JP2004196194A - Earth oriented surface panel - Google Patents

Earth oriented surface panel Download PDF

Info

Publication number
JP2004196194A
JP2004196194A JP2002369353A JP2002369353A JP2004196194A JP 2004196194 A JP2004196194 A JP 2004196194A JP 2002369353 A JP2002369353 A JP 2002369353A JP 2002369353 A JP2002369353 A JP 2002369353A JP 2004196194 A JP2004196194 A JP 2004196194A
Authority
JP
Japan
Prior art keywords
panel
earth
facing
oriented surface
earth oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369353A
Other languages
Japanese (ja)
Inventor
Takuma Masai
卓馬 正井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002369353A priority Critical patent/JP2004196194A/en
Publication of JP2004196194A publication Critical patent/JP2004196194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem with a heat environment on a satellite orbit, wherein earth oriented surface panels having various sensors are affected by the thermal deformation of the other panel and deformed largely. <P>SOLUTION: These earth oriented surface panels comprise two sheets of panels 1 and 2 divided in the vertical direction. Equipment such as various sensors 5 is mounted on the upper surface side earth oriented surface panel 1, and the end part of the lower surface side earth oriented surface panel is joined to the other panel. Also, the upper surface side earth oriented surface panel 1 together with the lower surface side earth oriented surface panel has a connection part to a central cylinder 3 near the center part of the earth oriented surface panels, and a connection part to a metal surface panel 4 (pay load panel) at the end part of the earth oriented surface. Thus, the upper surface side earth oriented surface panel 1 having the equipment affected largely by the thermal deformation is less affected by the thermal deformation of the other panel to relieve the effect of the thermal deformation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、人工衛星を構成する複合材パネルのうち、機器を搭載する地球指向面パネルに関するものである。
【0002】
【従来の技術】
従来の人工衛星は、南北面パネルを衛星に搭載される機器の発熱を伝達及び廃熱するために、熱伝導に優れる金属表皮を持つハニカム・コア・パネルで製作されている。また、その他のパネルは人工衛星の構造を軽量な部材で製作するために、複合材表皮を持つハニカム・コア・パネルで製作されている(例えば、非特許文献1参照。)。
【0003】
【非特許文献1】
茂原 正道・鳥山 芳夫 共編「衛星設計入門」培風館、2002年6月13日、p.79−82
【0004】
これらのパネルは衛星構造を形作り、衛星軌道までの環境条件の中で負荷される荷重に耐荷することが要求されるとともに、軌道上での運用時環境によって発生する様々な荷重に耐えなければならない。
【0005】
【発明が解決しようとする課題】
従来の構造様式では、金属表皮パネルと複合材パネルが隣接して存在し、しかも、高い寸法安定性のために、剛固定に近い方式で結合されている。そのため、線膨張係数の違う異種の材料の結合部では、軌道上の温度変動の中で大きな熱変形が発生している。
【0006】
地球指向面パネルにおいては、指向性の強い各種センサーが搭載されているため、この大きな熱変形により、センサーの精度が達成できなくなり、軽量化のために複合材パネルを使用したにも関わらず、この変形を抑える機構や補強部材を必要とし、余分な質量を費やさなければならない結果となっている。
【0007】
【課題を解決するための手段】
この発明による地球指向面パネルは、異種材料パネルと結合している地球指向面パネルにおいて、地球指向面パネルの板厚方向で分割し、分割した地球指向面パネルの下面で異種材料パネルと結合し、分割した地球指向面パネルの上面に機器を搭載するようにしたものである。
【0008】
【発明の実施の形態】
実施の形態1.
以下、図を用いてこの発明に係る実施の形態1について説明する。
図1は実施の形態1による熱変形抑制地球指向面パネルの構成を示している。図に記載する上面側地球指向面パネル1は、下面側地球指向面パネル2と共に、地球指向面パネル中央部付近で、セントラルシリンダ3と結合部を持ち、地球指向面端部で、金属表皮パネル4(ペイロードパネル)と結合部を持つ。
【0009】
地球指向面に搭載される各種センサー等5の機器は、上面側地球指向面パネル1上に搭載される。
【0010】
次に動作について、図1を用いて説明する。
まず、人工衛星の各パネルは打上げ前に地上で室温において組立てられ、人工衛星が衛星軌道に投入された後は、衛星軌道上の位置により衛星は機器の発熱及び太陽熱輻射等の影響を受けて約100K近い温度変動を受ける。人工衛星運用上の軌道では、人工衛星のパネル表面が低温になるケースの方が、温度環境的には厳しく、この温度変動によりアルミ等の金属表皮パネル4は、線膨張係数が23×10-6/Kと大きく、温度変動により、大きく縮むのに対して、上面側地球指向面パネル1及び下面側地球指向面パネル2、セントラルシリンダ3は、複合材の線膨張係数が−0.1×10-6〜3×10-6/K程度であり、金属に比較して線膨張係数が一桁若しくは二桁小さく、ほとんど変形しない。
【0011】
そのため、この線膨張係数の違いにより、下面側地球指向面パネル2は、変形量の大きい金属表皮パネル4の変形に引張られて、大きく変形する。
地球指向面パネルを上面側地球指向面パネル1と下面側地球指向面パネル2に分割し、下面側地球指向面パネル2と金属表皮パネル4を結合し、上面側地球指向面パネル1を結合しないことにより、変形後金属表皮パネル6の熱変形の影響を変形後下面側地球指向面パネル7のみに留め、指向性の高い各種センサー5等の搭載される上面側地球指向面パネル1に伝えないようにするものである。
【0012】
この効果により、各種センサー5等の搭載される上面側地球指向面パネル1の熱変形の影響を緩和することで、特別な変形抑制機構等を必要とせず、大幅な質量軽減が期待できる。また、部品点数も削減できることとなり、製品としての製造コストの低減、品質検査作業の低減による信頼性の向上が期待できる。さらにまた、上面側地球指向面パネル1は、金属表皮パネル4と結合点を持っていないため、この結合部位置に左右されず、各種センサー5の位置のみに依存した自由な設計が実施でき、更なる質量軽減が期待できる。尚、金属表皮パネル4は、無理に変形を拘束されていないため、特別の補強を実施しなくても良く、質量軽減が期待できる。
【0013】
実施の形態2.
図2はこの発明の実施の形態2を示す図であり、動作について説明する。
人工衛星を構成する各種部品は、打上時の環境において、打上時の時刻歴の変動を考慮しても、ほぼ打上げ期間全域で、鉛直方向下向き(地球向き)に荷重が作用する。上面側地球指向面パネル1は、端部に結合部を持たないため、搭載する各種センサー5等に作用する荷重により、変形後上面側地球指向面パネル8のように鉛直方向下向きに垂れ下る。この時、下面側地球指向面パネル2は金属表皮パネル4等と結合部を持っているため、構造としての剛性が上面側地球指向面パネル1よりも高く、変形後上面側地球指向面パネル8よりも垂れ下り方が小さい。
【0014】
このため、変形後上面側地球指向面パネル8は、変形後下面側地球指向面パネル7にもたれ掛かり、完全に面接触する。この接触により、変形後上面側地球指向面パネル8に作用する荷重は、変形後下面側地球指向面パネル7に伝達され、変形後下面側地球指向面パネル7に結合される変形後金属表皮パネル6等に伝達されていく。この荷重の伝達の中で、変形後上面側地球指向面パネル8は、他構造と結合しているのと同様に、他構造に支持される。
【0015】
地球指向面パネルを分割し、上下に配置することにより、実施の形態1で説明したように、熱変形を緩和するために結合点を持たないようにした上面側地球指向面パネル1の打上時の荷重に対して、特に特殊な支持構造を必要とせず、質量の軽減及び部品点数の削減による製造コストの低減、検査作業短縮等による信頼性の向上が期待できる。
【0016】
実施の形態3.
図3はこの発明の実施の形態3を示す図であり、動作について説明する。
人工衛星を構成する部品は、打上時の環境において、様々な音響環境及び振動環境に曝される。この音響環境及び振動環境により、部品自体の振動、部品取付部の振動が励起され、部品に局部的に大きな荷重が発生する。特に地球指向面パネルに搭載される各種センサー5は、音響環境に対して、特別の配慮が必要となっている。
【0017】
上面側地球指向面パネル1及び下面側地球指向面パネル2に分割されたパネルは、この音響環境下で、各々独立して振動し、振動を打ち消し合う。また、この上面側地球指向面パネル1と下面側地球指向面パネル2の間に軟弾性体9(天然ゴム、ニトリルゴム、クロロプレンゴム、ウレタンゴム、ブチルゴム、エチレンプロピレンゴム、スチレンブタジエンゴム等及びこれらの化合物)を接着塗布することにより、この音響環境で励起された振動のエネルギーを軟弾性体9の変形のエネルギーに変換し、最終的には熱エネルギーとして消散することにより、振動エネルギーを緩和することが可能となる。尚、軟弾性体は剛性が低いため、実施の形態1にて説明した熱変形により、下面側地球指向面パネル2が変形した場合でも、上面側地球指向面パネル1及び下面側地球指向面パネル2に作用する荷重は小さく、実施の形態1の効果にはほとんど影響しない。
【0018】
地球指向面パネルを分割し、この分割したパネル間に軟弾性体9を接着塗布することにより、簡易に音響環境及び振動環境を低減し、各種センサー5の性能を満足させることができる。このため、音響環境抑制用の特別の機構、部材等を必要とせず、質量の軽減が期待できる。また、部品点数の削減により製造コストの低減、検査作業の簡略化により信頼性の向上にも効果が期待できる。
【0019】
【発明の効果】
この発明によれば、衛星軌道上の熱環境において発生する熱変形に対して、特別な変形抑制機構等を設けること無く、各種センサー5の熱変形影響を緩和することができるため、質量軽減及び製造コスト低減、信頼性向上等その効果は大きい。
【図面の簡単な説明】
【図1】この発明の実施の形態1による、人工衛星軌道上の熱環境による熱変形緩和機構を説明する図である。
【図2】この発明の実施の形態2による、人工衛星打上環境による鉛直下向き荷重支持機構を説明する図である。
【図3】この説明の実施の形態3による、人工衛星打上環境による音響環境低減機構を説明する図である。
【符号の説明】
1 上面側地球指向面パネル、 2 下面側地球指向面パネル、 3 セントラルシリンダ、 4 金属表皮パネル、 5 各種センサー、 6 変形後金属表皮パネル、 7 変形後下面側地球指向面パネル、 8 変形後地球指向面パネル、 9 軟弾性体。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth-facing panel on which devices are mounted, among composite panels constituting an artificial satellite.
[0002]
[Prior art]
2. Description of the Related Art Conventional satellites are manufactured from a honeycomb core panel having a metal skin with excellent heat conduction in order to transfer heat generated by equipment mounted on the satellite to the north-south panel and waste heat. The other panels are made of a honeycomb core panel having a composite material skin in order to manufacture the structure of the satellite with lightweight members (for example, see Non-Patent Document 1).
[0003]
[Non-patent document 1]
Masamichi Mobara and Yoshio Toriyama, edited by "Introduction to Satellite Design," Baifukan, June 13, 2002, p. 79-82
[0004]
These panels form the structure of the satellite and are required to withstand the loads imposed in the environmental conditions up to the satellite orbit, as well as withstand the various loads generated by the operational environment in orbit. .
[0005]
[Problems to be solved by the invention]
In conventional construction styles, the metal skin panel and the composite panel are adjacent and are joined in a near rigid manner for high dimensional stability. For this reason, a large thermal deformation occurs in the joint of different materials having different linear expansion coefficients due to the temperature fluctuation on the orbit.
[0006]
In the Earth-facing panel, since various sensors with strong directivity are mounted, due to this large thermal deformation, the accuracy of the sensor can not be achieved, and despite the use of composite panels for weight reduction, A mechanism and a reinforcing member for suppressing this deformation are required, and as a result, extra mass must be spent.
[0007]
[Means for Solving the Problems]
The earth-facing surface panel according to the present invention is, in an earth-facing surface panel coupled with a dissimilar material panel, divided in the thickness direction of the earth-facing surface panel, and combined with the dissimilar material panel on a lower surface of the divided earth-facing surface panel. The device is mounted on the upper surface of the divided earth-facing panel.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 according to the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of a thermal deformation suppressing earth directing surface panel according to the first embodiment. The upper-side earth-facing panel 1 shown in the figure has a central cylinder 3 and a coupling portion near the center of the earth-facing panel together with the lower-side earth-facing panel 2, and a metal skin panel at the end of the earth-facing panel. 4 (payload panel) and a connection part.
[0009]
Devices such as various sensors 5 mounted on the earth-facing surface are mounted on the top-side earth-facing surface panel 1.
[0010]
Next, the operation will be described with reference to FIG.
First, each panel of the satellite is assembled at room temperature on the ground before launch, and after the satellite is put into the satellite orbit, the satellite is affected by heat generation of equipment and solar heat radiation depending on its position in the satellite orbit. Subject to temperature fluctuations of about 100K. In an orbit for the operation of an artificial satellite, the temperature of the surface of the artificial satellite panel becomes lower when the temperature of the panel surface is low. Due to this temperature fluctuation, the metal skin panel 4 such as aluminum has a linear expansion coefficient of 23 × 10 −. 6 / K, which greatly shrinks due to temperature fluctuations, whereas the upper-side earth-facing panel 1, the lower-side earth-facing panel 2, and the central cylinder 3 have a composite material having a linear expansion coefficient of -0.1 × It is about 10 −6 to 3 × 10 −6 / K, has a coefficient of linear expansion one or two orders of magnitude smaller than that of metal, and hardly deforms.
[0011]
Therefore, due to the difference in the coefficient of linear expansion, the lower-surface-side earth-facing panel 2 is greatly deformed by being pulled by the deformation of the metal skin panel 4 having a large deformation amount.
The earth-facing panel is divided into an upper earth-facing panel 1 and a lower earth-facing panel 2, the lower earth-facing panel 2 and the metal skin panel 4 are joined, and the upper earth-facing panel 1 is not joined. Thus, the effect of the thermal deformation of the metal skin panel 6 after deformation is limited to only the lower surface-side earth-facing surface panel 7 after deformation and is not transmitted to the upper surface-side earth-facing surface panel 1 on which various sensors 5 having high directivity are mounted. Is to do so.
[0012]
By this effect, the effect of thermal deformation of the upper surface-side earth-facing surface panel 1 on which the various sensors 5 and the like are mounted is reduced, so that a special deformation suppression mechanism or the like is not required, and a large reduction in mass can be expected. In addition, the number of parts can be reduced, and the reduction in manufacturing cost as a product and the improvement in reliability due to the reduction in quality inspection work can be expected. Furthermore, since the upper surface-side earth-facing panel 1 does not have a connection point with the metal skin panel 4, it can be freely designed without depending on the position of the connection portion and only depending on the position of various sensors 5. Further mass reduction can be expected. In addition, since the metal skin panel 4 is not forcibly restricted from being deformed, it is not necessary to perform special reinforcement, and a reduction in mass can be expected.
[0013]
Embodiment 2 FIG.
FIG. 2 is a diagram showing Embodiment 2 of the present invention, and the operation will be described.
In the launch environment, loads are applied vertically downward (toward the earth) almost in the entire launch period of various components constituting the artificial satellite, even if the time history of the launch is considered. Since the upper surface-side earth-facing panel 1 does not have a coupling portion at an end, the upper-side earth-facing surface panel 8 hangs down in a vertical direction like the upper surface-side earth-facing panel 8 after being deformed by a load acting on various sensors 5 and the like to be mounted. At this time, since the lower surface-side earth-facing panel 2 has a joint with the metal skin panel 4 and the like, the rigidity of the structure is higher than that of the upper surface-side earth-facing surface panel 1 and the upper surface-side earth-facing surface panel 8 after deformation. The drooping direction is smaller than that.
[0014]
For this reason, the deformed upper surface-side earth-facing panel 8 leans against the deformed lower surface-side earth-facing panel 7 and makes complete surface contact. Due to this contact, the load acting on the deformed upper surface-side earth-facing panel 8 is transmitted to the deformed lower surface-side earth-facing panel 7 and is coupled to the deformed lower surface-side earth-facing panel 7. It is transmitted to 6 mag. During the transfer of the load, the upper-surface-side earth-facing panel 8 after deformation is supported by the other structure in the same manner as the other structure.
[0015]
As described in the first embodiment, by dividing the earth-facing panel and arranging the earth-facing panel above and below, when launching the upper-side earth-facing panel 1, which has no connection point to reduce thermal deformation With respect to the load, no special support structure is required, and it is expected that the manufacturing cost can be reduced by reducing the mass and the number of parts, and the reliability can be improved by shortening the inspection work.
[0016]
Embodiment 3 FIG.
FIG. 3 is a diagram showing Embodiment 3 of the present invention, and the operation will be described.
The components that make up the satellite are exposed to various acoustic and vibrational environments in the launch environment. Due to the acoustic environment and the vibration environment, the vibration of the component itself and the vibration of the component mounting portion are excited, and a large load is locally generated on the component. In particular, the various sensors 5 mounted on the earth-facing panel require special consideration for the acoustic environment.
[0017]
The panels divided into the upper surface-side earth-facing panel 1 and the lower surface-side earth-facing panel 2 vibrate independently under this acoustic environment, and cancel each other out. Further, a soft elastic body 9 (natural rubber, nitrile rubber, chloroprene rubber, urethane rubber, butyl rubber, ethylene propylene rubber, styrene butadiene rubber, or the like) is provided between the upper surface-facing surface panel 1 and the lower surface-facing surface panel 2. Is converted to the energy of the deformation of the soft elastic body 9 by the adhesive application, and is finally dissipated as heat energy, thereby reducing the vibration energy. It becomes possible. Since the soft elastic body has low rigidity, even when the lower surface-side earth-facing surface panel 2 is deformed by the thermal deformation described in the first embodiment, the upper surface-side earth-facing surface panel 1 and the lower surface-side earth-facing surface panel 2 has a small load and hardly affects the effect of the first embodiment.
[0018]
By dividing the earth-facing panel and bonding and applying the soft elastic body 9 between the divided panels, the acoustic environment and the vibration environment can be easily reduced, and the performance of the various sensors 5 can be satisfied. For this reason, a special mechanism or member for suppressing the acoustic environment is not required, and a reduction in mass can be expected. In addition, it is expected that the manufacturing cost is reduced by reducing the number of parts and the reliability is improved by simplifying the inspection work.
[0019]
【The invention's effect】
According to the present invention, the thermal deformation effect of the various sensors 5 can be reduced without providing a special deformation suppressing mechanism or the like for the thermal deformation generated in the thermal environment in the satellite orbit, thereby reducing the mass and The effects are large, such as reduction in manufacturing cost and improvement in reliability.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a thermal deformation mitigation mechanism based on a thermal environment in a satellite orbit according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a vertical downward load supporting mechanism in an artificial satellite launch environment according to a second embodiment of the present invention.
FIG. 3 is a diagram illustrating an acoustic environment reducing mechanism based on an artificial satellite launch environment according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top-facing earth-facing panel, 2 Bottom-facing earth-facing panel, 3 Central cylinder, 4 Metal skin panel, 5 Various sensors, 6 Metal skin panel after deformation, 7 Lower deformation earth-facing panel, 8 Earth after deformation Directional panel, 9 soft elastic body.

Claims (3)

異種材料パネルと結合している地球指向面パネルにおいて、上記地球指向面パネルの板厚方向で分割し、分割した上記地球指向面パネルの下面で異種材料パネルと結合し、分割した上記地球指向面パネルの上面に機器を搭載するようにしたことを特徴とする地球指向面パネル。The earth-facing panel combined with the disparate material panel, wherein the earth-facing panel is divided in the thickness direction of the earth-facing panel, combined with the dissimilar material panel on the lower surface of the divided earth-facing panel, and divided. An earth-facing panel characterized by mounting equipment on the upper surface of the panel. 打上時の鉛直荷重を伝達し、鉛直荷重に対する寸法安定性を分割された上下2枚のパネルの接触により達成することを特徴とする請求項1記載の地球指向面パネル。The earth-oriented surface panel according to claim 1, wherein a vertical load at the time of launch is transmitted, and dimensional stability with respect to the vertical load is achieved by contact between the upper and lower two divided panels. 打上時の音響環境及び振動環境により、励起される地球指向面パネル自体の振動を、分割された上下2枚のパネル間に配置された軟弾性体の変形エネルギーにより消散させることを特徴とする請求項1記載の地球指向面パネル。The vibration of the earth-facing surface panel itself excited by the acoustic environment and the vibration environment at the time of launch is dissipated by the deformation energy of the soft elastic body disposed between the divided upper and lower two panels. Item 7. An earth-oriented panel according to Item 1.
JP2002369353A 2002-12-20 2002-12-20 Earth oriented surface panel Pending JP2004196194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369353A JP2004196194A (en) 2002-12-20 2002-12-20 Earth oriented surface panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369353A JP2004196194A (en) 2002-12-20 2002-12-20 Earth oriented surface panel

Publications (1)

Publication Number Publication Date
JP2004196194A true JP2004196194A (en) 2004-07-15

Family

ID=32765599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369353A Pending JP2004196194A (en) 2002-12-20 2002-12-20 Earth oriented surface panel

Country Status (1)

Country Link
JP (1) JP2004196194A (en)

Similar Documents

Publication Publication Date Title
US4778028A (en) Light viscoelastic damping structure
JPH10297599A (en) Solar heat power generator for satellite
JP5981559B2 (en) Vibration isolation system and method
US20060162998A1 (en) Sound suppression material and method
JP3988811B2 (en) Damping building, building material and damping building using the same
Dimitriadis et al. Active control of sound transmission through elastic plates using piezoelectric actuators
JP2000198500A (en) Optimized strain energy-operated structure
Soykasap et al. High-precision offset stiffened springback composite reflectors
JP2004196194A (en) Earth oriented surface panel
Soykasap et al. New deployable reflector concept
JP2004511732A (en) Piezoelectric strain actuator
Stevens Design, analysis, fabrication, and testing of a nanosatellite structure
Sakamoto et al. Distributed and localized active vibration isolation in membrane structures
JP4019302B2 (en) Damping damper
Mikulas Jr et al. Preliminary design considerations for 10-40 meter-diameter precisiontruss reflectors
JPH01192937A (en) Pipe connecting structure
US7712706B2 (en) Space tethers for limiting the dynamic response of structures
JP2003278826A (en) Sandwich panel and artificial satellite structure having the same
JPH06105846B2 (en) Satellite tower antenna
JP2000150946A (en) Solar cell panel
Sakamoto et al. Distributed localized vibration control of membrane structures using piezoelectric actuators
Mejia-Ariza et al. Ultra-flexible advanced stiffness truss (u-fast) for large solar arrays
Lyrintzis et al. Random response and noise transmission of discretely stiffened composite panels
JP2002357243A (en) Vibration absorbing device and vibration absorbing method
Griffin et al. Ultralightweight structures for deployed optics

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A7421