JP2004196892A - Dispersion stabilizer for suspension polymerization of vinyl compound - Google Patents

Dispersion stabilizer for suspension polymerization of vinyl compound Download PDF

Info

Publication number
JP2004196892A
JP2004196892A JP2002364962A JP2002364962A JP2004196892A JP 2004196892 A JP2004196892 A JP 2004196892A JP 2002364962 A JP2002364962 A JP 2002364962A JP 2002364962 A JP2002364962 A JP 2002364962A JP 2004196892 A JP2004196892 A JP 2004196892A
Authority
JP
Japan
Prior art keywords
vinyl
polymerization
suspension polymerization
dispersion stabilizer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364962A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ono
裕之 小野
Mitsuo Shibuya
光夫 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2002364962A priority Critical patent/JP2004196892A/en
Publication of JP2004196892A publication Critical patent/JP2004196892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion stabilizer for suspension polymerization which is suitable for preparing a vinyl polymer such as a vinyl chloride polymer which has a large volume resistivity, contains few coarse grains and exerts a high plasticizer absorption. <P>SOLUTION: The dispersion stabilizer for suspension polymerization of the vinyl compound comprises a polyvinyl alcohol having an aldehyde group in its side chain which is obtained by saponifying a copolymer of an unsaturated monomer of the formula (wherein R<SP>1</SP>and R<SP>2</SP>are each hydrogen, a methyl group or a phenyl group; R<SP>3</SP>is a 1-8C alkyl group; and n is an integer of 0-8) and a vinyl ester monomer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、体積固有抵抗値に優れ、粗粒子が少なく可塑剤吸収性に優れた塩化ビニル系重合体等のビニル系重合体の製造に好適なビニル系化合物の懸濁重合用分散安定剤に関する。
【0002】
【従来の技術】
従来より、工業的に塩化ビニル系重合体を製造する場合、水性媒体中で懸濁分散安定剤の存在下に塩化ビニル系単量体を分散させ、油溶性触媒を用いて重合を行う懸濁重合法が広く実施されている。一般に該重合体の品質を支配する要因としては、重合率、水/単量体比、重合温度、触媒量及び分散安定剤の種類、量等が挙げられるが、この中でも分散安定剤の影響が最も大きいと言われている。
かかる分散安定剤としては、特定のケン化度と重合度とを有するポリビニルアルコール系樹脂(以下、PVAと称する)が用いられ、このPVAに対する重要な要求特性の一つとして、塩化ビニル系単量体の懸濁重合時における単量体油滴に対する保護コロイド力が挙げられる。即ち、塩化ビニル系重合体の可塑剤吸収性、粒子径等の物性を良好にするために、分散安定剤として用いられるPVAの保護コロイド力を大きくするための様々な工夫がなされるのである。例えばアルデヒドの共存下に重合したポリ酢酸ビニルをケン化して得られるPVAに酢酸ナトリウムを0.2〜2.0重量%加えて加熱処理することにより、PVA主鎖中に存在するカルボニル基に隣接する分子鎖に脱酢酸または脱水反応を起こして、ビニレン基を生成させることが提案されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開昭51−45189号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の技術は、熱処理という操作が必要なため生産性やコストの面で不利となりやすく、また、熱処理の効率をアップさせるために酢酸ナトリウムの含有量が増える傾向にあり、その結果、かかる分散安定剤を用いて得られる塩化ビニル系重合体は体積固有抵抗値が低下し、特に該重合体を電線被覆、特にIT関連の機器等の電気絶縁用途に使用する場合は性能面で問題を起こすことが多い。
【0005】
【課題を解決するための手段】
本発明者は、かかる事情に鑑みて鋭意検討した結果、下記一般式で表される不飽和単量体とビニルエステル系単量体との共重合体をケン化して得られる側鎖にアルデヒド基を有するPVAを懸濁重合用分散安定剤として用いると、得られる塩化ビニル系重合体が体積固有抵抗値に優れ、さらに重合初期の塩化ビニル系単量体液滴粒子間の良好な合一再分散や重合中期以降の良好な保護コロイド力により、粗粒子が少なく可塑剤吸収性に優れることを見いだし、本発明の完成に至った。
【0006】
【化2】

Figure 2004196892
(但し、式中R、Rは水素またはメチル基またはフェニル基、Rは炭素数1〜8のアルキル基、nは0〜8の整数)
【0007】
【発明の実施の形態】
本発明に用いる側鎖にアルデヒド基を有するPVAについて以下詳しく説明する。
本発明に用いる側鎖にアルデヒド基を有するPVAは、上記一般式で表される不飽和単量体とビニルエステル系単量体との共重合体をケン化して得られる。
【0008】
上記一般式で表される不飽和単量体の例としては、アリリデンジアセテート、2−メタリリデンジアセテート、2−フェニルアリリデンジアセテート、クロチリデンジアセテート、シンナミリデンジアセテート、アリリデンジベンゾエート、アリリデンベンゾエートアセテート等が挙げられ、特にアリリデンジアセテートがコストや原料入手のし易さの点で好ましい。また、これらは単独で用いても併用して用いても良い。
【0009】
ビニルエステル系単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられ、工業的な入手のし易さにより酢酸ビニルが好ましく、これらは単独で用いても併用しても良い。
【0010】
上記の単量体以外に、本発明の目的を阻害しない範囲において、更に他の単量体も共重合に利用することができ、かかる他の単量体としては、例えばエチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル等、アクリロニトリル、メタクリロニトリル等のニトリル類、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、N−アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミンなどを挙げることができる。
【0011】
かかる不飽和単量体とビニルエステル系単量体の共重合にあたっては、塊状重合法、溶液重合法、乳化重合法、懸濁重合法等の公知の重合方法を採用することができるが、通常は溶液重合法が行われる。
【0012】
重合に用いられる溶媒としては、メタノール、エタノール、iso−プロパノール、n−プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類を挙げることができるが、好適にはメタノールが用いられる。
溶媒の使用量は、目的とする共重合体の重合度に合わせて、溶媒の連鎖移動定数を考慮して適宜選択すれば良い。例えば、溶媒がメタノールの時は、溶媒量/上記各種単量体の合計量(重量比)は0.1〜2程度の範囲となる量で使用される。
【0013】
また、重合開始剤としては、例えば2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレイト、2,2′−アゾビスイソブチロニトリル、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレ−ト、t−ヘキシルパーオキシピバレート等のパーオキシエステル類、ビス−(4−t−ブチルシクロヘキシル)パーオキシ−ジ−カーボネート、ジ−2−エチルヘキシルパーオキシ−ジ−カーボネート、ジ−イソプロピルパーオキシ−ジ−カーボネート、ジ−n−プロピルパーオキシジカーボネート等のパーオキシ−ジ−カーボネート類、ラウロイルパーオキサイド、アセチルパーオキサイド、ベンゾイルパーオキサイド、イソブチラルパーオキサイド等のジアシルパーオキシド類などを挙げることができる。尚、必要に応じて、メルカプタン系化合物等の公知の連鎖移動剤を併用することも可能である。
【0014】
重合は、反応缶に溶媒を仕込んでその後、ビニルエステル系単量体と前記一般式で表される不飽和単量体、重合開始剤を仕込み、35〜200℃程度、好ましくは40〜80℃、更には55〜75℃で重合させる。
ビニルエステル系単量体と前述した一般式で表される不飽和単量体は溶媒中に初期に一括仕込みしてもよいが、HANNAの式に従って滴下仕込みすると重合が均一に進行するので好ましい。
重合終了後未反応の単量体を除去して前記一般式で表される不飽和単量体とビニルエステル系単量体との共重合体が得られる。
【0015】
次いで、かかる共重合体はケン化されるのであるが、かかるケン化も公知の方法で行うことができる。この時使用されるケン化触媒としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルコラートの如きアルカリ触媒、更に硫酸、p−トルエンスルホン酸、塩酸等の酸触媒が挙げられるが、この中でも残存酢酸基のブロック性が向上する点でアルカリ触媒が好ましい。
【0016】
また、かかるケン化時の溶媒としては、メタノール、エタノール、iso−プロパノール、酢酸メチル、ベンゼン、ヘキサン等が挙げられ、好適にはメタノールが用いられる。また、残存酢酸基のブロック性の向上を目的として、これらの溶媒を任意に組合わせて溶媒の誘電率をコントロールしながらケン化を行ってもよい。
【0017】
ケン化温度は特に制限はないが、10〜70℃が好ましく、更には30〜50℃、特には35〜45℃の範囲から選ばれる。
上記の如きケン化を行うに当たっては、連続式でもバッチ式でもよく、バッチ式のケン化装置としては、ニーダー、リボンブレンダー等を挙げることができる。
【0018】
かくして側鎖にアルデヒド基を有するPVAが得られるのであるが、かかるPVAのケン化度は65〜97モル%、より好ましくは68〜89モル%、更に好ましくは68〜83モル%である。かかるケン化度が65モル%未満では水に不溶となり分散安定剤としての保護コロイド力が不足し、97モル%を越えると界面活性能が低下してビニル系単量体油滴に対する分散力や保護コロイド力が低下するため好ましくない。
また、該PVAのJIS K6726に準拠して測定される平均重合度は100〜4000が好ましく、更には200〜3000、特には300〜2000である。かかる平均重合度が100未満では充分な保護コロイド力が発現せず、逆に4000を越えると水溶液の粘度が高くなりすぎて作業性が低下する等のため好ましくない。
【0019】
かかる側鎖にアルデヒド基を有するPVAのアルデヒド基含有量は、0.05〜10モル%が好ましく、更には0.1〜10モル%、特には0.1〜5モル%である。0.05モル%より少ないと充分な保護コロイド力が発現しないことがあり、10モル%を越えると得られるPVA中に不溶解物が発生する傾向があり好ましくない。尚、かかるアルデヒド基の含有量は、高分子化学、第15巻、第156号、第249〜254頁(1958)に記載の方法によって調製したp−ニトロフェニルヒドラジンとアルデヒド基含有PVA(完全ケン化品)との反応物を、H−NMR(DMSO−d6,60℃)で測定し、δ=8.0〜8.1ppmのピーク強度の合計値(X)とδ=4.6〜4.0ppmのピーク強度の合計値(Y)から以下の式で算出する。
アルデヒド基の含有量(モル%)=〔0.5X/(0.5X+Y)〕×100
【0020】
また、かかるPVAの主鎖に含まれる1,2−グリコール量としては特に限定されないが、1〜4モル%程度が好ましい。該1,2−グリコール量はNMRによって算出することができる。
さらに、かかるPVAの残存酢酸基のブロック性についても特には限定されないが、ブロックキャラクター[η]の値として0.3〜0.8程度が好ましい。
尚、ここで言うブロックキャラクター[η]とは、13C−NMRの測定(内部標準物質として3−(trimethylsilyl)propionic−2,2,3,3,−d4acid,sodiumsaltを使用)により、40〜49ppmの範囲に見られるメチレン炭素部分に基づくピーク[(OH,OH)dyad=46〜49ppmの吸収、(OH,OR)dyad=43.5〜45.5ppmの吸収、(OR,OR)dyad=40〜43ppmの吸収、但し、ORはO−酢酸基を表す]の吸収強度比から求められるもので、より具体的には下記式より算出される値である。
[η]=(OH,OR)/2〔(OH)×(OR)〕
〔但し、(OH,OR)、(OH)、(OR)は、いずれもモル分率で計算するものとする。また、(OH)は13C−NMRの積分比より算出されるケン化度(モル分率)で、(OR)はその時の酢酸基のモル分率を示すものである。〕
【0021】
また、かかるPVAの0.1重量%水溶液の紫外線吸収スペクトルによる280nmの吸光度は特に制限されないが、0.1以上、好ましくは0.2以上にすると該PVAの界面活性能の点が改善できる。
かかる吸光度はPVA主鎖中の−CO−(CH=CH)n−構造のn=0及び/又はn=2に帰属されるものであり、かかる構造はアルデヒド類の共存下、上記一般式で表される不飽和単量体とビニルエステル系単量体を共重合させることによって、PVA主鎖中にカルボニル基が導入され、かかるカルボニル基に隣接するビニルエステル基の脱カルボン酸反応、あるいは水酸基の脱水反応により生成するものであり、該吸光度のコントロール方法としては、例えば共重合時のアルデヒドの添加量及び溶媒とビニルエステル系単量体との比率等により制御する方法が挙げられる。
【0022】
この場合用いられるアルデヒドとしては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等が挙げられ、好ましくはアセトアルデヒドが用いられる。該アルデヒドは、通常ビニルエステル系単量体に対して0.1〜5重量%が用いられる。
【0023】
以上に述べたアルデヒド基を有するPVAはビニル系化合物の懸濁重合、特に塩化ビニル系化合物の懸濁重合に有用であり、以下、本発明の分散安定剤を塩化ビニル系化合物の懸濁重合に用いる場合について説明する。
本発明の分散安定剤を懸濁重合に用いる場合は、それ単独使用で充分であるが種々の分散助剤を併用することもできる。該分散助剤としては、ケン化度65モル%未満、重合度100〜750、中でもケン化度30〜60モル%で重合度180〜650の部分ケン化PVAが好適に用いられ、その使用量は分散助剤の種類等によって一概に言えないが、分散安定剤と分散助剤の重量比で90/10〜30/70の範囲が好ましく、特に80/10〜50/50が好ましい。
【0024】
分散助剤は、水不溶性であるので使用時には界面活性剤と併用されて水分散状態にしたり、イオン基やアルキレンオキサイド基等を導入することにより自己乳化性が付与されたものであっても良い。PVA系の分散助剤として具体的には、「ゴーセファイマーLW−100」、「ゴーセファイマーLW−200」、「ゴーセファイマーLW−300」、「ゴーセファイマーLW−400」、「ゴーセファイマーLL−02」、「ゴーセファイマーL−5407」、「ゴーセファイマーL−7514」、「ゴーセファイマーLS210」等〔日本合成化学工業(株)製〕や「クラレポバールLM−20」、「クラレポバールLM−25」、「クラレポバールLM−10HD」〔(株)クラレ製〕、「alcotex55−002H」〔Synthomer社製〕、「Sigma404W」、「Sigma202」等〔Sigma社製〕等が挙げられる。
該分散安定剤及び分散助剤は、重合の初期に一括仕込みしても、又重合率50%までの間で分割して仕込んでもよい。
【0025】
更に、懸濁重合を実施するに当り本発明の効果を阻害しない範囲においてメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、などの水溶性セルロースエーテル、ケン化度65〜98モル%のポリビニルアルコールやゼラチンなどの水溶性ポリマーから選ばれる他の分散安定剤、ソルビタンモノラウレート、ソルビタントリオレート、グリセリントリステアレート、エチレンオキシドプロピレンオキシドブロックコポリマー等の油溶性乳化剤、カチオン系、アニオン系又はノニオン系の水溶性の乳化剤を併用してもよい。
【0026】
また、使用される重合開始剤としては、油溶性の重合開始剤であれば特に限定されず、例えば、2,4,4−トリメチルペンチル−2−パーオキシネオデカネート、(α,α’−ビス−ネオデカノイルパーオキシン)ジイソプロピルベンゼン、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカネート、α−クミルパーオキシネオデカネート、t−ブチルパーオキシピバレート、γ−クミルパーオキシネオデカネート、ベンゾールパーオキサイド、ラウロイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、アセチルシクロヘキシルスルホニルパーオキサイド或いはこれらの混合物が使用される。重合開始剤の仕込み量としては、使用する重合開始剤の種類、及び重合温度などの重合条件によっても異なるが、通常塩化ビニル系単量体100重量部あたり0.01〜2重量部仕込まれる。
又、スケーリング防止の為に必要に応じて適当量のチオシアン酸アンモニウムや亜硝酸塩等の水溶性の重合禁止剤やpH調製剤、架橋剤、重合度調節剤(メルカプトエタノール等のチオール類、アセトアルデヒド、ブチルアルデヒド、トリクロロエチレン等)を併用することも可能である。
【0027】
懸濁重合における水、塩化ビニル系単量体、分散安定剤、重合開始剤、連鎖移動剤の仕込み手順は公知の方法が採用され、分散安定剤の使用量は、特に制限はないが、通常塩化ビニル系単量体100重量部に対して5重量部以下で、0.01〜1重量部が好ましく、更には0.02〜0.2重量部、特には0.03〜0.08重量部が好ましい。
懸濁重合において用いる水性媒体の温度は特に制限はなく、常温はもとより高温の水も用いられるが、重合時の昇温時間を短縮するために、重合時に常温の水の代わりに、あらかじめ加温された水を用いる方法も好ましく、該方法を取る場合は、水はあらかじめ40〜97℃、好ましくは40℃〜重合開始温度程度(50〜65℃)に加温されたものが好適に用いられる。
【0028】
重合温度は、当業者周知の範囲から、目的とする塩化ビニル系重合体の重合度に応じて任意に選択され、通常30〜80℃、望ましくは30〜60℃の範囲から選択するのが好ましい。単量体/水の重量比は通常0.5〜1の範囲で実施されるが、重合中に水の追加注入を行って重合に伴う体積収縮による液面低下を補うと、可塑剤吸収性が良好となるので好ましい。
【0029】
懸濁重合時の撹拌は特殊なものではなく、一般的に採用されている公知の撹拌装置を使用することができ、撹拌翼としてはファウドラー翼、パドル翼、タービン翼、ファンタービン翼、ブルマージン翼等汎用的に用いられるもので良いが、特にファウドラー翼が好ましく用いられる。またバッフルが設けられた重合缶を使用してもよく、該バッフルとしては板型、円筒型、D型、ループ型及びフィンガー型などが挙げられる。
【0030】
また、懸濁重合は塩化ビニル系単量体単独ではなく、これと共重合可能な単量体、例えばハロゲン化ビニリデン、ビニルエーテル、酢酸ビニル、安息香酸ビニル、アクリル酸、メタクリル酸、マレイン酸又はその無水物やエチレン、プロピレン、スチレン等との共重合にも適用できる。
以上、主として塩化ビニル系単量体の重合について説明したが、本発明の分散安定剤は必ずしも塩化ビニル系単量体用に限定されるものではなく、スチレン、酢酸ビニル、メタクリル酸エステル等他のビニル系単量体の懸濁重合用にも使用することができる。
【0031】
【実施例】
以下、本発明を実施例によって具体的に説明する。
なお,実施例中「%」とあるのは、断りのない限り重量基準を意味する。
【0032】
実施例1
パドル翼を付けた3リットルのジャケット付反応缶に、酢酸ビニル1000g、アリリデンジアセテート22g及びメタノール900gを仕込み、加熱還流させた。
別途、重合触媒として2,2’−アゾビスイソブチロニトリル1.0gをメタノール20gに溶解したものを用意して、上記の反応缶に仕込み、重合を開始したと同時に、アリリデンジアセテートの20%メタノール溶液の追加仕込みを開始した。なお、アリリデンジアセテートは、酢酸ビニルと均一に重合するようにHANNAの式〔アリリデンジアセテートの反応性比(r1)=1.34、酢酸ビニルの反応性比(r2)=0.48〕に従って仕込み、酢酸ビニルの重合率が85%に到達するまでにアリリデンジアセテートを24g追加仕込みした。
重合率が85%に達した時点で、重合禁止剤としてm−ジニトロベンゼン0.03g(メタノール100gに溶解した溶液)を反応缶に仕込み、内温を30℃以下にして重合を停止した。減圧蒸留により未反応の単量体を除去した後、メタノールで希釈して共重合体のペーストを得た。
2リットルのジャケット付のケン化用反応缶に、上記で得られた共重合体ペースト(樹脂分が40%となるようにメタノールで濃度調整した溶液)を400g仕込み、ジャケットを加熱してペースト温度を40℃とし、ケン化触媒として、水酸化ナトリウムの4%メタノール溶液56gを仕込み、ケン化を行った。得られたスラリーをろ過し、メタノール洗浄および乾燥を行って側鎖にアルデヒド基を有するPVA(PVA1)を得た。
得られたPVA1をH−NMR(300MHz、DMSO-d6溶媒)で分析したところ、ケン化度は75.3モル%であった。また、アルデヒド基含有量は2.5モル%、平均重合度は790であった。
【0033】
上記で得られた懸濁重合用分散安定剤(PVA1)を用いて以下の要領で塩化ビニル単量体の重合を行った。
(塩化ビニル単量体の懸濁重合)
30mmHgまで脱気した100リットルオートクレーブ中に、57℃の脱イオン水45kg、PVA1を18g仕込み、ジャケット温度を51℃に設定して、撹拌条件下で、塩化ビニル単量体を30kg仕込んだ。仕込み終了後の内温は50℃であった。続いて、2,4,4−トリメチルペンチル−2−パーオキシネオデカネート13g、(α,α’−ビス−ネオデカノイルパーオキシン)ジイソプロピルベンゼン6gを仕込んで、重合温度51℃で重合開始した。5時間経過後、2,6−ジ−t−ブチル−4−メチルフェノール3gを添加して重合を停止し、未反応塩化ビニル単量体をパージし、内容物を取り出して脱水、乾燥し、塩化ビニル重合体を得た。
かかる重合体について以下のようなを評価して結果を表1、2に示した。
【0034】
<平均重合度>
JIS K 6726に準拠した。
<体積固有抵抗値>
JIS K 6723に準拠した。
<平均粒子径>
ロータップ式振動篩(JIS篩を使用)により測定した粒子径分布より、メ ジアン径(50%重量径)を求めて平均粒子径とした。
【0035】
<粗粒子>
得られた塩化ビニル重合体の粒子の一定量を60メッシュ、80メッシュの標準篩で分画し、60メッシュオンと80メッシュオンの重量%を求めた。
<可塑剤吸収性>
得られた塩化ビニル重合体の粒子100部、トリス(2−エチルヘキシル)トリメリテート50部、鉛系粉末安定剤3部を155℃で5分間ロール練りして0.3mm厚のシートを作製し25cm当たりの3分後、4分後、5分後、7分後のフィッシュアイの数を測定した。
【0036】
実施例2、3
実施例1において、HANNAの式で規定される仕込み要因(メタノール/各モノマー比、各モノマー仕込比)を目的とする重合度、側鎖アルデヒド基含有量になるように適宜変更して、実施例2ではアルデヒド基含有量0.3モル%、ケン化度73.0モル%、重合度810のPVAを、実施例3ではアルデヒド基含有量7.6モル%、ケン化度80.1モル%、重合度800のPVAをそれぞれ製造して実施例1と同様に塩化ビニル単量体の懸濁重合を行い、同様に評価した。
【0037】
比較例1
特開昭51−45189号公報記載の実施例においてアルデヒドの添加や熱処理を省略して、重合度790、ケン化度63.2モル%、側鎖にアルデヒド基を有しない部分ケン化PVAを調製した。
実施例1において、PVA1の替わりに該部分ケン化PVAを用いて塩化ビニル単量体の懸濁重合を行い、同様に評価した。
【0038】
比較例2
特開昭51−45189号公報記載の実施例に従って、ケン化72.0モル%、重合度760側鎖にアルデヒド基を有しない部分ケン化PVAを得た。かかる部分ケン化PVAは、酢酸ナトリウムを1.0%含有していた。
実施例1において、PVA1の替わりに該部分ケン化PVAを用いて塩化ビニルの懸濁重合を行い、同様に評価した。
【0039】
Figure 2004196892
【0040】
Figure 2004196892
【0041】
【発明の効果】
本発明の懸濁重合用分散安定剤を用いれば、従来品に比べて体積固有抵抗の値が大きく、粗粒子が少なく可塑剤吸収性に優れたビニル系重合体が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dispersion stabilizer for suspension polymerization of a vinyl compound, which is suitable for producing a vinyl polymer such as a vinyl chloride polymer having an excellent volume specific resistance value, a small amount of coarse particles, and an excellent plasticizer absorption property. .
[0002]
[Prior art]
Conventionally, when a vinyl chloride polymer is industrially produced, a vinyl chloride monomer is dispersed in an aqueous medium in the presence of a suspension dispersion stabilizer, and the suspension is polymerized using an oil-soluble catalyst. Polymerization methods are widely practiced. In general, factors that govern the quality of the polymer include a polymerization rate, a water / monomer ratio, a polymerization temperature, a catalyst amount, and a type and amount of a dispersion stabilizer. Among them, the influence of the dispersion stabilizer is important. It is said to be the largest.
As such a dispersion stabilizer, a polyvinyl alcohol-based resin (hereinafter, referred to as PVA) having a specific saponification degree and a polymerization degree is used. One of the important required properties for this PVA is a vinyl chloride-based monomer. Protective colloidal force against monomer oil droplets during suspension polymerization of the body. That is, in order to improve the physical properties such as the plasticizer absorption and the particle size of the vinyl chloride polymer, various measures are taken to increase the protective colloidal power of PVA used as a dispersion stabilizer. For example, by adding 0.2-2.0% by weight of sodium acetate to PVA obtained by saponifying polyvinyl acetate polymerized in the coexistence of aldehyde, and heating the PVA, a carbonyl group existing in the PVA main chain can be obtained. It has been proposed to generate a vinylene group by causing a deacetic acid or dehydration reaction in a molecular chain to be formed (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-51-45189
[Problems to be solved by the invention]
However, the technique described in Patent Document 1 tends to be disadvantageous in terms of productivity and cost because an operation of heat treatment is required, and the content of sodium acetate tends to increase in order to increase the efficiency of heat treatment. As a result, the vinyl chloride-based polymer obtained by using such a dispersion stabilizer has a reduced volume specific resistance value, and particularly when the polymer is used for electric wire coating, particularly when it is used for electrical insulation such as IT-related equipment. Often causes performance issues.
[0005]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in view of such circumstances, and as a result, has found that an aldehyde group is added to a side chain obtained by saponifying a copolymer of an unsaturated monomer and a vinyl ester-based monomer represented by the following general formula. When the PVA having the above is used as a dispersion stabilizer for suspension polymerization, the obtained vinyl chloride polymer has excellent volume resistivity, and furthermore, good coalescence re-dispersion between vinyl chloride monomer droplet particles in the initial stage of polymerization and It has been found that, due to the good protective colloid power after the middle stage of polymerization, coarse particles are small and the plasticizer absorbability is excellent, and the present invention has been completed.
[0006]
Embedded image
Figure 2004196892
(Where R 1 and R 2 are hydrogen or a methyl group or a phenyl group, R 3 is an alkyl group having 1 to 8 carbon atoms, and n is an integer of 0 to 8)
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The PVA having an aldehyde group on the side chain used in the present invention will be described in detail below.
The PVA having an aldehyde group on the side chain used in the present invention is obtained by saponifying a copolymer of an unsaturated monomer represented by the above general formula and a vinyl ester-based monomer.
[0008]
Examples of the unsaturated monomer represented by the above general formula include arylidene diacetate, 2-metallylidene diacetate, 2-phenylarylidene diacetate, crotilidene diacetate, cinnamylidene diacetate, arylidene dibenzoate, and arylidene diacetate. Ridene benzoate acetate and the like can be mentioned. In particular, arylidene diacetate is preferable in view of cost and availability of raw materials. These may be used alone or in combination.
[0009]
Vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, Examples thereof include vinyl versatate and the like, and vinyl acetate is preferred because of industrial availability. These may be used alone or in combination.
[0010]
In addition to the above-mentioned monomers, other monomers can be used for copolymerization within a range not to impair the object of the present invention. Examples of such other monomers include ethylene, propylene, isobutylene, olefins such as α-octene, α-dodecene, α-octadecene, unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, and acrylonitrile such as mono- or dialkyl esters , Nitriles such as methacrylonitrile, amides such as acrylamide and methacrylamide, olefinsulfonic acids such as ethylenesulfonic acid, allylsulfonic acid and methallylsulfonic acid or salts thereof, alkyl vinyl ethers, N-acrylamidomethyltrimethylammonium chloride , Allyltrimethy Ammonium chloride, dimethyl allyl vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinylidene chloride, polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether, polyoxyethylene Polyoxyalkylene (meth) acrylates such as (meth) acrylate and polyoxypropylene (meth) acrylate, polyoxyalkylene (meth) acrylamide such as polyoxyethylene (meth) acrylamide, polyoxypropylene (meth) acrylamide, and polyoxyethylene (1- (meth) acrylamide-1,1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene Allylamine, and the like.
[0011]
In the copolymerization of such an unsaturated monomer and a vinyl ester-based monomer, a known polymerization method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, and a suspension polymerization method can be employed. Is a solution polymerization method.
[0012]
Examples of the solvent used for the polymerization include alcohols such as methanol, ethanol, iso-propanol and n-propanol, and ketones such as acetone and methyl ethyl ketone. Preferably, methanol is used.
The amount of the solvent to be used may be appropriately selected according to the degree of polymerization of the target copolymer and in consideration of the chain transfer constant of the solvent. For example, when the solvent is methanol, the amount of the solvent / the total amount (weight ratio) of the various monomers is used in an amount of about 0.1 to 2.
[0013]
Examples of the polymerization initiator include 2,2'-azobis- (2,4-dimethylvaleronitrile), dimethyl-2,2'-azobisisobutyrate, and 2,2'-azobisisobutyronitrile. Azo compounds such as 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile), t-butylperoxyneodecanoate, t-butylperoxypivalate, t-hexylper Peroxyesters such as oxypivalate, bis- (4-t-butylcyclohexyl) peroxy-di-carbonate, di-2-ethylhexylperoxy-di-carbonate, di-isopropylperoxy-di-carbonate, di- Peroxy-di-carbonates such as n-propylperoxydicarbonate, lauroyl peroxide, acetyl peroxide , It may be mentioned benzoyl peroxide, diacyl peroxides such as isobutyl butyral peroxide and the like. If necessary, a known chain transfer agent such as a mercaptan-based compound can be used in combination.
[0014]
In the polymerization, a solvent is charged into a reaction vessel, and then a vinyl ester monomer, an unsaturated monomer represented by the above general formula, and a polymerization initiator are charged, and about 35 to 200 ° C., preferably 40 to 80 ° C. And at 55-75 ° C.
The vinyl ester-based monomer and the unsaturated monomer represented by the above-mentioned general formula may be initially charged in a solvent at once, but it is preferable to add them dropwise according to the HANNA formula since polymerization proceeds uniformly.
After completion of the polymerization, the unreacted monomer is removed to obtain a copolymer of the unsaturated monomer represented by the above general formula and the vinyl ester monomer.
[0015]
Next, the copolymer is saponified, and the saponification can also be performed by a known method. Examples of the saponification catalyst used at this time include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide, alkali catalysts such as alcoholates such as sodium methylate, sodium ethylate and potassium methylate, and further, sulfuric acid, Acid catalysts such as p-toluenesulfonic acid and hydrochloric acid can be mentioned, and among them, alkali catalysts are preferred from the viewpoint of improving the blocking property of residual acetic acid groups.
[0016]
Examples of the solvent for the saponification include methanol, ethanol, iso-propanol, methyl acetate, benzene, hexane and the like, and preferably, methanol is used. Further, for the purpose of improving the blocking property of the residual acetic acid group, saponification may be performed while controlling the dielectric constant of the solvent by arbitrarily combining these solvents.
[0017]
The saponification temperature is not particularly limited, but is preferably from 10 to 70C, more preferably from 30 to 50C, and particularly preferably from 35 to 45C.
In performing the saponification as described above, a continuous type or a batch type may be used, and examples of the batch type saponification apparatus include a kneader and a ribbon blender.
[0018]
Thus, PVA having an aldehyde group in the side chain is obtained, and the degree of saponification of such PVA is 65 to 97 mol%, more preferably 68 to 89 mol%, and still more preferably 68 to 83 mol%. If the degree of saponification is less than 65 mol%, it becomes insoluble in water, and the protective colloid power as a dispersion stabilizer becomes insufficient. If it exceeds 97 mol%, the surface activity decreases, and the dispersing power for vinyl monomer oil droplets and It is not preferable because the protective colloid power is reduced.
The average degree of polymerization of the PVA measured in accordance with JIS K6726 is preferably 100 to 4000, more preferably 200 to 3000, and particularly preferably 300 to 2000. If the average degree of polymerization is less than 100, sufficient protective colloid strength is not exhibited, while if it exceeds 4,000, the viscosity of the aqueous solution becomes too high and the workability is lowered, which is not preferable.
[0019]
The aldehyde group content of the PVA having an aldehyde group in the side chain is preferably 0.05 to 10 mol%, more preferably 0.1 to 10 mol%, and particularly preferably 0.1 to 5 mol%. If it is less than 0.05 mol%, sufficient protective colloid power may not be exhibited, and if it exceeds 10 mol%, insolubles tend to be generated in the obtained PVA, which is not preferable. The content of the aldehyde group can be determined by comparing the p-nitrophenylhydrazine prepared by the method described in Kobunshi Kagaku, Vol. 15, No. 156, pp. 249-254 (1958) with aldehyde group-containing PVA (complete The reaction product with the compound (C) was measured by 1 H-NMR (DMSO-d6, 60 ° C.), and the total value (X) of peak intensities at δ = 8.0 to 8.1 ppm and δ = 4.6 to It is calculated from the total value (Y) of the peak intensities at 4.0 ppm by the following formula.
Aldehyde group content (mol%) = [0.5X / (0.5X + Y)] × 100
[0020]
The amount of 1,2-glycol contained in the main chain of PVA is not particularly limited, but is preferably about 1 to 4 mol%. The amount of the 1,2-glycol can be calculated by NMR.
Further, the blocking property of the residual acetic acid groups of the PVA is not particularly limited, but the value of the block character [η] is preferably about 0.3 to 0.8.
The block character [η] mentioned here is determined by 13 C-NMR measurement (using 3- (trimethylsilyl) propionic-2,2,3,3, -d4acid, sodium salt as an internal standard). Peak based on the methylene carbon moiety found in the range of 49 ppm [(OH, OH) dyad = absorption of 46 to 49 ppm, (OH, OR) dyad = absorption of 43.5 to 45.5 ppm, (OR, OR) dyad = 40 to 43 ppm, where OR represents an O-acetic acid group], and more specifically, a value calculated by the following formula.
[Η] = (OH, OR) / 2 [(OH) × (OR)]
[However, (OH, OR), (OH), and (OR) are all calculated by mole fraction. (OH) is the degree of saponification (molar fraction) calculated from the integral ratio of 13 C-NMR, and (OR) is the molar fraction of acetic acid groups at that time. ]
[0021]
Further, the absorbance at 280 nm of the 0.1% by weight aqueous solution of PVA in the ultraviolet absorption spectrum is not particularly limited, but if it is 0.1 or more, preferably 0.2 or more, the surface activity of PVA can be improved.
Such absorbance is attributed to n = 0 and / or n = 2 of the -CO- (CH = CH) n- structure in the PVA main chain, and such a structure is represented by the above general formula in the presence of aldehydes. By copolymerizing the unsaturated monomer and the vinyl ester monomer represented, a carbonyl group is introduced into the PVA main chain, and a decarboxylation reaction of a vinyl ester group adjacent to the carbonyl group or a hydroxyl group The method for controlling the absorbance includes, for example, a method for controlling the amount by adding an aldehyde at the time of copolymerization and a ratio between a solvent and a vinyl ester monomer.
[0022]
Examples of the aldehyde used in this case include acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde, and acetaldehyde is preferably used. The aldehyde is used usually in an amount of 0.1 to 5% by weight based on the vinyl ester monomer.
[0023]
The above-mentioned PVA having an aldehyde group is useful for suspension polymerization of vinyl compounds, particularly for suspension polymerization of vinyl chloride compounds. Hereinafter, the dispersion stabilizer of the present invention is used for suspension polymerization of vinyl chloride compounds. The case where it is used will be described.
When the dispersion stabilizer of the present invention is used for suspension polymerization, it is sufficient to use it alone, but various dispersion aids may be used in combination. As the dispersing agent, a partially saponified PVA having a degree of saponification of less than 65 mol% and a degree of polymerization of 100 to 750, and particularly a degree of saponification of 30 to 60 mol% and a degree of polymerization of 180 to 650, is preferably used. Although it cannot be said unconditionally depending on the kind of the dispersion aid, the weight ratio of the dispersion stabilizer to the dispersion aid is preferably in the range of 90/10 to 30/70, particularly preferably 80/10 to 50/50.
[0024]
Since the dispersing aid is insoluble in water, it may be used in combination with a surfactant to be in a water-dispersed state at the time of use, or may be imparted with self-emulsifiability by introducing an ionic group or an alkylene oxide group. . Specific examples of the PVA-based dispersing aid include “Gose-Fimer LW-100”, “Gose-Fimer LW-200”, “Gose-Fimer LW-300”, “Gose-Fimer LW-400”, and “GO “Sephimer LL-02”, “Gothefimer L-5407”, “Gothefimer L-7514”, “Gothefimer LS210”, etc. (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and “Kurarepoval LM-20” , "Kuraray Povar LM-25", "Kuraray Povar LM-10HD" (manufactured by Kuraray Co., Ltd.), "alcotex55-002H" (manufactured by Synthomer), "Sigma404W", "Sigma202", etc. (manufactured by Sigma). No.
The dispersion stabilizer and the dispersing aid may be charged all at once in the early stage of the polymerization, or may be charged separately up to a polymerization rate of 50%.
[0025]
Further, a water-soluble cellulose ether such as methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, etc., in a range not impairing the effects of the present invention when carrying out suspension polymerization, saponification degree 65 to 98 mol% Other dispersion stabilizers selected from water-soluble polymers such as polyvinyl alcohol and gelatin, sorbitan monolaurate, sorbitan trioleate, glycerin tristearate, oil-soluble emulsifiers such as ethylene oxide propylene oxide block copolymer, cationic, anionic or A nonionic water-soluble emulsifier may be used in combination.
[0026]
The polymerization initiator used is not particularly limited as long as it is an oil-soluble polymerization initiator. For example, 2,4,4-trimethylpentyl-2-peroxyneodecanate, (α, α′- (Bis-neodecanoylperoxin) diisopropylbenzene, di-2-ethylhexylperoxydicarbonate, di (2-ethoxyethyl) peroxydicarbonate, t-butylperoxyneodecanate, α-cumylperoxyneodecanate , T-butylperoxypivalate, γ-cumylperoxyneodecanate, benzol peroxide, lauroyl peroxide, diisopropylperoxydicarbonate, 2,2′-azobisisobutyronitrile, 2,2′-azobis -2,4-dimethylvaleronitrile, acetylcyclohexylsulfonylpa Oxide or mixtures thereof are used. The amount of the polymerization initiator to be charged varies depending on the type of the polymerization initiator used and the polymerization conditions such as the polymerization temperature, but it is usually 0.01 to 2 parts by weight per 100 parts by weight of the vinyl chloride monomer.
In order to prevent scaling, an appropriate amount of a water-soluble polymerization inhibitor such as ammonium thiocyanate or nitrite, a pH adjuster, a crosslinking agent, or a polymerization degree regulator (thiols such as mercaptoethanol, acetaldehyde, Butyraldehyde, trichloroethylene, etc.) can also be used in combination.
[0027]
In the suspension polymerization, water, vinyl chloride-based monomer, dispersion stabilizer, polymerization initiator, a known procedure is used for charging the chain transfer agent, and the amount of the dispersion stabilizer is not particularly limited, but is usually not limited. 5 parts by weight or less, preferably 0.01 to 1 part by weight, more preferably 0.02 to 0.2 parts by weight, particularly 0.03 to 0.08 parts by weight, based on 100 parts by weight of the vinyl chloride monomer. Parts are preferred.
The temperature of the aqueous medium used in the suspension polymerization is not particularly limited, and not only room temperature but also high-temperature water is used. It is also preferable to use water that has been heated. When this method is used, water that has been heated to 40 to 97 ° C, preferably 40 to about the polymerization initiation temperature (50 to 65 ° C) is preferably used. .
[0028]
The polymerization temperature is arbitrarily selected from the range well known to those skilled in the art according to the desired degree of polymerization of the vinyl chloride polymer, and is usually preferably selected from the range of 30 to 80 ° C, preferably 30 to 60 ° C. . The monomer / water weight ratio is usually in the range of 0.5 to 1. However, if additional water is injected during the polymerization to compensate for the decrease in the liquid level due to volume shrinkage accompanying the polymerization, the plasticizer absorption Is preferred because
[0029]
The stirring at the time of suspension polymerization is not a special one, and a commonly used known stirring device can be used. As stirring blades, faudler blades, paddle blades, turbine blades, fan turbine blades, bulging margins Although generally used ones such as a wing may be used, a Faudler wing is particularly preferably used. Further, a polymerization can provided with a baffle may be used, and examples of the baffle include a plate type, a cylindrical type, a D type, a loop type, and a finger type.
[0030]
In addition, the suspension polymerization is not a vinyl chloride monomer alone, but a monomer copolymerizable therewith, such as vinylidene halide, vinyl ether, vinyl acetate, vinyl benzoate, acrylic acid, methacrylic acid, maleic acid or the like. It is also applicable to copolymerization with anhydrides, ethylene, propylene, styrene and the like.
Above, mainly the polymerization of the vinyl chloride monomer was explained, but the dispersion stabilizer of the present invention is not necessarily limited to the vinyl chloride monomer, and other additives such as styrene, vinyl acetate, and methacrylic acid ester can be used. It can also be used for suspension polymerization of vinyl monomers.
[0031]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
In the examples, "%" means on a weight basis unless otherwise specified.
[0032]
Example 1
1000 g of vinyl acetate, 22 g of arylidene diacetate and 900 g of methanol were charged into a 3 liter jacketed reactor equipped with paddle blades, and heated to reflux.
Separately, a polymerization catalyst prepared by dissolving 1.0 g of 2,2′-azobisisobutyronitrile in 20 g of methanol was prepared, charged into the above reaction vessel, and polymerization was started. Additional charging of the% methanol solution was started. In addition, the arylidene diacetate can be uniformly polymerized with vinyl acetate according to the formula of HANNA [reactivity ratio of arylidene diacetate (r1) = 1.34, reactivity ratio of vinyl acetate (r2) = 0.48]. 24 g of arylidene diacetate was further charged until the polymerization rate of vinyl acetate reached 85%.
When the degree of polymerization reached 85%, 0.03 g of m-dinitrobenzene (solution dissolved in 100 g of methanol) was charged into the reaction vessel as a polymerization inhibitor, and the internal temperature was lowered to 30 ° C. or lower to terminate the polymerization. After unreacted monomers were removed by distillation under reduced pressure, the residue was diluted with methanol to obtain a paste of a copolymer.
A 2-liter jacketed saponification reactor was charged with 400 g of the above-obtained copolymer paste (solution adjusted with methanol so that the resin content was 40%), and the jacket was heated to a paste temperature. At 40 ° C., and 56 g of a 4% methanol solution of sodium hydroxide was charged as a saponification catalyst to perform saponification. The obtained slurry was filtered, washed with methanol, and dried to obtain PVA having an aldehyde group in a side chain (PVA1).
When the obtained PVA1 was analyzed by 1 H-NMR (300 MHz, DMSO-d6 solvent), the degree of saponification was 75.3 mol%. Further, the aldehyde group content was 2.5 mol%, and the average degree of polymerization was 790.
[0033]
Using the dispersion stabilizer for suspension polymerization (PVA1) obtained above, a vinyl chloride monomer was polymerized in the following manner.
(Suspension polymerization of vinyl chloride monomer)
In a 100 liter autoclave degassed to 30 mmHg, 45 kg of 57 ° C. deionized water and 18 g of PVA1 were charged, and the jacket temperature was set to 51 ° C., and 30 kg of vinyl chloride monomer was charged under stirring conditions. The internal temperature after completion of the charging was 50 ° C. Subsequently, 13 g of 2,4,4-trimethylpentyl-2-peroxyneodecanate and 6 g of (α, α′-bis-neodenoylperoxin) diisopropylbenzene were charged, and polymerization was started at a polymerization temperature of 51 ° C. . After 5 hours, 3 g of 2,6-di-t-butyl-4-methylphenol was added to stop the polymerization, unreacted vinyl chloride monomer was purged, the contents were taken out, dehydrated, and dried. A vinyl chloride polymer was obtained.
The following evaluations were made on the polymer and the results are shown in Tables 1 and 2.
[0034]
<Average degree of polymerization>
It was based on JIS K 6726.
<Volume resistivity>
It conformed to JIS K 6723.
<Average particle size>
The median diameter (50% weight diameter) was determined from the particle diameter distribution measured by a low tap vibrating sieve (using a JIS sieve) and defined as the average particle diameter.
[0035]
<Coarse particles>
A certain amount of the obtained particles of the vinyl chloride polymer was fractionated with a standard sieve of 60 mesh and 80 mesh to determine the weight% of 60 mesh on and 80 mesh on.
<Plasticizer absorption>
100 parts particles of the resulting vinyl chloride polymer, tris (2-ethylhexyl) trimellitate, 50 parts of lead-based powder stabilizer 3 parts by kneaded roll 5 minutes at 155 ° C. to produce a 0.3mm thick sheet 25 cm 2 After 3 minutes, 4 minutes, 5 minutes, and 7 minutes, the number of fish eyes was measured.
[0036]
Examples 2 and 3
In Example 1, the charging factors (methanol / each monomer ratio, each monomer charging ratio) defined by the formula of HANNA were appropriately changed so as to obtain the desired degree of polymerization and the content of the side chain aldehyde group. In Example 2, PVA having an aldehyde group content of 0.3 mol%, a degree of saponification of 73.0 mol%, and a degree of polymerization of 810 was used. In Example 3, an aldehyde group content of 7.6 mol% and a degree of saponification of 80.1 mol% were used. And PVA having a degree of polymerization of 800 were produced, respectively, and suspension polymerization of a vinyl chloride monomer was carried out in the same manner as in Example 1 and evaluated in the same manner.
[0037]
Comparative Example 1
In the examples described in JP-A-51-45189, the addition of aldehyde and the heat treatment were omitted to prepare a partially saponified PVA having a degree of polymerization of 790, a degree of saponification of 63.2 mol% and no aldehyde group in the side chain. did.
In Example 1, suspension polymerization of a vinyl chloride monomer was carried out using the partially saponified PVA instead of PVA1, and the same evaluation was performed.
[0038]
Comparative Example 2
According to the examples described in JP-A-51-45189, a partially saponified PVA having 72.0 mol% of saponification and a degree of polymerization of 760 having no aldehyde group in the side chain was obtained. Such partially saponified PVA contained 1.0% sodium acetate.
In Example 1, suspension polymerization of vinyl chloride was carried out using the partially saponified PVA in place of PVA1, and the same evaluation was performed.
[0039]
Figure 2004196892
[0040]
Figure 2004196892
[0041]
【The invention's effect】
When the dispersion stabilizer for suspension polymerization of the present invention is used, a vinyl polymer having a large volume resistivity, a small amount of coarse particles, and excellent plasticizer absorption can be obtained as compared with the conventional product.

Claims (4)

下記一般式で表される不飽和単量体とビニルエステル系単量体との共重合体をケン化して得られる側鎖にアルデヒド基を有するポリビニルアルコール系樹脂からなることを特徴とするビニル系化合物の懸濁重合用分散安定剤。
Figure 2004196892
(但し、式中R、Rは水素またはメチル基またはフェニル基、Rは炭素数1〜8のアルキル基、nは0〜8の整数)
A vinyl-based resin comprising a polyvinyl alcohol-based resin having an aldehyde group in a side chain obtained by saponifying a copolymer of an unsaturated monomer and a vinyl ester-based monomer represented by the following general formula: Dispersion stabilizer for suspension polymerization of compounds.
Figure 2004196892
(Where R 1 and R 2 are hydrogen or a methyl group or a phenyl group, R 3 is an alkyl group having 1 to 8 carbon atoms, and n is an integer of 0 to 8)
ケン化がアルカリケン化であることを特徴とする請求項1記載のビニル系化合物の懸濁重合用分散安定剤。2. The dispersion stabilizer for suspension polymerization of a vinyl compound according to claim 1, wherein the saponification is an alkali saponification. 側鎖にアルデヒド基を有するポリビニルアルコール系樹脂が0.05〜10モル%のアルデヒド基を含有してなることを特徴とする請求項1あるいは2いずれか記載のビニル系化合物の懸濁重合用分散安定剤。3. The dispersion for suspension polymerization of a vinyl compound according to claim 1, wherein the polyvinyl alcohol resin having an aldehyde group in a side chain contains 0.05 to 10 mol% of the aldehyde group. Stabilizer. 側鎖にアルデヒド基を有するポリビニルアルコール系樹脂のケン化度が、65〜97モル%であることを特徴とする請求項1〜3いずれか記載のビニル系化合物の懸濁重合用分散安定剤。The dispersion stabilizer for suspension polymerization of a vinyl-based compound according to any one of claims 1 to 3, wherein the polyvinyl alcohol-based resin having an aldehyde group in a side chain has a saponification degree of 65 to 97 mol%.
JP2002364962A 2002-12-17 2002-12-17 Dispersion stabilizer for suspension polymerization of vinyl compound Pending JP2004196892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364962A JP2004196892A (en) 2002-12-17 2002-12-17 Dispersion stabilizer for suspension polymerization of vinyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364962A JP2004196892A (en) 2002-12-17 2002-12-17 Dispersion stabilizer for suspension polymerization of vinyl compound

Publications (1)

Publication Number Publication Date
JP2004196892A true JP2004196892A (en) 2004-07-15

Family

ID=32762641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364962A Pending JP2004196892A (en) 2002-12-17 2002-12-17 Dispersion stabilizer for suspension polymerization of vinyl compound

Country Status (1)

Country Link
JP (1) JP2004196892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182567A1 (en) * 2014-05-28 2015-12-03 日本酢ビ・ポバール株式会社 Dispersion stabilizer for suspension polymerization, method for producing vinyl polymer, and vinyl chloride resin
CN112898500A (en) * 2021-01-29 2021-06-04 湖北工业大学 Preparation method of stable cationic pigment dispersant and stable cationic pigment dispersant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182567A1 (en) * 2014-05-28 2015-12-03 日本酢ビ・ポバール株式会社 Dispersion stabilizer for suspension polymerization, method for producing vinyl polymer, and vinyl chloride resin
CN106414511A (en) * 2014-05-28 2017-02-15 日本瓦姆&珀巴尔株式会社 Dispersion stabilizer for suspension polymerization, method for producing vinyl polymer, and vinyl chloride resin
JPWO2015182567A1 (en) * 2014-05-28 2017-04-20 日本酢ビ・ポバール株式会社 Dispersion stabilizer for suspension polymerization, method for producing vinyl polymer, and vinyl chloride resin
US10301402B2 (en) 2014-05-28 2019-05-28 Japan Vam & Poval Co., Ltd. Dispersion stabilizer for suspension polymerization, production method for vinyl-based polymer, and vinyl chloride resin
CN106414511B9 (en) * 2014-05-28 2019-07-19 日本瓦姆&珀巴尔株式会社 Dispersion stabilizer for suspension polymerization, process for producing vinyl polymer, and vinyl chloride resin
CN112898500A (en) * 2021-01-29 2021-06-04 湖北工业大学 Preparation method of stable cationic pigment dispersant and stable cationic pigment dispersant
CN112898500B (en) * 2021-01-29 2022-05-17 湖北工业大学 Preparation method of stable cationic pigment dispersant and stable cationic pigment dispersant

Similar Documents

Publication Publication Date Title
EP2058342B1 (en) Dispersion stabilizer for suspension polymerization of vinyl-based compound
JP4283693B2 (en) Polyvinyl alcohol-based dispersant having a conjugated double bond in the molecule
JP3799136B2 (en) Dispersion stabilizer
TWI582115B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
KR102178402B1 (en) Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
JP6260041B2 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
JP5288683B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP3474304B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP6906528B2 (en) Modified vinyl alcohol polymer and dispersion stabilizer for suspension polymerization
JP3995584B2 (en) Method for producing dispersion stabilizer for suspension polymerization of vinyl compounds
JP5632830B2 (en) Dispersion stabilizer for suspension polymerization
JP2004075870A (en) Dispersion stabilizer
JP4421715B2 (en) Method for producing vinyl resin
JP3441258B2 (en) Dispersion aid and dispersion stabilizer for suspension polymerization of vinyl compounds
JP2004196892A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP6606387B2 (en) Dispersion aid for suspension polymerization, aqueous liquid thereof, and method for producing vinyl resin using them
JP4421705B2 (en) Dispersing aid for suspension polymerization of vinyl compounds
JP4245784B2 (en) Dispersion stabilizer for suspension polymerization of vinyl chloride
JP4615153B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP4303872B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP3742182B2 (en) Method for producing vinyl resin
JP5465615B2 (en) Dispersion stabilizer for suspension polymerization
JP5940858B2 (en) Polyvinyl alcohol polymer, dispersant for suspension polymerization, vinyl chloride resin and method for producing the same
JP2002097209A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP2022003139A (en) Dispersion auxiliary agent for suspension polymerization and its aqueous liquid, and method for producing vinyl resin using them