The high-frequency circuit device includes a plurality of amplifiers that amplify transmission signals from respective transmission units of a plurality of communication systems, and a plurality of low-pass filters connected to a signal amplified by the amplifier via a coupler. 5. The high-frequency circuit device according to claim 1, wherein the low-pass filter is connected to the demultiplexing circuit, and the low-pass filter is connected to the isolator. 前記低域通過フィルタと前記アイソレータとの間に半導体スイッチ素子を接続したことを特徴とする請求項5記載の高周波回路装置。6. The high-frequency circuit device according to claim 5, wherein a semiconductor switch element is connected between the low-pass filter and the isolator. 前記分波回路は前記アイソレータと前記アンテナとの間に複数のリアクタンス素子を組み合わせたフィルタを有し、前記アンテナ端子から見た送信経路と受信経路とのインピーダンスマッチングを行ったことを特徴とする請求項1から4のいずれか一項記載の高周波回路装置。The demultiplexing circuit has a filter combining a plurality of reactance elements between the isolator and the antenna, and performs impedance matching between a transmission path and a reception path viewed from the antenna terminal. Item 5. The high-frequency circuit device according to any one of Items 1 to 4. 前記アイソレータはマイクロ波フェライト,磁石,抵抗体,キャパシタ,中心導体から成ることを特徴とする請求項1記載の高周波回路装置。2. The high frequency circuit device according to claim 1, wherein said isolator comprises a microwave ferrite, a magnet, a resistor, a capacitor, and a center conductor. 前記複数の通信システムが、送信する搬送波の位相を細かくコントロールする必要のある多値位相変調方式でありかつ、複数の送信周波数を扱うマルチバンド通信端末に使用される請求項1から8のいずれか一項記載の高周波回路装置。9. The multi-band communication terminal according to claim 1, wherein the plurality of communication systems are a multi-level phase modulation system that requires fine control of the phase of a carrier wave to be transmitted, and are used in a multi-band communication terminal that handles a plurality of transmission frequencies. The high-frequency circuit device according to claim 1.
JP2002364866A 2002-12-17 2002-12-17 High frequency circuit apparatus Pending JP2004200853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364866A JP2004200853A (en) 2002-12-17 2002-12-17 High frequency circuit apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364866A JP2004200853A (en) 2002-12-17 2002-12-17 High frequency circuit apparatus

Publications (1)

Publication Number Publication Date
JP2004200853A true JP2004200853A (en) 2004-07-15

Family

ID=32762568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364866A Pending JP2004200853A (en) 2002-12-17 2002-12-17 High frequency circuit apparatus

Country Status (1)

Country Link
JP (1) JP2004200853A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075691A1 (en) * 2006-12-19 2008-06-26 Hitachi Metals, Ltd. High frequency circuit, high frequency component and communication device
US8222969B2 (en) 2008-09-18 2012-07-17 Murata Manufacturing Co., Ltd. Duplexer module
JP2013073446A (en) * 2011-09-28 2013-04-22 Kyocera Corp Portable electronic device
US8773220B2 (en) 2009-06-18 2014-07-08 Samsung Electronics Co., Ltd. Radio frequency front end module and multi band module using the radio frequency front end module
US8909204B2 (en) 2011-09-28 2014-12-09 Kyocera Corporation Portable electronic device
WO2016120672A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Multiband transmitter circuit with integrated circulators and filters

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075691A1 (en) * 2006-12-19 2008-06-26 Hitachi Metals, Ltd. High frequency circuit, high frequency component and communication device
JPWO2008075691A1 (en) * 2006-12-19 2010-04-15 日立金属株式会社 High frequency circuit, high frequency component, and communication device
JP4710977B2 (en) * 2006-12-19 2011-06-29 日立金属株式会社 High frequency circuit, high frequency component, and communication device
US8582547B2 (en) 2006-12-19 2013-11-12 Hitachi Metals, Ltd. High frequency circuit, high frequency component and communication device
US8222969B2 (en) 2008-09-18 2012-07-17 Murata Manufacturing Co., Ltd. Duplexer module
US8773220B2 (en) 2009-06-18 2014-07-08 Samsung Electronics Co., Ltd. Radio frequency front end module and multi band module using the radio frequency front end module
JP2013073446A (en) * 2011-09-28 2013-04-22 Kyocera Corp Portable electronic device
US8909204B2 (en) 2011-09-28 2014-12-09 Kyocera Corporation Portable electronic device
WO2016120672A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Multiband transmitter circuit with integrated circulators and filters
US10044375B2 (en) 2015-01-30 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Multiband transmitter circuit with integrated circulators and filters

Similar Documents

Publication Publication Date Title
US6298244B1 (en) Dual-band, dual-mode power amplifier
JP4484871B2 (en) Frequency selective device and method of receiving / transmitting communication signal in wireless multiband device thereof
US7142884B2 (en) Combined front-end circuit for wireless transmission systems
US6188877B1 (en) Dual-band, dual-mode power amplifier with reduced power loss
US6584304B1 (en) Switchable wide band receiver front end for a multiband receiver
JP3905866B2 (en) Antenna switching circuit and radio communication apparatus using the same
US7403082B2 (en) Dual mode antenna switch module
US7706835B2 (en) High-frequency circuit device
JP3772771B2 (en) Multiband high frequency switch
JP2006166277A (en) Transmission/reception apparatus and module
EP1010243A1 (en) A dual-band, dual-mode power amplifier
US20060067254A1 (en) Triband passive signal receptor network
GB2347292A (en) Economical bandpass filter arrangement for a multi-band mobile phone receiver
US8260347B2 (en) Radio frequency communication devices and methods
WO2001005028A1 (en) A dual-band, dual-mode power amplifier
JP2004200853A (en) High frequency circuit apparatus
JP2000091943A (en) Radio communication device
US20220311455A1 (en) Radio-frequency circuit and communication device
JP3939192B2 (en) Duplexer
JP2004032674A (en) Front end module and high frequency function module
JP2009033598A (en) High frequency circuit and high frequency module employing same, communication equipment, and control method of high frequency circuit
JP2011199372A (en) Multimode correspondence high frequency integrated circuit, portable terminal device, and other mode sneak preventing method
KR100550782B1 (en) Dual band front end module
GB2371932A (en) Transmission circuit and unnecessary radiant wave suppression method
JP2003179463A (en) Composite filter, antenna duplexer and communication apparatus