JP2004197573A - Fluid feeding system - Google Patents

Fluid feeding system Download PDF

Info

Publication number
JP2004197573A
JP2004197573A JP2002363701A JP2002363701A JP2004197573A JP 2004197573 A JP2004197573 A JP 2004197573A JP 2002363701 A JP2002363701 A JP 2002363701A JP 2002363701 A JP2002363701 A JP 2002363701A JP 2004197573 A JP2004197573 A JP 2004197573A
Authority
JP
Japan
Prior art keywords
booster
fluid
control unit
gear pump
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002363701A
Other languages
Japanese (ja)
Other versions
JP4144343B2 (en
Inventor
Akitoshi Masuda
精鋭 増田
Yasushi Matsunaga
易 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002363701A priority Critical patent/JP4144343B2/en
Publication of JP2004197573A publication Critical patent/JP2004197573A/en
Application granted granted Critical
Publication of JP4144343B2 publication Critical patent/JP4144343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid feeding system capable of improving the reliability by minimizing the increase in weight, miniaturizing and weight-saving thereof. <P>SOLUTION: A fuel pump 2 is made a triple gear pump having a first pressurizing part 9 and a second pressurizing part 10. A flow control unit 3 is comprised of a first flow control unit 3a for feeding a fuel of a set flow out of a fuel delivered from the first pressurizing part 9 into a burner 5 with the excess returning into the inlet side, and a second flow unit 3b for feeding the fuel of the set flow out of the fuel delivered from second pressurizing part 10 into the burner with the excess returning into the inlet side. Further, the control unit 3 is provided with a first change-over valve 40a capable of unloading the first pressurizing part 9 while the first flow control unit 3a stops, and the second change-over valve 40b capable of unloading the second pressurizing part 10 while the second flow control unit 3b stops. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料等の流体供給システムに関するものである。
【0002】
【従来の技術】
一般に、航空機等に用いられるジェットエンジン(ターボファンエンジン)の燃料供給システムは、図3に示される如く、燃料タンク1からの燃料を昇圧部としての燃料ポンプ2によって昇圧し、スロットルレバーの位置等の情報が伝達される流量制御ユニット3によってその流量を決定し、設定流量の燃料をジェットエンジンにおける燃焼器5に送り込みつつ、余剰分を燃料ポンプ2の入側に送り返す構成となっている。
【0003】
ここで、前記燃料ポンプ2としては、従来、図3に示されるようなギアポンプが用いられており、この場合、エンジンから伝達された回転運動がエンジン補機としてのギアボックス(AGB:accessory gear box)内の歯車を介して、ギアポンプを駆動するようになっている。そのため、ギアポンプの吐出流量は、エンジンの回転数に略比例するようになっている。
【0004】
前記流量制御ユニット3は、オリフィスの式で差圧が一定に保持されている場合、流量は絞りの開度に比例するという原理に基づくものであって、
開度調節により燃料の流量を設定流量とする計量弁301と、
図示していないトルクモータによりノズルフラッパー機構を介して電流を計量弁301の弁体移動速度に比例させつつ、計量弁301の開度を変位計で捉えてフィードバック制御を行うデジタル電子制御装置302と、
前記計量弁301の前後の差圧を感知する差圧感知弁303と、
該差圧感知弁303で感知した計量弁301の前後の差圧を一定に保持するよう燃料ポンプ2から吐出された燃料の一部をその吸込側へ戻すバイパス弁304と、
圧損を生じさせることにより常に流量制御ユニット3の出口における燃料の圧力を燃焼器5の圧力よりも高く保持する背圧調整弁305と
を備えてなる構成を有している。
【0005】
尚、航空機の燃料系統に関する発明としては、例えば、特許文献1に開示されたようなものが存在する。
【0006】
【特許文献1】
特開平7−317564号公報(図1)
【0007】
【発明が解決しようとする課題】
ところで、前記燃料ポンプ2や流量制御ユニット3における各種弁(差圧感知弁303、バイパス弁304、背圧調整弁305)等の油圧機器自体の機械的信頼性は比較的安定しているが、デジタル電子制御装置302におけるトルクモータ等の電気部品の故障率が安定しないため、より高い信頼性を要求されるシステムでは、前記燃料ポンプ2並びに流量制御ユニット3をそれぞれ二個ずつ設けて、全体を二重化することが一般に行われている。
【0008】
しかしながら、前述の如く、単にシステム全体を二重化するのでは、全体の重量が増加すると共に、前記燃料ポンプ2の駆動用ギアボックス等も二個必要になって大型化が避けられず、特に、重量面並びにスペース面において制約の多い航空機等の燃料供給システムとしては不利となり、改善が望まれていた。
【0009】
本発明は、斯かる実情に鑑み、重量増加を最小限に抑え、小型軽量化を図りつつ、信頼性をより向上させ得る流体供給システムを提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、ポンプから吐出される流体を流量制御ユニットにより設定流量だけ機器へ送り込みつつ余剰分をポンプの入側に送り返すようにした流体供給システムにおいて、
ポンプを第一昇圧部と第二昇圧部とを有する三連式のギアポンプとし、
流量制御ユニットを、ギアポンプの第一昇圧部から吐出される流体のうち設定流量の流体を機器へ送り込みつつ余剰分をギアポンプの第一昇圧部の入側に送り返す第一流量制御ユニットと、ギアポンプの第二昇圧部から吐出される流体のうち設定流量の流体を機器へ送り込みつつ余剰分をギアポンプの第二昇圧部の入側に送り返す第二流量制御ユニットとに分割形成し、
第一流量制御ユニットの停止時にギアポンプの第一昇圧部から吐出される流体を第一昇圧部の入側へ戻して第一昇圧部をアンロード状態とし得る第一切換弁と、
第二流量制御ユニットの停止時にギアポンプの第二昇圧部から吐出される流体を第二昇圧部の入側へ戻して第二昇圧部をアンロード状態とし得る第二切換弁とを具備したことを特徴とする流体供給システムにかかるものである。
【0011】
上記手段によれば、以下のような作用が得られる。
【0012】
通常運転時には、三連式のギアポンプの第一昇圧部から吐出される流体が、第一流量制御ユニットによって設定流量だけ機器へ送り込まれつつ余剰分がギアポンプの第一昇圧部の入側に送り返されると共に、ギアポンプの第二昇圧部から吐出される流体が、第二流量制御ユニットによって設定流量だけ機器へ送り込まれつつ余剰分がギアポンプの第二昇圧部の入側に送り返される。
【0013】
これに対し、第一流量制御ユニットのトルクモータ等の電気部品が故障する等して該第一流量制御ユニットを停止させる際には、第一切換弁の切換により、ギアポンプの第一昇圧部から吐出される流体が第一昇圧部の入側へ戻されて第一昇圧部がアンロード状態とされ、ギアポンプの第二昇圧部から吐出される流体の第二流量制御ユニットによる機器への送給は継続される一方、第二流量制御ユニットのトルクモータ等の電気部品が故障する等して該第二流量制御ユニットを停止させる際には、第二切換弁の切換により、ギアポンプの第二昇圧部から吐出される流体が第二昇圧部の入側へ戻されて第二昇圧部がアンロード状態とされ、ギアポンプの第一昇圧部から吐出される流体の第一流量制御ユニットによる機器への送給は継続される。
【0014】
即ち、三連式のギアポンプを用いることにより、単にシステム全体を二重化するのとは異なり、全体の重量の増加が抑えられると共に、ポンプ自体がコンパクトになるだけではなく、駆動軸並びにマウントがそれぞれ一つあれば良く、しかも、ポンプの駆動用ギアボックス等も一個で済み小型化が可能となり、特に、重量面並びにスペース面において制約の多い航空機等の燃料供給システムとして有利となる。
【0015】
前記流体供給システムにおいては、ギアポンプの第一昇圧部の入口へ流体を導くための第一吸込ライン途中に第一逆止弁を設け、第一流量制御ユニットの停止時に第一切換弁によってギアポンプの第一昇圧部から吐出される流体を前記第一逆止弁より下流側における第一吸込ライン途中へ戻すよう構成し、
第一逆止弁より上流側における第一吸込ライン途中から分岐し且つギアポンプの第二昇圧部の入口へ流体を導くための第二吸込ライン途中に第二逆止弁を設け、第二流量制御ユニットの停止時に第二切換弁によってギアポンプの第二昇圧部から吐出される流体を前記第二逆止弁より下流側における第二吸込ライン途中へ戻すよう構成し、
第一切換弁より上流側における第一吐出ライン途中と前記第二切換弁より上流側における第二吐出ライン途中とを連通ラインによって連通させ、
ギアポンプの原動ギアと第一従動ギアと第二従動ギアを回転自在に支承する原動軸受と第一軸受と第二軸受の軸方向へ可動に配設された可動側板の高圧受圧面に、連通ラインにおける流体圧を印加し、原動軸受と第一軸受の可動側板の低圧受圧面に、第一逆止弁より下流側における第一吸込ラインの流体圧を印加し、第二軸受の可動側板の低圧受圧面に、第二逆止弁より下流側における第二吸込ラインの流体圧を印加するよう構成することができ、
このようにすると、第一昇圧部及び第二昇圧部の両方が通常のノーマル状態で運転されている場合、連通ラインにおける流体圧は高圧で、第一吸込ライン及び第二吸込ラインの流体圧は低圧となり、又、第一昇圧部或いは第二昇圧部のいずれか一方がアンロード状態とされた場合であっても、連通ラインにおける流体圧はやはり高圧に保持可能で、且つアンロード状態とされた側の第一吸込ライン或いは第二吸込ラインの流体圧も高圧に保持することが可能となり、これにより、各可動側板の受圧面に作用させる受圧面側流体圧を、ギア側から可動側板が受けるギア側流体圧に対して釣り合わせることが可能となり、可動側板のギア側面に対する押付力が常に適正に保持され、ギアの焼き付きが生じたり或いは隙間が生じたりすることを回避可能となる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0017】
図1は本発明を実施する形態の一例であって、図中、図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示す如く、燃料等の流体の昇圧部としての燃料ポンプ2を、第一昇圧部9と第二昇圧部10とを有する三連式のギアポンプとし、
流量制御ユニット3を、ギアポンプの第一昇圧部9から吐出される流体としての燃料のうち設定流量の燃料を機器としての燃焼器5へ送り込みつつ余剰分をギアポンプの第一昇圧部9の入側に送り返す第一流量制御ユニット3aと、ギアポンプの第二昇圧部10から吐出される流体としての燃料のうち設定流量の燃料を機器としての燃焼器5へ送り込みつつ余剰分をギアポンプの第二昇圧部10の入側に送り返す第二流量制御ユニット3bとに分割形成し、
第一流量制御ユニット3aの停止時にギアポンプの第一昇圧部9から吐出される燃料を第一昇圧部9の入側へ戻して第一昇圧部9をアンロード状態とし得る第一切換弁40aと、
第二流量制御ユニット3bの停止時にギアポンプの第二昇圧部10から吐出される燃料を第二昇圧部10の入側へ戻して第二昇圧部10をアンロード状態とし得る第二切換弁40bと
を具備した点にある。
【0018】
前記三連式のギアポンプとした燃料ポンプ2は、ジェットエンジン等の駆動系から伝達された回転運動により駆動力を得る原動ギア20と、該原動ギア20を挟んで互いに対向する位置に配設される二つの従動ギア(第一従動ギア21、及び第二従動ギア22)とを含んで構成されている。
【0019】
図1に示すように、原動ギア20と第一従動ギア21並びに第二従動ギア22とはそれぞれケーシング23内で互いにかみ合わされており、第一吸込口24と第二吸込口25からそれぞれギアの歯と歯の間に流れ込んだ燃料は、ギアの回転に伴って隣り合う歯とケーシング23の壁面とで囲まれる空間に閉じ込められて昇圧され、第一吐出口26と第二吐出口27まで移動して送り出される。即ち、この燃料ポンプ2は、原動ギア20と第一従動ギア21とを主体とする第一昇圧部9と、原動ギア20と第二従動ギア22とを主体とする第二昇圧部10とを有する構造となっている。第一従動ギア21と第二従動ギア22とは同じ大きさのギアが用いられており、第一昇圧部9と第二昇圧部10とは、原動ギア20の回転数に対する吐出流量が同一である。尚、各ギアの歯形としては、平歯、はす歯等に限定されず、正弦曲線やトロコイド曲線等、さまざまな歯形が適用可能である。
【0020】
前記燃料ポンプ2の第一昇圧部9の第一吸込口24と第二昇圧部10の第二吸込口25にはそれぞれ、燃料タンク1から延びる第一吸込ライン28と第二吸込ライン29とを分岐接続し、第一昇圧部9の第一吐出口26には、前記第一切換弁40aを介して第一流量制御ユニット3aへ通じる第一吐出ライン30を接続すると共に、第二昇圧部10の第二吐出口27には、前記第二切換弁40bを介して第二流量制御ユニット3bへ通じる第二吐出ライン31を接続し、前記第一吸込ライン28途中には第一逆止弁32を設け、該第一逆止弁32より下流側における第一吸込ライン28途中には、通常運転時には第一流量制御ユニット3aからの燃料の余剰分を戻し且つ第一流量制御ユニット3aの停止時には第一切換弁40aの切り換えによってギアポンプの第一昇圧部9から吐出される燃料を戻すための第一返戻ライン34を接続し、前記第二吸込ライン29途中には第二逆止弁33を設け、該第二逆止弁33より下流側における第二吸込ライン29途中には、通常運転時には第二流量制御ユニット3bからの燃料の余剰分を戻し且つ第二流量制御ユニット3bの停止時には第二切換弁40bの切り換えによってギアポンプの第二昇圧部10から吐出される燃料を戻すための第二返戻ライン35を接続し、第一切換弁40aより上流側における第一吐出ライン30途中と前記第二切換弁40bより上流側における第二吐出ライン31途中とを連通ライン41によって連通させるようにしてある。
【0021】
前記第一切換弁40aは、第一昇圧部9から吐出される燃料を第一流量制御ユニット3aへ導き且つ第一流量制御ユニット3aから戻される燃料の余剰分を第一返戻ライン34へ導くノーマルポジションN1と、第一昇圧部9から第一吐出ライン30に吐出される燃料を第一返戻ライン34へ導くアンロードポジションU1とに切換可能となっており、前記第二切換弁40bは、第二昇圧部10から吐出される燃料を第二流量制御ユニット3bへ導き且つ第二流量制御ユニット3bから戻される燃料の余剰分を第二返戻ライン35へ導くノーマルポジションN2と、第二昇圧部10から第二吐出ライン31に吐出される燃料を第二返戻ライン35へ導くアンロードポジションU2とに切換可能となっている。
【0022】
一方、前記原動ギア20と第一従動ギア21と第二従動ギア22はそれぞれ、ジャーナルベアリング等の原動軸受36と第一軸受37と第二軸受38によって回転自在に支承され、各軸受36,37,38はそれぞれ、各ギアの一方の側面側に固定配置される固定側板36a,37a,38aと、各ギアの他方の側面側に軸方向へ可動に配設された可動側板36b,37b,38bとを備え、該可動側板36b,37b,38bの高圧受圧面36c,37c,38cと低圧受圧面36d,37d,38dに燃料等の流体の圧力を作用させることにより、可動側板36b,37b,38bをギアの側面に押し付けてシールを行うようになっているが、本図示例の場合、前記ギアポンプの原動ギア20と第一従動ギア21と第二従動ギア22を回転自在に支承する原動軸受36と第一軸受37と第二軸受38の軸方向へ可動に配設された可動側板36b,37b,38bの高圧受圧面36c,37c,38cに、連通ライン41における流体圧(ノーマル状態でもアンロード状態でも常に高圧となる)を印加し、原動軸受36と第一軸受37の可動側板36b,37bの低圧受圧面36d,37dに、第一逆止弁32より下流側における第一吸込ライン28の流体圧(ノーマル状態では低圧となり、アンロード状態では高圧となる)を印加し、第二軸受38の可動側板38bの低圧受圧面38dに、第二逆止弁33より下流側における第二吸込ライン29の流体圧(ノーマル状態では低圧となり、アンロード状態では高圧となる)を印加するようにし、これにより、図2に示す如く、可動側板36b,37b,38bの高圧受圧面36c,37c,38cと低圧受圧面36d,37d,38dに作用させる各々のトータルの受圧面側流体圧が、ギア側から可動側板36b,37b,38bが受けるギア側流体圧と釣り合うようにしてある。
【0023】
次に、上記図示例の作用を説明する。
【0024】
通常運転時には、第一切換弁40aと第二切換弁40bはノーマルポジションN1,N2に切り換えられており、三連式のギアポンプの第一昇圧部9から第一吐出ライン30に吐出される流体としての燃料が、第一流量制御ユニット3aによって設定流量だけ燃焼器5へ送り込まれつつ余剰分が第一返戻ライン34を介してギアポンプの第一昇圧部9の入側に送り返されると共に、ギアポンプの第二昇圧部10から第二吐出ライン31に吐出される流体としての燃料が、第二流量制御ユニット3bによって設定流量だけ燃焼器5へ送り込まれつつ余剰分が第二返戻ライン35を介してギアポンプの第二昇圧部10の入側に送り返される。
【0025】
これに対し、第一流量制御ユニット3aのトルクモータ等の電気部品が故障する等して該第一流量制御ユニット3aを停止させる際には、第一切換弁40aのアンロードポジションU1への切換により、ギアポンプの第一昇圧部9から第一吐出ライン30に吐出される燃料が第一返戻ライン34を介し第一昇圧部9の入側へ戻されて第一昇圧部9がアンロード状態とされ、ギアポンプの第二昇圧部10から吐出される燃料の第二流量制御ユニット3bによる燃焼器5への送給は継続される。一方、第二流量制御ユニット3bのトルクモータ等の電気部品が故障する等して該第二流量制御ユニット3bを停止させる際には、第二切換弁40bのアンロードポジションU2への切換により、ギアポンプの第二昇圧部10から第二吐出ライン31に吐出される燃料が第二返戻ライン35を介し第二昇圧部10の入側へ戻されて第二昇圧部10がアンロード状態とされ、ギアポンプの第一昇圧部9から吐出される燃料の第一流量制御ユニット3aによる燃焼器5への送給は継続される。
【0026】
即ち、前記燃料ポンプ2として三連式のギアポンプを用いることにより、単にシステム全体を二重化するのとは異なり、全体の重量の増加が抑えられると共に、燃料ポンプ2自体がコンパクトになるだけではなく、駆動軸並びにマウントがそれぞれ一つあれば良く、しかも、燃料ポンプ2の駆動用ギアボックス等も一個で済み小型化が可能となり、特に、重量面並びにスペース面において制約の多い航空機等の燃料供給システムとして有利となる。
【0027】
又、本図示例においては、前記ギアポンプの原動ギア20と第一従動ギア21と第二従動ギア22を回転自在に支承する原動軸受36と第一軸受37と第二軸受38の軸方向へ可動に配設された可動側板36b,37b,38bの高圧受圧面36c,37c,38cに、連通ライン41における流体圧を印加し、原動軸受36と第一軸受37の可動側板36b,37bの低圧受圧面36d,37dに、第一逆止弁32より下流側における第一吸込ライン28の流体圧を印加し、第二軸受38の可動側板38bの低圧受圧面38dに、第二逆止弁33より下流側における第二吸込ライン29の流体圧を印加するようにしてあるが、このようにすると、第一昇圧部9及び第二昇圧部10の両方がノーマル状態で運転されている場合、連通ライン41における流体圧は高圧で、第一吸込ライン28及び第二吸込ライン29の流体圧は低圧となり、又、第一昇圧部9或いは第二昇圧部10のいずれか一方がアンロード状態とされた場合であっても、連通ライン41における流体圧はやはり高圧に保持可能で、且つアンロード状態とされた側の第一吸込ライン28或いは第二吸込ライン29の流体圧も高圧に保持することが可能となり、これにより、図2に示す如く、可動側板36b,37b,38bの高圧受圧面36c,37c,38cと低圧受圧面36d,37d,38dに作用させる各々のトータルの受圧面側流体圧を、ギア側から可動側板36b,37b,38bが受けるギア側流体圧に対して釣り合わせることが可能となり、可動側板36b,37b,38bのギア側面に対する押付力が常に適正に保持され、ギアの焼き付きが生じたり或いは隙間が生じたりすることを回避可能となる。
【0028】
こうして、重量増加を最小限に抑え、小型軽量化を図りつつ、信頼性をより向上させ得る。
【0029】
尚、本発明の流体供給システムは、上述の図示例にのみ限定されるものではなく、航空機等に用いられるジェットエンジンの燃料供給システムに限らず、さまざまな流体を扱う供給システムに適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0030】
【発明の効果】
以上、説明したように本発明の流体供給システムによれば、重量増加を最小限に抑え、小型軽量化を図りつつ、信頼性をより向上させ得るという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例の概要構成図である。
【図2】図1のII部拡大図である。
【図3】従来例の概要構成図である。
【符号の説明】
2 燃料ポンプ(ポンプ)
3 流量制御ユニット
3a 第一流量制御ユニット
3b 第二流量制御ユニット
5 燃焼器(機器)
9 第一昇圧部
10 第二昇圧部
20 原動ギア
21 第一従動ギア
22 第二従動ギア
28 第一吸込ライン
29 第二吸込ライン
30 第一吐出ライン
31 第二吐出ライン
32 第一逆止弁
33 第二逆止弁
34 第一返戻ライン
35 第二返戻ライン
36 原動軸受
36a 固定側板
36b 可動側板
36c 高圧受圧面
36d 低圧受圧面
37 第一軸受
37b 可動側板
37c 高圧受圧面
37d 低圧受圧面
38 第二軸受
38b 可動側板
38c 高圧受圧面
38d 低圧受圧面
40a 第一切換弁
40b 第二切換弁
41 連通ライン
N1 ノーマルポジション
N2 ノーマルポジション
U1 アンロードポジション
U2 アンロードポジション
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a system for supplying a fluid such as fuel.
[0002]
[Prior art]
Generally, as shown in FIG. 3, a fuel supply system for a jet engine (turbofan engine) used in an aircraft or the like boosts fuel from a fuel tank 1 by a fuel pump 2 as a booster, and adjusts the position of a throttle lever and the like. Is transmitted to the combustor 5 of the jet engine, and the excess is sent back to the inlet side of the fuel pump 2.
[0003]
Here, a gear pump as shown in FIG. 3 is conventionally used as the fuel pump 2, and in this case, the rotational movement transmitted from the engine is controlled by a gear box (AGB: accession gear box) as an engine accessory. The gear pump is driven via the gears in the parentheses. Therefore, the discharge flow rate of the gear pump is substantially proportional to the engine speed.
[0004]
The flow rate control unit 3 is based on the principle that the flow rate is proportional to the opening degree of the throttle when the differential pressure is kept constant by the orifice formula,
A metering valve 301 that sets the fuel flow rate to a set flow rate by adjusting the opening degree;
A digital electronic control unit 302 that performs feedback control by capturing the opening of the metering valve 301 with a displacement meter while making the current proportional to the valve body moving speed of the metering valve 301 via a nozzle flapper mechanism by a torque motor (not shown); ,
A differential pressure sensing valve 303 for sensing a differential pressure across the metering valve 301,
A bypass valve 304 for returning a part of the fuel discharged from the fuel pump 2 to its suction side so as to keep the differential pressure before and after the metering valve 301 detected by the differential pressure sensing valve 303 constant;
It has a back pressure regulating valve 305 that always keeps the fuel pressure at the outlet of the flow control unit 3 higher than the pressure of the combustor 5 by causing a pressure loss.
[0005]
As an invention related to an aircraft fuel system, for example, there is an invention disclosed in Patent Document 1.
[0006]
[Patent Document 1]
JP-A-7-317564 (FIG. 1)
[0007]
[Problems to be solved by the invention]
By the way, the mechanical reliability of hydraulic equipment itself such as various valves (differential pressure sensing valve 303, bypass valve 304, back pressure adjusting valve 305) in the fuel pump 2 and the flow control unit 3 is relatively stable. Since the failure rate of the electric components such as the torque motor in the digital electronic control unit 302 is not stable, in a system requiring higher reliability, the fuel pump 2 and the flow rate control unit 3 are provided two by two, and the whole is provided. It is common practice to duplicate.
[0008]
However, as described above, simply duplicating the entire system increases the overall weight and also requires two gearboxes for driving the fuel pump 2, which inevitably increases the size. It is disadvantageous for a fuel supply system for an aircraft or the like, which has many restrictions in terms of space and space, and improvement has been desired.
[0009]
The present invention has been made in view of the above circumstances, and aims to provide a fluid supply system capable of minimizing an increase in weight, reducing the size and weight, and further improving the reliability.
[0010]
[Means for Solving the Problems]
The present invention provides a fluid supply system in which a fluid discharged from a pump is sent back to the device by a set flow rate by a flow rate control unit while an excess is returned to an inlet side of the pump.
The pump is a triple gear pump having a first booster and a second booster,
A first flow control unit that sends a surplus amount to the inlet side of the first booster unit of the gear pump while sending a fluid having a set flow rate to the device from the fluid discharged from the first booster unit of the gear pump; Of the fluid discharged from the second booster, a surplus is sent to the device while sending the fluid at the set flow rate to a second flow control unit that is sent back to the inlet side of the second booster of the gear pump,
A first switching valve capable of returning the fluid discharged from the first booster of the gear pump to the inlet side of the first booster when the first flow control unit is stopped and setting the first booster to an unload state,
A second switching valve capable of returning the fluid discharged from the second booster of the gear pump to the inlet side of the second booster when the second flow control unit is stopped, thereby setting the second booster in an unload state. A fluid supply system according to the present invention is characterized.
[0011]
According to the above means, the following effects can be obtained.
[0012]
During normal operation, the fluid discharged from the first booster of the triple gear pump is sent to the device by the first flow control unit by the set flow rate, and the surplus is returned to the inlet side of the first booster of the gear pump. At the same time, the fluid discharged from the second booster of the gear pump is sent to the device by the second flow control unit by the set flow rate, and the surplus is sent back to the inlet side of the second booster of the gear pump.
[0013]
On the other hand, when the first flow control unit is stopped due to failure of an electric component such as a torque motor of the first flow control unit, switching of the first switching valve causes the first booster of the gear pump to be switched. The discharged fluid is returned to the inlet side of the first booster, the first booster is in an unloaded state, and the fluid discharged from the second booster of the gear pump is supplied to the device by the second flow control unit. On the other hand, when the second flow control unit is stopped due to failure of an electric component such as a torque motor of the second flow control unit or the like, the second switching valve is switched to cause the second pressure increase of the gear pump. The fluid discharged from the section is returned to the inlet side of the second pressure rising section, the second pressure rising section is brought into the unloaded state, and the fluid discharged from the first pressure rising section of the gear pump to the device by the first flow rate control unit. Delivery continues.
[0014]
That is, by using a triple gear pump, unlike the case where the entire system is simply duplicated, the increase in the overall weight is suppressed, and not only the pump itself is made compact, but also the drive shaft and the mount are each one. It is sufficient if only one gear box is provided, and only one gear box for driving the pump is required, so that the size can be reduced. This is particularly advantageous as a fuel supply system for an aircraft or the like, which has many restrictions in terms of weight and space.
[0015]
In the fluid supply system, a first check valve is provided in the middle of a first suction line for guiding fluid to an inlet of a first booster of the gear pump, and the first switching valve is used to stop the gear pump when the first flow control unit is stopped. The fluid discharged from the first booster is configured to return to the middle of the first suction line downstream of the first check valve,
A second check valve is provided in the middle of the second suction line for branching from the middle of the first suction line on the upstream side of the first check valve and guiding the fluid to the inlet of the second booster of the gear pump. When the unit is stopped, the fluid discharged from the second booster of the gear pump by the second switching valve is configured to return to the middle of the second suction line downstream from the second check valve,
A first discharge line on the upstream side of the first switching valve and a second discharge line on the upstream side of the second switching valve are communicated by a communication line,
A high-pressure receiving surface of a movable side plate movably disposed in the axial direction of the driving bearing, the first bearing, and the second bearing rotatably supporting the driving gear, the first driven gear, and the second driven gear of the gear pump, and a communication line. And the fluid pressure of the first suction line on the downstream side of the first check valve is applied to the low pressure receiving surfaces of the driving bearing and the movable side plate of the first bearing, and the low pressure of the movable side plate of the second bearing is applied. The pressure receiving surface can be configured to apply the fluid pressure of the second suction line downstream of the second check valve,
With this configuration, when both the first booster and the second booster are operating in a normal state, the fluid pressure in the communication line is high, and the fluid pressure in the first suction line and the second suction line is Even when the pressure becomes low and one of the first booster and the second booster is in the unload state, the fluid pressure in the communication line can still be maintained at a high pressure, and the unload state is established. It is also possible to maintain the fluid pressure of the first suction line or the second suction line on the other side at a high pressure, whereby the fluid pressure on the pressure-receiving surface acting on the pressure-receiving surface of each movable side plate is reduced by the movable side plate from the gear side. It is possible to balance against the received gear side fluid pressure, the pressing force of the movable side plate against the gear side surface is always kept properly, and it is possible to avoid the occurrence of gear seizure or gaps The ability.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is an example of an embodiment of the present invention, in which parts denoted by the same reference numerals as in FIG. 3 represent the same parts, and the basic configuration is the same as that of the conventional one shown in FIG. However, as shown in FIG. 1, a feature of the illustrated example is that a fuel pump 2 as a pressure booster for a fluid such as fuel is connected to a triple pump having a first pressure booster 9 and a second pressure booster 10. Type gear pump,
The flow control unit 3 sends a surplus amount of the fuel as a fluid discharged from the first booster 9 of the gear pump to the combustor 5 as a device while feeding the fuel at a set flow rate to the inlet of the first booster 9 of the gear pump. The first flow rate control unit 3a which returns the fuel to the second pumping section of the gear pump while the fuel of a set flow rate among the fuel discharged from the second boosting section 10 of the gear pump is sent to the combustor 5 as a device. And divided into the second flow control unit 3b to be sent back to the inlet side of 10, and
A first switching valve 40a capable of returning the fuel discharged from the first booster 9 of the gear pump to the inlet side of the first booster 9 when the first flow control unit 3a is stopped so as to bring the first booster 9 into an unloaded state; ,
A second switching valve 40b capable of returning the fuel discharged from the second booster 10 of the gear pump to the inlet side of the second booster 10 when the second flow control unit 3b is stopped, thereby bringing the second booster 10 into an unloaded state; In that it has
[0018]
The fuel pump 2 as a triple gear pump is disposed at a position where a driving gear 20 that obtains a driving force by rotational motion transmitted from a driving system such as a jet engine and a position facing each other with the driving gear 20 interposed therebetween. And two driven gears (a first driven gear 21 and a second driven gear 22).
[0019]
As shown in FIG. 1, the driving gear 20, the first driven gear 21, and the second driven gear 22 are meshed with each other in a casing 23. The fuel that has flowed between the teeth is confined in the space surrounded by the adjacent teeth and the wall of the casing 23 as the gear rotates, and is pressurized, and moves to the first discharge port 26 and the second discharge port 27. And sent out. That is, the fuel pump 2 includes a first booster 9 mainly composed of the driving gear 20 and the first driven gear 21 and a second booster 10 mainly composed of the driving gear 20 and the second driven gear 22. Structure. The first driven gear 21 and the second driven gear 22 use gears of the same size, and the first booster 9 and the second booster 10 have the same discharge flow rate with respect to the rotation speed of the driving gear 20. is there. Note that the tooth profile of each gear is not limited to a spur tooth, a helical tooth, etc., and various tooth shapes such as a sine curve and a trochoid curve can be applied.
[0020]
A first suction line 28 and a second suction line 29 extending from the fuel tank 1 are respectively provided in the first suction port 24 of the first pressure rising section 9 and the second suction port 25 of the second pressure rising section 10 of the fuel pump 2. The first discharge line 30 is connected to the first discharge port 26 of the first pressure rising section 9 via the first switching valve 40a and is connected to the first flow rate control unit 3a. The second discharge port 27 is connected to the second discharge line 31 communicating with the second flow control unit 3b via the second switching valve 40b, and the first check valve 32 is provided in the middle of the first suction line 28. In the middle of the first suction line 28 on the downstream side of the first check valve 32, during normal operation, excess fuel from the first flow control unit 3a is returned and when the first flow control unit 3a is stopped, For switching the first switching valve 40a Thus, a first return line 34 for returning fuel discharged from the first booster 9 of the gear pump is connected, and a second check valve 33 is provided in the middle of the second suction line 29, In the middle of the second suction line 29 downstream of the valve 33, the excess fuel from the second flow control unit 3b is returned during normal operation, and the second switching valve 40b is switched when the second flow control unit 3b is stopped. A second return line 35 for returning fuel discharged from the second booster 10 of the gear pump is connected to the first return line 30 on the upstream side of the first switching valve 40a and on the upstream side of the second switching valve 40b. The communication line 41 communicates with the middle of the second discharge line 31 in.
[0021]
The first switching valve 40a normally guides the fuel discharged from the first booster 9 to the first flow control unit 3a and guides the surplus fuel returned from the first flow control unit 3a to the first return line 34. The position can be switched between a position N1 and an unload position U1 for guiding the fuel discharged from the first booster 9 to the first discharge line 30 to the first return line 34. A normal position N2 for guiding the fuel discharged from the second booster 10 to the second flow control unit 3b and guiding the excess fuel returned from the second flow control unit 3b to the second return line 35; To the unload position U2 for guiding the fuel discharged from the second discharge line 31 to the second return line 35.
[0022]
On the other hand, the driving gear 20, the first driven gear 21, and the second driven gear 22 are rotatably supported by a driving bearing 36 such as a journal bearing, a first bearing 37, and a second bearing 38, respectively. , 38 are fixed side plates 36a, 37a, 38a fixedly arranged on one side of each gear, and movable side plates 36b, 37b, 38b arranged axially movably on the other side of each gear. By applying the pressure of a fluid such as fuel to the high pressure receiving surfaces 36c, 37c, 38c and the low pressure receiving surfaces 36d, 37d, 38d of the movable side plates 36b, 37b, 38b, the movable side plates 36b, 37b, 38b are provided. Is pressed against the side surface of the gear to perform sealing. In the case of the illustrated example, the driving gear 20, the first driven gear 21, and the second driven gear 22 of the gear pump are rotated. The fluid in the communication line 41 is connected to the high pressure receiving surfaces 36c, 37c, 38c of the movable side plates 36b, 37b, 38b movably arranged in the axial direction of the driving bearing 36, the first bearing 37, and the second bearing 38 which are freely supported. A pressure (always high in both the normal state and the unload state) is applied, and the driving bearing 36 and the low-pressure receiving surfaces 36d and 37d of the movable side plates 36b and 37b of the first bearing 37 are located downstream of the first check valve 32. , The fluid pressure of the first suction line 28 (low pressure in the normal state and high pressure in the unloaded state) is applied to the low pressure receiving surface 38 d of the movable side plate 38 b of the second bearing 38 from the second check valve 33. The fluid pressure of the second suction line 29 on the downstream side (low pressure in a normal state and high pressure in an unloaded state) is applied, and as a result, as shown in FIG. The movable side plates 36b, 37b, 38b receive from the gears the total fluid pressure acting on the high pressure receiving surfaces 36c, 37c, 38c and the low pressure receiving surfaces 36d, 37d, 38d of the side plates 36b, 37b, 38b. The gear side fluid pressure is balanced.
[0023]
Next, the operation of the above illustrated example will be described.
[0024]
At the time of normal operation, the first switching valve 40a and the second switching valve 40b are switched to the normal positions N1 and N2, and are discharged as fluid discharged from the first booster 9 of the triple gear pump to the first discharge line 30. Is supplied to the combustor 5 by a set flow rate by the first flow control unit 3a, and the surplus is returned to the inlet side of the first booster 9 of the gear pump via the first return line 34, Fuel as a fluid discharged from the second booster unit 10 to the second discharge line 31 is sent to the combustor 5 by the second flow rate control unit 3b at a set flow rate, and the surplus is supplied to the gear pump via the second return line 35. It is sent back to the input side of the second booster 10.
[0025]
On the other hand, when the first flow control unit 3a is stopped due to failure of an electric component such as a torque motor of the first flow control unit 3a, the first switching valve 40a is switched to the unload position U1. As a result, the fuel discharged from the first booster 9 of the gear pump to the first discharge line 30 is returned to the inlet side of the first booster 9 via the first return line 34, and the first booster 9 is brought into the unloaded state. Then, the supply of the fuel discharged from the second booster 10 of the gear pump to the combustor 5 by the second flow control unit 3b is continued. On the other hand, when stopping the second flow control unit 3b due to failure of an electric component such as a torque motor of the second flow control unit 3b, the second switching valve 40b is switched to the unload position U2 by Fuel discharged from the second booster 10 of the gear pump to the second discharge line 31 is returned to the inlet side of the second booster 10 via the second return line 35, and the second booster 10 is unloaded. The supply of the fuel discharged from the first booster 9 of the gear pump to the combustor 5 by the first flow control unit 3a is continued.
[0026]
That is, by using a triple gear pump as the fuel pump 2, unlike the case where the entire system is simply duplicated, the increase in the overall weight is suppressed and the fuel pump 2 itself is not only compact, but also Only one drive shaft and one mount are required, and only one gearbox for driving the fuel pump 2 is required, which enables downsizing. In particular, a fuel supply system for an aircraft or the like, which has many restrictions in terms of weight and space. This is advantageous.
[0027]
In the illustrated example, the driving gear 20, the first driven gear 21, and the second driven gear 22 of the gear pump are rotatably supported in a driving bearing 36, a first bearing 37, and a second bearing 38 which are movable in the axial direction. The fluid pressure in the communication line 41 is applied to the high-pressure receiving surfaces 36c, 37c, and 38c of the movable side plates 36b, 37b, and 38b disposed on the movable side plates 36b, 37b, and 38b. The fluid pressure of the first suction line 28 downstream of the first check valve 32 is applied to the surfaces 36 d and 37 d, and the low pressure receiving surface 38 d of the movable side plate 38 b of the second bearing 38 is applied to the surfaces 36 d and 37 d by the second check valve 33. The fluid pressure of the second suction line 29 on the downstream side is applied. In this case, when both the first pressure increasing unit 9 and the second pressure increasing unit 10 are operated in the normal state, the communication line 4 Is high, the fluid pressure in the first suction line 28 and the second suction line 29 is low, and either one of the first booster 9 or the second booster 10 is in the unloaded state. However, the fluid pressure in the communication line 41 can also be maintained at a high pressure, and the fluid pressure in the first suction line 28 or the second suction line 29 on the unloaded state can also be maintained at a high pressure. As a result, as shown in FIG. 2, the total fluid pressure acting on the high-pressure receiving surfaces 36c, 37c, 38c and the low-pressure receiving surfaces 36d, 37d, 38d of the movable side plates 36b, 37b, 38b is reduced. It becomes possible to balance the fluid pressure received by the movable side plates 36b, 37b, 38b from the gear side, and to push the movable side plates 36b, 37b, 38b against the gear side surfaces. Force is always properly maintained, it becomes possible avoid seizure of gear or cause occurs or or gap.
[0028]
Thus, reliability can be further improved while minimizing weight increase and miniaturization and weight reduction.
[0029]
In addition, the fluid supply system of the present invention is not limited to the illustrated example described above, and is applicable not only to a fuel supply system of a jet engine used for an aircraft or the like but also to a supply system that handles various fluids. Of course, various changes can be made without departing from the spirit of the present invention.
[0030]
【The invention's effect】
As described above, according to the fluid supply system of the present invention, it is possible to achieve an excellent effect that the reliability can be further improved while minimizing weight increase, miniaturization and weight reduction.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion II in FIG.
FIG. 3 is a schematic configuration diagram of a conventional example.
[Explanation of symbols]
2 Fuel pump (pump)
3 Flow control unit 3a First flow control unit 3b Second flow control unit 5 Combustor (equipment)
9 First booster 10 Second booster 20 Drive gear 21 First driven gear 22 Second driven gear 28 First suction line 29 Second suction line 30 First discharge line 31 Second discharge line 32 First check valve 33 Second check valve 34 First return line 35 Second return line 36 Drive bearing 36a Fixed side plate 36b Movable side plate 36c High pressure receiving surface 36d Low pressure receiving surface 37 First bearing 37b Movable side plate 37c High pressure receiving surface 37d Low pressure receiving surface 38 Second Bearing 38b Movable side plate 38c High pressure receiving surface 38d Low pressure receiving surface 40a First switching valve 40b Second switching valve 41 Communication line N1 Normal position N2 Normal position U1 Unload position U2 Unload position

Claims (2)

ポンプから吐出される流体を流量制御ユニットにより設定流量だけ機器へ送り込みつつ余剰分をポンプの入側に送り返すようにした流体供給システムにおいて、
ポンプを第一昇圧部と第二昇圧部とを有する三連式のギアポンプとし、
流量制御ユニットを、ギアポンプの第一昇圧部から吐出される流体のうち設定流量の流体を機器へ送り込みつつ余剰分をギアポンプの第一昇圧部の入側に送り返す第一流量制御ユニットと、ギアポンプの第二昇圧部から吐出される流体のうち設定流量の流体を機器へ送り込みつつ余剰分をギアポンプの第二昇圧部の入側に送り返す第二流量制御ユニットとに分割形成し、
第一流量制御ユニットの停止時にギアポンプの第一昇圧部から吐出される流体を第一昇圧部の入側へ戻して第一昇圧部をアンロード状態とし得る第一切換弁と、
第二流量制御ユニットの停止時にギアポンプの第二昇圧部から吐出される流体を第二昇圧部の入側へ戻して第二昇圧部をアンロード状態とし得る第二切換弁とを具備したことを特徴とする流体供給システム。
In a fluid supply system in which the fluid discharged from the pump is sent to the device by the flow rate control unit by the set flow rate and the surplus is returned to the inlet side of the pump,
The pump is a triple gear pump having a first booster and a second booster,
A first flow control unit that sends a surplus amount to the inlet side of the first booster unit of the gear pump while sending a fluid having a set flow rate to the device from the fluid discharged from the first booster unit of the gear pump; Of the fluid discharged from the second booster, a surplus is sent to the device while sending the fluid at the set flow rate to a second flow control unit that is sent back to the inlet side of the second booster of the gear pump,
A first switching valve capable of returning the fluid discharged from the first booster of the gear pump to the inlet side of the first booster when the first flow control unit is stopped and setting the first booster to an unload state,
And a second switching valve capable of returning the fluid discharged from the second booster of the gear pump to the inlet side of the second booster when the second flow control unit is stopped, thereby bringing the second booster into an unload state. Characterized fluid supply system.
ギアポンプの第一昇圧部の入口へ流体を導くための第一吸込ライン途中に第一逆止弁を設け、第一流量制御ユニットの停止時に第一切換弁によってギアポンプの第一昇圧部から吐出される流体を前記第一逆止弁より下流側における第一吸込ライン途中へ戻すよう構成し、
第一逆止弁より上流側における第一吸込ライン途中から分岐し且つギアポンプの第二昇圧部の入口へ流体を導くための第二吸込ライン途中に第二逆止弁を設け、第二流量制御ユニットの停止時に第二切換弁によってギアポンプの第二昇圧部から吐出される流体を前記第二逆止弁より下流側における第二吸込ライン途中へ戻すよう構成し、
第一切換弁より上流側における第一吐出ライン途中と前記第二切換弁より上流側における第二吐出ライン途中とを連通ラインによって連通させ、
ギアポンプの原動ギアと第一従動ギアと第二従動ギアを回転自在に支承する原動軸受と第一軸受と第二軸受の軸方向へ可動に配設された可動側板の高圧受圧面に、連通ラインにおける流体圧を印加し、原動軸受と第一軸受の可動側板の低圧受圧面に、第一逆止弁より下流側における第一吸込ラインの流体圧を印加し、第二軸受の可動側板の低圧受圧面に、第二逆止弁より下流側における第二吸込ラインの流体圧を印加するよう構成した請求項1記載の流体供給システム。
A first check valve is provided in the middle of the first suction line for guiding fluid to the inlet of the first booster of the gear pump, and is discharged from the first booster of the gear pump by the first switching valve when the first flow control unit is stopped. Fluid to return to the middle of the first suction line downstream of the first check valve,
A second check valve is provided in the middle of the second suction line for branching from the middle of the first suction line on the upstream side of the first check valve and guiding the fluid to the inlet of the second booster of the gear pump, and the second flow control is performed. When the unit is stopped, the fluid discharged from the second booster of the gear pump by the second switching valve is configured to return to the middle of the second suction line downstream of the second check valve,
A first discharge line on the upstream side of the first switching valve and a second discharge line on the upstream side of the second switching valve are communicated by a communication line,
A high-pressure receiving surface of a movable side plate movably disposed in the axial direction of the driving bearing, the first bearing, and the second bearing rotatably supporting the driving gear, the first driven gear, and the second driven gear of the gear pump, and a communication line. And the fluid pressure of the first suction line on the downstream side of the first check valve is applied to the low pressure receiving surfaces of the driving bearing and the movable side plate of the first bearing, and the low pressure of the movable side plate of the second bearing is applied. The fluid supply system according to claim 1, wherein a fluid pressure of a second suction line downstream of the second check valve is applied to the pressure receiving surface.
JP2002363701A 2002-12-16 2002-12-16 Fluid supply system Expired - Lifetime JP4144343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363701A JP4144343B2 (en) 2002-12-16 2002-12-16 Fluid supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363701A JP4144343B2 (en) 2002-12-16 2002-12-16 Fluid supply system

Publications (2)

Publication Number Publication Date
JP2004197573A true JP2004197573A (en) 2004-07-15
JP4144343B2 JP4144343B2 (en) 2008-09-03

Family

ID=32761775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363701A Expired - Lifetime JP4144343B2 (en) 2002-12-16 2002-12-16 Fluid supply system

Country Status (1)

Country Link
JP (1) JP4144343B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023619A1 (en) * 2006-08-23 2008-02-28 Ihi Corporation Three-throw gear pump
JP2013221409A (en) * 2012-04-12 2013-10-28 Fuji Heavy Ind Ltd Air lock preventive system of aircraft fuel pump and air lock preventive method of aircraft fuel pump
US10648467B2 (en) 2015-07-16 2020-05-12 Ihi Corporation Triple gear pump and fluid supplying device
US20220235767A1 (en) * 2019-06-11 2022-07-28 Ihi Corporation Pump system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023619A1 (en) * 2006-08-23 2008-02-28 Ihi Corporation Three-throw gear pump
US8672657B2 (en) 2006-08-23 2014-03-18 Ihi Corporation Double gear pump with improved bearings
JP2013221409A (en) * 2012-04-12 2013-10-28 Fuji Heavy Ind Ltd Air lock preventive system of aircraft fuel pump and air lock preventive method of aircraft fuel pump
US10648467B2 (en) 2015-07-16 2020-05-12 Ihi Corporation Triple gear pump and fluid supplying device
US20220235767A1 (en) * 2019-06-11 2022-07-28 Ihi Corporation Pump system
US11933294B2 (en) * 2019-06-11 2024-03-19 Ihi Corporation Pump system

Also Published As

Publication number Publication date
JP4144343B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP2486261B1 (en) Circuit for supplying fuel to an aircraft engine
JP2019533108A (en) Dual input pump and system
JP2011247259A (en) Fuel pumping system for gas turbine engine
WO2014112484A1 (en) Fuel system
US7591640B2 (en) Three gear type gear pump of a fuel supply system
WO2015045905A1 (en) Fuel system
CN113236556B (en) Gear type pressure regulating oil pump with harmonic molded lines
CN111017014B (en) Hydraulic steering device
JP2004197573A (en) Fluid feeding system
KR100592149B1 (en) Gas turbine combined lift/hydraulic system
US9976576B2 (en) Hydraulic distribution system employing a dual pump
US10648467B2 (en) Triple gear pump and fluid supplying device
US3614269A (en) Integrated pump-control system using a unitized pump
JP4065721B2 (en) Double gear pump and switching circuit for serial / parallel switching
US20220381267A1 (en) Overspeed safeguards in hydraulically controlled fuel boost pump
EP0664378A1 (en) Pumping arrangement
JP2004116358A (en) Oil pump for automatic transmission
JP4200919B2 (en) Gear pump
JP4585730B2 (en) Gear pump and gear pump assembly method
CA2558201C (en) A three gear type gear pump of a fuel supply system
JPS60256548A (en) Booster plunger type fuel injector
JP2000265975A (en) Gear pump, fuel supplying device using it, and gear motor
JPH0617768A (en) Fluid machine
JPH11166459A (en) Fuel piping structure of fuel injection pump
JPH03213684A (en) Gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R151 Written notification of patent or utility model registration

Ref document number: 4144343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term