JP2004195993A - Antistatic transparent resin plate - Google Patents

Antistatic transparent resin plate Download PDF

Info

Publication number
JP2004195993A
JP2004195993A JP2004097494A JP2004097494A JP2004195993A JP 2004195993 A JP2004195993 A JP 2004195993A JP 2004097494 A JP2004097494 A JP 2004097494A JP 2004097494 A JP2004097494 A JP 2004097494A JP 2004195993 A JP2004195993 A JP 2004195993A
Authority
JP
Japan
Prior art keywords
antistatic
antistatic layer
resin plate
transparent
surface resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097494A
Other languages
Japanese (ja)
Other versions
JP4191078B2 (en
Inventor
Hiroshi Takahashi
浩 高橋
Masahito Sakai
将人 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004097494A priority Critical patent/JP4191078B2/en
Publication of JP2004195993A publication Critical patent/JP2004195993A/en
Application granted granted Critical
Publication of JP4191078B2 publication Critical patent/JP4191078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic transparent resin plate which can demonstrate an outstanding antistatic property with little variation in surface resistivity despite improvement in transparency and see-through property by a pressing. <P>SOLUTION: A pressed, clear antistatic transparent resin plate P having a transparent antistatic layer 2 on a surface of its thermoplastic clear resin substrate 1, wherein the antistatic layer contains 2 to 8 wt. % of a very thin, winding, entangled long carbon fiber and has a thickness of 0.05 to 0.50μm. The resin plate P has a total light transmission of 75% or more, a haze of 5% or lower, a surface resistivity of less than 10<SP>10</SP>Ω, and a variation between the average value X and the standard deviation σ in the surface resistivity at X-3σ and X+3σ of two digits at maximum. The winding long fiber has a diameter of 3.5 to 100 μm and an aspect ratio of 5 or more. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、良好な透明性と制電性を兼ね備えた制電性透明樹脂板に関する。   The present invention relates to an antistatic transparent resin plate having both good transparency and antistatic properties.

従来より、クリーンルームのパーテーションや試験装置の覗き窓のように透視が可能で塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する透明な制電性樹脂板が使用されている。   2. Description of the Related Art Conventionally, a transparent antistatic resin plate that allows static electricity to escape and prevent dust from adhering has been used for applications that can see through like a partition in a clean room or a viewing window of a test device and dislike dust.

かかる制電性樹脂板の代表例は、透明な樹脂基板の表面に酸化錫等の金属酸化物の粉末を多量に含む薄い制電層を形成したものであり、このものは金属酸化物の粉末の相互接触により制電性が発現されるようになっている。   A typical example of such an antistatic resin plate is one in which a thin antistatic layer containing a large amount of a metal oxide powder such as tin oxide is formed on the surface of a transparent resin substrate. The anti-static property is developed by mutual contact.

また、最近では、0.01〜1重量%の中空炭素マイクロファイバーと、1〜40重量%の金属酸化物の粉末とを含む透明な制電層を少なくとも片面に形成した透明なパネルも提案されている(特開平9−115334号)。
特開平9−115334号公報
Recently, a transparent panel has been proposed in which a transparent antistatic layer containing 0.01 to 1% by weight of hollow carbon microfiber and 1 to 40% by weight of metal oxide powder is formed on at least one surface. (JP-A-9-115334).
JP-A-9-115334

上記の透明な制電性樹脂板やパネルは、種々ある手段の中の一つである比較的簡易なプレスにより制電層の表面平滑度を上げると、光の散乱が減少してヘーズが下がり、透明性や透視性を向上させることができる。   When the surface smoothness of the antistatic layer is increased by a relatively simple press, which is one of various means, the transparent antistatic resin plate or panel described above reduces light scattering and haze. , Transparency and transparency can be improved.

しかしながら、プレスを行うと、多量の金属酸化物の粉末を含んだ制電層が流動し、特に、制電層の端部の流動が大きく、粉末の粒子間の間隔が広がり、また金属酸化物の粉末の含有分散状態が不均一になりやすいため、制電層の中央部と端部、或は、端部の各部分での表面抵抗率のバラツキが大きくなるという問題があった。   However, when the pressing is performed, the antistatic layer containing a large amount of the metal oxide powder flows, and particularly, the flow at the end of the antistatic layer is large, the interval between the powder particles is widened, and the metal oxide is spread. The dispersion state of the powder is likely to be non-uniform, so that there has been a problem that the dispersion of the surface resistivity at the central portion and the end portion of the antistatic layer or at each of the end portions increases.

本発明は上記の問題に鑑みてなされたもので、その目的とするところは、プレスにより透明性や透視性を向上させている場合にあって、表面抵抗率のバラツキが少なく優れた制電性を発現できる制電性透明樹脂板を提供することにある。   The present invention has been made in view of the above-described problems, and has as its object the case where the transparency and the see-through property are improved by pressing, and the antistatic property with less variation in the surface resistivity. The object of the present invention is to provide an antistatic transparent resin plate capable of exhibiting the following.

上記目的を達成するため、請求項1に係る発明は、熱可塑性樹脂の透明な基板の表面に、曲がりくねって絡み合う極細の長炭素繊維を2〜8重量%含んだ厚さ0.05〜0.50μmの熱可塑性樹脂の透明な制電層を有する、プレスされた制電性透明樹脂板であって、その全光線透過率が75%以上、ヘーズが5%以下、表面抵抗率が1010Ω未満、表面抵抗率の平均値Xと標準偏差σとのX−3σ、X+3σにおけるバラツキが最大二桁であることを特徴とするものである。 In order to achieve the above object, the invention according to claim 1 has a thickness of 0.05 to 0.about.8 which contains 2 to 8% by weight of ultrafine long carbon fibers which are twisted and entangled on the surface of a transparent substrate made of thermoplastic resin. A pressed antistatic transparent resin plate having a transparent antistatic layer of 50 μm thermoplastic resin, having a total light transmittance of 75% or more, a haze of 5% or less, and a surface resistivity of 10 10 Ω. And a difference between X-3σ and X + 3σ between the average value X of the surface resistivity and the standard deviation σ is a maximum of two digits.

そして、請求項2に係る発明は、上記請求項1の制電性透明樹脂板において、その長炭素繊維が3.5〜100nmの線径と5以上のアスペクト比を有する曲がりくねった繊維であり、絡み合って制電層中に分散していることを特徴とするものである。   The invention according to claim 2 is the antistatic transparent resin plate according to claim 1, wherein the long carbon fibers are winding fibers having a wire diameter of 3.5 to 100 nm and an aspect ratio of 5 or more, It is characterized by being entangled and dispersed in the antistatic layer.

請求項1の制電性透明樹脂板は、その制電層が0.05〜0.50μmの非常に薄い層であって、極細の長炭素繊維の含有量が2〜8重量%と少ないため、全光線透過率は75%以上と高く、しかも、プレスにより表面平滑度が高められて光の散乱が減少しているため、ヘーズが5%以下と小さい。従って、この制電性透明樹脂板は、制電層中に極細の長炭素繊維が含まれているにも拘らず、透明性や透視性が良好である。   In the antistatic transparent resin plate according to the first aspect, the antistatic layer is a very thin layer having a thickness of 0.05 to 0.50 μm, and the content of ultrafine long carbon fibers is as small as 2 to 8% by weight. The total light transmittance is as high as 75% or more, and the haze is as small as 5% or less because the surface smoothness is increased by pressing and light scattering is reduced. Therefore, this antistatic transparent resin plate has good transparency and transparency even though the antistatic layer contains ultrafine long carbon fibers.

そして、この制電層に含まれる極細の長炭素繊維は、曲がりくねって絡み合いながら互いに接触したり導通可能な微小間隔を保って分散しているだけでなく、プレスによって長炭素繊維の間隔が上下方向(制電層の厚み方向)に圧縮され、繊維の接触頻度や導通可能な微小間隔部分が増加しているため、長炭素繊維の含有量が2〜8重量%と少なくても、制電層の表面抵抗率は1010Ω未満と低く、充分な制電性能を発揮する。 The ultra-fine long carbon fibers contained in the antistatic layer are not only dispersed and maintained at a small interval capable of contacting or conducting with each other while winding and entangled, but also the interval between the long carbon fibers in the vertical direction by pressing. (The thickness direction of the antistatic layer), the frequency of contact between the fibers and the minute gaps that can be conducted are increased, so that even if the content of long carbon fibers is as small as 2 to 8% by weight, the antistatic layer Has a low surface resistivity of less than 10 10 Ω, and exhibits sufficient antistatic performance.

しかも、長炭素繊維を含んだ制電層は、プレスの際に流動しても、従来の金属酸化物の粉末を含んだ制電層ほどには粒子間が広がって互いの粒子間での導通可能な微小間隔を保てなくなる傾向はなく、また、長炭素繊維が絡み合っているため、金属酸化物に比べると、長炭素繊維の分散状態は不均一になりにくい。そのため、この制電性透明樹脂板は、プレスにより透明性や透視性を向上させている場合であっても、表面抵抗率のバラツキは最大二桁の範囲となって表面抵抗率のバラツキが少なく、制電層の中央部と端部は勿論、端部の各部分でも表面抵抗率に大きいバラツキを生じることはない。   Moreover, even if the antistatic layer containing long carbon fibers flows during pressing, the particles spread as widely as the conventional antistatic layer containing metal oxide powder, and the particles are electrically connected to each other. Since there is no tendency to be able to maintain a possible minute interval, and the long carbon fibers are entangled, the dispersion state of the long carbon fibers is less likely to be non-uniform than that of the metal oxide. Therefore, even when the antistatic transparent resin plate is improved in transparency and transparency by pressing, the variation in surface resistivity is within a range of up to two digits, and the variation in surface resistivity is small. In addition, there is no large variation in the surface resistivity not only at the center and the end of the antistatic layer but also at each end.

また、曲がりくねって絡み合う極細の長炭素繊維を含んだ制電層であるので、プレスされた際の流動により表面抵抗率が高くなって制電性能に悪い影響を与えるようなことが少ないため、プレスに際して加熱温度の広い選択幅が可能であり、それゆえ制電性透明樹脂板の成形過程での温度調整選択の自由度が大きくなるので、この制電性透明樹脂板の仕上がり、強度等にも良好な結果をもたらすことができる。   In addition, since it is an antistatic layer containing ultra-fine long carbon fibers that are twisted and entangled, it is unlikely that the flow during pressing will increase the surface resistivity and adversely affect the antistatic performance. In this case, a wide selection range of the heating temperature is possible, and therefore, the degree of freedom in selecting the temperature adjustment in the process of forming the antistatic transparent resin plate is increased. Good results can be obtained.

本発明において、極細の長炭素繊維としては、請求項2に記載されているように3.5〜100nmの線径と5以上のアスペクト比を有する曲がりくねった繊維であって、絡み合って集合体ないしは凝集体となっているものが好ましく使用される。また、この集合体ないしは凝集体を装置を用いて微細化し、上記同様の線径とアスペクト比を有する曲がりくねって絡み合った極細の長炭素繊維として制電層中に分散させてもよい。線径が上記より太く、アスペクト比が上記より小さい炭素繊維は、曲がりくねりや絡み合いが不足するので、表面抵抗率が増加して制電性の低下を招く恐れがあり、また、制電層が黒ずんで透明性の低下を招く恐れもある。尚、長炭素繊維のアスペクト比の上限は特に限定されないが、3000以下のものが好適に使用される。   In the present invention, the ultrafine long carbon fiber is a meandering fiber having a wire diameter of 3.5 to 100 nm and an aspect ratio of 5 or more as described in claim 2, and is entangled to form an aggregate or Aggregates are preferably used. The aggregate or aggregate may be finely divided using an apparatus, and dispersed in the antistatic layer as ultrafine long carbon fibers having the same wire diameter and aspect ratio as in the form of winding and entanglement. The carbon fiber having a wire diameter larger than the above and an aspect ratio smaller than the above is insufficient in the winding and entanglement, so that the surface resistivity may increase and the antistatic property may decrease, and the antistatic layer may be darkened. This may lead to a decrease in transparency. The upper limit of the aspect ratio of the long carbon fiber is not particularly limited, but those having a length of 3000 or less are preferably used.

図1は本発明の制電性透明樹脂板の一実施形態を示す断面図である。   FIG. 1 is a sectional view showing one embodiment of the antistatic transparent resin plate of the present invention.

この制電性透明樹脂板Pは、熱可塑性樹脂の透明な基板1の表面に透明な制電層2を設けてプレスしたものである。   This antistatic transparent resin plate P is formed by pressing a transparent antistatic layer 2 on the surface of a transparent substrate 1 made of a thermoplastic resin.

基板1は、透明な熱可塑性樹脂、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、これら樹脂それぞれの共重合体樹脂などから成るもので、好ましくは85%以上の全光線透過率と、5%以下のヘーズを有する基板が使用される。この基板1には、可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性などが高められる。   The substrate 1 is made of a transparent thermoplastic resin, for example, an olefin resin such as polyethylene or polypropylene, a vinyl resin such as polyvinyl chloride, polymethyl methacrylate, or polystyrene, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, or an aromatic polyester. A substrate made of an ester-based resin, an ABS resin, a copolymer resin of each of these resins, or the like is preferably used. A substrate having a total light transmittance of 85% or more and a haze of 5% or less is preferably used. The substrate 1 is appropriately blended with a plasticizer, a stabilizer, an ultraviolet absorber, and the like, so that moldability, thermal stability, weather resistance, and the like are improved.

この基板1の形成過程や厚さについては特に制限はない。即ち、制電性透明樹脂板の基板1として形成されればよく、形成過程は手段も手順も制限がなく、また、厚さについても用途に応じた実用強度が得られる厚さとすればよいが、通常は1〜10mm程度の厚さの基板が使用される。   There is no particular limitation on the formation process and thickness of the substrate 1. That is, it is only necessary to form the substrate 1 of the antistatic transparent resin plate. The forming process is not limited in terms of means or procedure, and the thickness may be set to a thickness that can provide practical strength according to the application. Usually, a substrate having a thickness of about 1 to 10 mm is used.

この基板1の表面に形成される制電層2は、曲がりくねって絡み合う極細の長炭素繊維(不図示)を含んだ熱可塑性樹脂の透明な層であって、長炭素繊維が絡み合いながら互いに接触し、或は、導通可能な微小間隔を保って分散しているため、静電気を逃がして塵埃の付着を防止する働きを有するものである。この制電層2は、図1に示すように基板1の片面に形成してもよいし、両面に形成してもよい。   The antistatic layer 2 formed on the surface of the substrate 1 is a transparent layer of a thermoplastic resin containing ultra-fine long carbon fibers (not shown) that are twisted and entangled. Alternatively, since the particles are dispersed with a minute interval capable of conducting, they have a function of discharging static electricity and preventing adhesion of dust. The antistatic layer 2 may be formed on one side of the substrate 1 as shown in FIG. 1 or may be formed on both sides.

制電層2の熱可塑性樹脂としては、前述した基板1の熱可塑性樹脂と同種の熱可塑性樹脂、又は、相溶性のある異種の熱可塑性樹脂が使用される。制電層2は基板1の表面に形成されるものであるから、特に、耐候性、表面硬度、耐摩耗性などに優れた熱可塑性樹脂を選択使用することが望ましい。   As the thermoplastic resin of the antistatic layer 2, a thermoplastic resin of the same kind as the above-described thermoplastic resin of the substrate 1 or a different kind of compatible thermoplastic resin is used. Since the antistatic layer 2 is formed on the surface of the substrate 1, it is desirable to select and use a thermoplastic resin having excellent weather resistance, surface hardness, abrasion resistance and the like.

この制電層2に含有させる長炭素繊維は、アスペクト比が大きく線径が小さい極細の曲がりくねった長繊維であって、絡み合いながら制電層2中に分散しているものであり、不定形炭素質繊維でもグラファイト質繊維でもよく、また、素繊維に不定形炭素とグラファイトとが共存するような炭素繊維であってもよい。   The long carbon fibers to be contained in the antistatic layer 2 are ultrafine winding long fibers having a large aspect ratio and a small wire diameter, and are dispersed in the antistatic layer 2 while being entangled with each other. The fiber may be either a porous fiber or a graphite fiber, or a carbon fiber in which amorphous carbon and graphite coexist in a raw fiber.

特に好ましい長炭素繊維は、構造上はグラファイト質繊維であって、繊維軸に同軸状にグラファイト層が積層形成された断面円形のグラファイト質の極細の長繊維であり、その線径が3.5〜100nm、アスペクト比が5以上のものである。アスペクト比の上限は特に限定されないが、3000以下のものが好適に使用される。このようなグラファイト質繊維は、特公平3−64606号公報明細書中にその製法が開示されており、芳香族又は非芳香族炭化水素と水素との混合気流中で鉄族金属又はその酸化物の接触反応により繊維軸に同軸状のグラファイト層を析出させて形成した極細の繊維である。この繊維はグラファイトの層状結晶のC軸が繊維軸と直交する構造であり、不定形炭素の析出の少ないものが好ましい。   A particularly preferred long carbon fiber is a graphite fiber in structure, and is a very thin graphite fiber having a circular cross section in which a graphite layer is laminated and formed coaxially with the fiber axis, and has a wire diameter of 3.5. 100 nm and an aspect ratio of 5 or more. The upper limit of the aspect ratio is not particularly limited, but those having 3000 or less are preferably used. The production method of such a graphite fiber is disclosed in Japanese Patent Publication No. 3-64606, and an iron group metal or an oxide thereof in a mixed gas stream of aromatic or non-aromatic hydrocarbon and hydrogen. This is an ultrafine fiber formed by depositing a coaxial graphite layer on the fiber axis by the contact reaction. This fiber has a structure in which the C axis of the graphite layered crystal is orthogonal to the fiber axis, and preferably has a small amount of amorphous carbon.

線径が100nmより太く、アスペクト比(線径に対する長さの比)が5より小さい炭素繊維は、曲がりくねりや絡み合いが不足して繊維相互の接触頻度が低下するため、制電層2の表面抵抗値が増加して制電性の低下を招く恐れがあり、また、制電層2が黒ずんで透明性の低下を招く恐れも生じる。一方、線径が3.5nmより細くなると、長炭素繊維が切断しやすくなるため、やはり制電性の低下を招く恐れが生じる。   Carbon fibers having a wire diameter larger than 100 nm and an aspect ratio (ratio of length to wire diameter) of less than 5 have insufficient winding and entanglement, and the frequency of contact between the fibers is reduced, so that the surface resistance of the antistatic layer 2 is reduced. The value may increase to cause a decrease in the antistatic property, and the antistatic layer 2 may be darkened to cause a decrease in transparency. On the other hand, when the wire diameter is smaller than 3.5 nm, the long carbon fiber is easily cut, and the antistatic property may be reduced.

制電層2中の長炭素繊維の含有量は2〜8重量%とする必要があり、また、制電層2の厚さは0.05〜0.50μmとする必要がある。長炭素繊維の含有量が2重量%より少なく、且つ、制電層の厚さが0.05μmより薄くなると、表面抵抗率が1010Ωを越えて制電性の低下を招くようになり、一方、長炭素繊維の含有量が8重量%より多く、且つ、制電層の厚さが0.50μmより厚くなると、透明性の低下を招く恐れが生じる。長炭素繊維のより好ましい含有量は2〜5重量%の範囲であり、制電層2のより好ましい厚さは0.1〜0.5μmの範囲である。 The content of long carbon fibers in the antistatic layer 2 needs to be 2 to 8% by weight, and the thickness of the antistatic layer 2 needs to be 0.05 to 0.50 μm. When the content of the long carbon fiber is less than 2% by weight and the thickness of the antistatic layer is less than 0.05 μm, the surface resistivity exceeds 10 10 Ω and the antistatic property is reduced, On the other hand, when the content of long carbon fibers is more than 8% by weight and the thickness of the antistatic layer is more than 0.50 μm, there is a possibility that transparency may be reduced. The more preferable content of the long carbon fiber is in the range of 2 to 5% by weight, and the more preferable thickness of the antistatic layer 2 is in the range of 0.1 to 0.5 μm.

制電層2を形成する手段としては、例えば、前記の熱可塑性樹脂を揮発性溶剤に溶解した溶液に上記の長炭素繊維を均一に分散させて塗液を調製し、この塗液を基板1の表面に塗布して硬化させる塗工手段が好ましく採用される。その場合、制電性に優れた制電層2を形成するには長炭素繊維を非常に細かく均一に分散させた塗液を調製する必要があるので、高速インぺラー、サンドミル、アトライター、三本ロールなどの混合装置で充分に混合、分散させることが大切である。   As a means for forming the antistatic layer 2, for example, a coating solution is prepared by uniformly dispersing the long carbon fibers in a solution in which the above-mentioned thermoplastic resin is dissolved in a volatile solvent. Coating means for applying the composition to the surface and curing the composition is preferably employed. In that case, in order to form the antistatic layer 2 having excellent antistatic properties, it is necessary to prepare a coating liquid in which long carbon fibers are dispersed very finely and uniformly, so that a high-speed impeller, sand mill, attritor, It is important to mix and disperse sufficiently with a mixing device such as a three roll.

塗液の基板1表面への塗布は、ナイフエッジコーティング、ロールコーティング、スプレーコーティング等が利用可能であるが、その中でもロールコーティングによるグラビア印刷法は、下記の熱可塑性樹脂フィルムへの塗工手段の場合に好ましく採用される。このようなグラビア印刷法で塗液を塗布すると、塗布厚みを一定に調整しやすいという利点がある。   The coating liquid can be applied to the surface of the substrate 1 by knife edge coating, roll coating, spray coating, etc. Among them, gravure printing by roll coating is one of the following means for coating a thermoplastic resin film. It is preferably adopted in the case. When the coating liquid is applied by such a gravure printing method, there is an advantage that the coating thickness can be easily adjusted to be constant.

また、上記の塗工手段に代えて、基板1と同種の熱可塑性樹脂フィルム又は相溶性のある熱可塑性樹脂フィルムの表面に、前述の長炭素繊維を含む制電層の塗膜を形成した制電性フィルムを作製し、この制電性フィルムを基板1の表面に加熱プレスやロールプレスで熱圧着する方法を採用してもよい。   Further, instead of the above-mentioned coating means, a coating of an antistatic layer containing the long carbon fiber is formed on the surface of a thermoplastic resin film of the same kind as the substrate 1 or a compatible thermoplastic resin film. A method of preparing an electroconductive film and thermocompression-bonding the antistatic film to the surface of the substrate 1 by a hot press or a roll press may be adopted.

なお、上記の制電層2には、長炭素繊維の他に、透明な導電性金属酸化物の粉末を含有させることを除外するものではなく、例えば該粉末を30〜50重量%程度含有させてもよい。このように導電性金属酸化物の粉末を含有させると、制電層2の表面抵抗率が低下して制電性が向上する利点がある。また、界面活性剤やカップリング剤などの分散剤、紫外線吸収剤、表面改質剤、安定剤などの添加剤を上記の制電層2に適宜加えて、長炭素繊維の分散性を高めたり、制電層2の耐候性その他の物性を向上させてもよい。   In addition, it does not exclude that the above-mentioned antistatic layer 2 contains a powder of a transparent conductive metal oxide in addition to the long carbon fiber. For example, the powder contains about 30 to 50% by weight of the powder. You may. When the conductive metal oxide powder is contained as described above, there is an advantage that the surface resistivity of the antistatic layer 2 is reduced and the antistatic property is improved. Further, additives such as a dispersant such as a surfactant and a coupling agent, an ultraviolet absorber, a surface modifier, and a stabilizer are appropriately added to the antistatic layer 2 to enhance the dispersibility of long carbon fibers. Alternatively, the weather resistance and other physical properties of the antistatic layer 2 may be improved.

この制電性透明樹脂板Pは、基板1の表面に制電層2を形成して更にプレスを施したものであり、このプレスによって透明性、透視性、制電性等の更なる向上を図ったものである。即ち、艶板を用いて加熱下にプレスを施すと、表面平滑度が高められて光の散乱が減少するため透明性や透視性が向上し、制電層が0.05〜0.50μmの薄い層であること、及び、極細の長炭素繊維の含有量が2〜8重量%と少ないことと相まって、75%以上の全光線透過率と5%以下のヘーズを有する透明性及び透視性の良好な樹脂板Pを得ることが可能となる。そして制電層2に含まれる極細の長炭素繊維は、プレスにより上下方向(制電層の厚み方向)に繊維間隔が圧縮されて、繊維の接触頻度や導通可能な微小間隔部分が増加するため、長炭素繊維の含有量が2〜8重量%と少なくても、制電層2の表面抵抗率は1010Ω未満と低くなり、充分な制電性能が発揮される。 This antistatic transparent resin plate P is obtained by forming an antistatic layer 2 on the surface of the substrate 1 and further pressing the same. By this press, it is possible to further improve transparency, transparency and antistatic properties. It is intended. That is, when pressed under heating using a glossy plate, the surface smoothness is increased and the scattering of light is reduced, so that the transparency and transparency are improved, and the antistatic layer has a thickness of 0.05 to 0.50 μm. The transparency and transparency having a total light transmittance of 75% or more and a haze of 5% or less combined with being a thin layer and having a content of ultrafine long carbon fibers as small as 2 to 8% by weight. A good resin plate P can be obtained. Since the ultrafine long carbon fibers contained in the antistatic layer 2 are compressed in the vertical direction (the thickness direction of the antistatic layer) by pressing, the contact frequency of the fibers and the minute intervals that can be conducted are increased. Even if the content of long carbon fibers is as small as 2 to 8% by weight, the surface resistivity of the antistatic layer 2 is low at less than 10 10 Ω, and sufficient antistatic performance is exhibited.

このようにプレスを施すと、従来の金属酸化物の粉末を含む制電層を形成した樹脂板では、プレスの際に特に制電層の流動が大きい端部において粉末の粒子間が広がり、互いの粒子間での導通可能な微小間隔を保つ確率が低くなると共に、粉末の含有分散状態が不均一になりやすいので、表面抵抗率が高くなり、しかも制電層の中央部と端部、或は、端部の各部分での表面抵抗率のバラツキが大きくなるが、この制電性透明樹脂板Pのように曲がりくねって絡み合った長炭素繊維を含む制電層2を形成していると、この曲がりくねって絡み合っている長炭素繊維がプレスの際の流動に対して伸張しつつ追従するため、たとえ制電層2の端部の流動性が大きくても、導通可能な長炭素繊維同士の接触もしくは微小間隔が保たれる。従って、この制電性透明樹脂板Pは、プレスにより透明性や透視性を向上させていても、表面抵抗率のバラツキが少なくなり、制電層の中央部と端部は勿論、端部の各部分でも表面抵抗率に大きいバラツキを生じることがなく、しかも、上述の如く制電層2の表面抵抗率が1010Ω未満と低く充分な制電性能が得られる。 When the press is performed in this manner, in the conventional resin plate on which the antistatic layer containing the metal oxide powder is formed, the particles of the powder spread at the ends where the flow of the antistatic layer is particularly large during the pressing, and the particles are mutually separated. And the probability of maintaining a fine gap capable of conducting between the particles becomes low, and the dispersion state of the powder is likely to be non-uniform, so that the surface resistivity is increased, and furthermore, the central part and the end part of the antistatic layer, or Although the variation of the surface resistivity at each end portion is large, if the antistatic layer 2 including the long carbon fibers twisted and entangled like the antistatic transparent resin plate P is formed, Since the long and entangled long carbon fibers follow the flow at the time of pressing while stretching, even if the fluidity at the end of the antistatic layer 2 is large, contact between the conductive long carbon fibers can be achieved. Alternatively, a minute interval is maintained. Therefore, even if the antistatic transparent resin plate P is improved in transparency and transparency by pressing, the variation in the surface resistivity is reduced, so that not only the center and the end of the antistatic layer but also the end of the antistatic layer are provided. There is no large variation in the surface resistivity in each part, and the surface resistivity of the antistatic layer 2 is as low as less than 10 10 Ω as described above, and sufficient antistatic performance can be obtained.

プレスの温度条件や圧力条件は特に制限がなく、制電層の熱可塑性樹脂の軟化温度等を考慮して適宜条件を設定すればよいが、一般的には140〜190℃程度の温度条件と30〜120kg/cm2 程度の圧力条件を採用してプレスすることが好ましい。 The temperature and pressure conditions of the press are not particularly limited and may be appropriately set in consideration of the softening temperature and the like of the thermoplastic resin of the antistatic layer. Generally, the temperature condition and the temperature condition of about 140 to 190 ° C. It is preferable to press under a pressure condition of about 30 to 120 kg / cm 2 .

なお、前述の制電性フィルムを作製して基板1の表面に加熱プレスやロールプレスで熱圧着する方法を採用する場合は、熱圧着の段階で既にプレスされ、透明性、透視性、制電性等が向上しているので、上記のプレスは不要である。また、基板1の表面が加熱状態にある場合は、プレスの際に必ずしも加熱を必要としないこともある。   In the case where the above-described antistatic film is prepared and thermocompression-bonded to the surface of the substrate 1 by a heat press or a roll press, the press is already performed at the thermocompression bonding stage, and the transparency, the transparency, the antistatic The above-mentioned press is unnecessary because the properties and the like are improved. In addition, when the surface of the substrate 1 is in a heated state, heating may not always be required at the time of pressing.

この制電性透明樹脂板Pは、熱可塑性樹脂の透明な基板1の片面に透明な制電層2を設けたものであるが、この基板1の反対面に所望の色に着色したシートもしくは板材を接合すると、制電層2側から上記シートもしくは板材の実際に着色された色と殆ど同じ深みのある色が透視できる積層板を形成することができる。   The antistatic transparent resin plate P has a transparent antistatic layer 2 provided on one surface of a transparent substrate 1 made of a thermoplastic resin, and a sheet colored in a desired color on the opposite surface of the substrate 1 or When the plate members are joined, a laminated plate can be formed from the antistatic layer 2 side so that a color having the same depth as the actually colored color of the sheet or the plate member can be seen through.

次に、本発明の更に具体的な実施例と比較例を説明する。   Next, more specific examples and comparative examples of the present invention will be described.

[実施例1〜6]
溶媒としてのシクロヘキサノンに、熱可塑性樹脂として塩化ビニル樹脂の粉末を添加して溶解し、この溶液中に長炭素繊維としてグラファイト質繊維[ハイピリオンカタリシスインターナショナル社製の品名「グラファイトフィブリルズ」(下記の表1ではGFと記す)、平均線径10nm、平均長さ10μm、アスペクト比1000]を種々濃度を変えて添加し、均一に混合、分散して塗液を形成した。
[Examples 1 to 6]
A powder of a vinyl chloride resin as a thermoplastic resin is added to and dissolved in cyclohexanone as a solvent, and in this solution, graphite fibers [product name “Graphite Fibrils” manufactured by Hypillion Catalysis International Co., Ltd. GF in Table 1), an average wire diameter of 10 nm, an average length of 10 μm, and an aspect ratio of 1000] were added at various concentrations and uniformly mixed and dispersed to form a coating liquid.

基板として、厚さ3mm、全光線透過率86%、ヘーズ1.5%の塩化ビニル樹脂基板を用いて、その表面に上記の塗液を種々異なる膜厚に塗布し、乾燥硬化後、更に温度160℃、圧力30kg/cm2 でプレスすることによって、下記の表1に示す長炭素繊維の含有量と厚さを有する制電層を表面に形成した実施例1〜6の制電性透明塩化ビニル樹脂板を作製した。 As the substrate, a vinyl chloride resin substrate having a thickness of 3 mm, a total light transmittance of 86%, and a haze of 1.5% was used. The antistatic transparent chloride of Examples 1 to 6 in which an antistatic layer having the content and thickness of long carbon fibers shown in Table 1 below was formed on the surface by pressing at 160 ° C. and a pressure of 30 kg / cm 2. A vinyl resin plate was produced.

これら実施例1〜6の制電性透明塩化ビニル樹脂板について、全光線透過率とヘーズと表面抵抗率(樹脂板端部における表面抵抗率)を測定したところ、下記の表1に示す通りの結果が得られた。尚、全光線透過率及びヘーズはASTMD1003に準拠して測定したものであり、また、表面抵抗率はASTM
D257に準拠して測定したものである。
For the antistatic transparent vinyl chloride resin plates of Examples 1 to 6, the total light transmittance, haze, and surface resistivity (surface resistivity at the edge portion of the resin plate) were measured, and the results were as shown in Table 1 below. The result was obtained. The total light transmittance and haze were measured in accordance with ASTM D1003, and the surface resistivity was measured according to ASTM.
It is measured according to D257.

[比較例1〜6]
比較のために、塩化ビニル樹脂に酸化錫(SnO2 )の粉末を表1に示す割合で含む表1に示す厚さの制電層を、厚さ3mm、全光線透過率86%、ヘーズ1.5%の塩化ビニル樹脂基板の表面に形成して更にプレスすることにより、比較例1〜6の制電性透明塩化ビニル樹脂板を作製した。そして、それぞれの全光線透過率、ヘーズ、表面抵抗率(樹脂板端部における表面抵抗率)を測定したところ、下記の表1に示す通りの結果が得られた。
[Comparative Examples 1 to 6]
For comparison, an antistatic layer having a thickness shown in Table 1 containing tin oxide (SnO 2 ) powder in a vinyl chloride resin at a ratio shown in Table 1 was formed to a thickness of 3 mm, a total light transmittance of 86%, and a haze of 1 The antistatic transparent vinyl chloride resin plates of Comparative Examples 1 to 6 were produced by forming on the surface of a 0.5% vinyl chloride resin substrate and further pressing. When the total light transmittance, haze, and surface resistivity (surface resistivity at the end of the resin plate) were measured, the results shown in Table 1 below were obtained.

この表1を見ると、グラファイト質繊維を2.0〜8.0重量%の範囲で含む厚さ0.05〜0.50μmの範囲の制電層を表面に形成した実施例1〜6の制電性透明塩化ビニル樹脂板は、端部における表面抵抗率の平均値がいずれも1×105 〜6×108 Ωの範囲にあり、良好な制電性を有することが判る。これは、制電層内でグラファイト質繊維が曲がりくねって絡み合い、更にプレスにより繊維相互の接触頻度や導通可能な微小間隔部分が増加しているためである。しかも、実施例1〜6の制電性透明塩化ビニル樹脂板は、表面抵抗率のX−3σとX+3σ(Xは表面抵抗率の得られたデータの平均に相当し、σはその標準偏差に相当する)におけるバラツキが最大でも数値的に二桁の違いの範囲内であり、バラツキが少ないことが判る。これは、プレス時の制電層の流動に対して、曲がりくねって絡み合っているグラフファイト質繊維が伸長しつつ追従するため、導電可能なグラファイト質繊維同士間の接触もくしは微小間隔が得られるためであり、また、グラファイト質繊維の分散状態が不均一になりにくいためである。 As shown in Table 1, Examples 1 to 6 in which the antistatic layer having a thickness of 0.05 to 0.50 μm containing graphite fibers in the range of 2.0 to 8.0% by weight was formed on the surface. The antistatic transparent vinyl chloride resin plate has an average value of the surface resistivity at the end portion in the range of 1 × 10 5 to 6 × 10 8 Ω, indicating that the antistatic transparent vinyl chloride resin plate has good antistatic properties. This is because the graphite fibers meander and entangle in the antistatic layer, and furthermore, the frequency of contact between the fibers and the minute space where conduction is possible are increased by pressing. Moreover, the antistatic transparent vinyl chloride resin plates of Examples 1 to 6 have the surface resistivity of X-3σ and X + 3σ (X is equivalent to the average of the obtained data of the surface resistivity, and σ is the standard deviation thereof). It can be seen that the variation in (corresponding to) is within a range of two digits numerically at the maximum, and the variation is small. This is because the graphitic fibers twisted and entangled follow the flow of the antistatic layer at the time of pressing while elongating, so that the contact comb between the conductive graphite fibers can be obtained with a small interval. This is because the dispersion state of the graphite fibers is less likely to be non-uniform.

これに対し、酸化錫の粉末を含む制電層を形成した比較例1〜6の制電性透明塩化ビニル樹脂板は、酸化錫の含有量が40〜70重量%と多く、且つ、制電層が0.4〜2.4μmと厚く形成されているにも拘らず、その樹脂板端部における表面抵抗率の平均値が4×108 〜2×1010Ωと高く、実施例1〜6の制電性透明塩化ビニル樹脂板よりも制電性に劣っていることが判る。これは、導電材が酸化錫の粉末であるため、かなり多量に含有させても導通接触の頻度が少ないからである。しかも、比較例1〜6の制電性透明塩化ビニル樹脂板は、表面抵抗率のX−3σとX+3σにおけるバラツキが最大で数値的に四桁の違いに達し、バラツキが大きいことが判る。これは、プレス時に制電層が流動して酸化錫の粉末の粒子間が広がり、互いの粒子間の導通可能な微小間隔を保つ確率が低くなり、また、酸化錫の分散状態が不均一になりやすいためである。 On the other hand, in the antistatic transparent vinyl chloride resin plates of Comparative Examples 1 to 6 in which the antistatic layer containing the tin oxide powder was formed, the tin oxide content was as large as 40 to 70% by weight, and Although the layer was formed as thick as 0.4 to 2.4 μm, the average value of the surface resistivity at the end of the resin plate was as high as 4 × 10 8 to 2 × 10 10 Ω. It can be seen that the antistatic property is inferior to the antistatic transparent vinyl chloride resin plate of No. 6. This is because, since the conductive material is tin oxide powder, the frequency of conductive contact is low even if the conductive material is contained in a considerably large amount. Moreover, the antistatic transparent vinyl chloride resin plates of Comparative Examples 1 to 6 show that the variation in the surface resistivity between X-3σ and X + 3σ reaches a maximum of four digits numerically, and the variation is large. This is because the antistatic layer flows at the time of pressing, the particles of the tin oxide powder spread, and the probability of maintaining a small interval that allows conduction between the particles becomes low, and the dispersion state of the tin oxide becomes uneven. Because it is easy to become.

また、プレスされた実施例1〜6の制電性透明塩化ビニル樹脂板は、プレスされた比較例1〜6の制電性透明塩化ビニル樹脂板に比し、全光線透過率においてはやや低めのものもあるが、透明性、透視性において重要視されるヘーズにおいてはいずれも比較例1〜6のものより優れた値を示している。また、良好な透明性、透視性とみなせる全光線透過率75%以上、ヘーズが5%以下という数値をいずれも満足しており、従って、総合的な透明性及び透視性において比較例1〜6に優るとも劣らない優れたものであることが判る。   The pressed antistatic transparent polyvinyl chloride resin plates of Examples 1 to 6 were slightly lower in total light transmittance than the pressed antistatic transparent polyvinyl chloride resin plates of Comparative Examples 1 to 6. However, haze, which is considered to be important in transparency and transparency, shows values superior to those of Comparative Examples 1 to 6. In addition, all of the numerical values of 75% or more of total light transmittance and 5% or less of haze, which can be regarded as good transparency and transparency, are satisfied. Therefore, Comparative Examples 1 to 6 show overall transparency and transparency. It can be seen that this is an excellent product not inferior to.

本発明の一実施形態に係る制電性透明樹脂板の断面図である。It is a sectional view of an antistatic transparent resin board concerning one embodiment of the present invention.

符号の説明Explanation of reference numerals

1 基板
2 制電層
P 制電性透明樹脂板
DESCRIPTION OF SYMBOLS 1 Substrate 2 Antistatic layer P Antistatic transparent resin plate

Claims (2)

熱可塑性樹脂の透明な基板の表面に、曲がりくねって絡み合う極細の長炭素繊維を2〜8重量%含んだ厚さ0.05〜0.50μmの熱可塑性樹脂の透明な制電層を有する、プレスされた制電性透明樹脂板であって、その全光線透過率が75%以上、ヘーズが5%以下、表面抵抗率が1010Ω未満、表面抵抗率の平均値Xと標準偏差σとのX−3σ、X+3σにおけるバラツキが最大二桁であることを特徴とする制電性透明樹脂板。 A press having a thermoplastic resin transparent antistatic layer having a thickness of 0.05 to 0.50 μm containing 2 to 8% by weight of ultrafine long carbon fibers winding and entangled on the surface of a transparent substrate of a thermoplastic resin; A transparent resin plate having a total light transmittance of 75% or more, a haze of 5% or less, a surface resistivity of less than 10 10 Ω, and an average value X of the surface resistivity and a standard deviation σ. An antistatic transparent resin plate wherein the variation in X-3σ and X + 3σ is up to two digits. 長炭素繊維が、3.5〜100nmの線径と5以下のアスペクト比を有する曲がりくねった繊維であり、絡み合って制電層中に分散していることを特徴とする請求項1に記載の制電性透明樹脂板。   2. The fiber according to claim 1, wherein the long carbon fibers are winding fibers having a wire diameter of 3.5 to 100 nm and an aspect ratio of 5 or less, and are entangled and dispersed in the antistatic layer. Conductive transparent resin plate.
JP2004097494A 2004-03-30 2004-03-30 Antistatic transparent resin plate Expired - Fee Related JP4191078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097494A JP4191078B2 (en) 2004-03-30 2004-03-30 Antistatic transparent resin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097494A JP4191078B2 (en) 2004-03-30 2004-03-30 Antistatic transparent resin plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24595599A Division JP2001062952A (en) 1999-08-31 1999-08-31 Electric control transparent resin plate

Publications (2)

Publication Number Publication Date
JP2004195993A true JP2004195993A (en) 2004-07-15
JP4191078B2 JP4191078B2 (en) 2008-12-03

Family

ID=32768360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097494A Expired - Fee Related JP4191078B2 (en) 2004-03-30 2004-03-30 Antistatic transparent resin plate

Country Status (1)

Country Link
JP (1) JP4191078B2 (en)

Also Published As

Publication number Publication date
JP4191078B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP2004230690A (en) Antistatic transparent resin sheet
KR100832259B1 (en) Touch panel-use transparent conductive molded product and touch panel
JP4471346B2 (en) Electromagnetic shield
US7781055B2 (en) Transparent heat shielding multilayer structure
CN105323949B (en) graphene printed circuit structure
JP2006335995A (en) Electrically-conductive ink for inkjet, electrically-conductive pattern, and electrically-conductive material
CN108084627B (en) HIPS (high impact polystyrene) based conductive master batch based on carbon nano tube and graphene compound system and preparation method thereof
JP2006049843A (en) Antistatic molding for image display apparatus
JP3398587B2 (en) Moldable antistatic resin molded product
JP2001062952A (en) Electric control transparent resin plate
KR101431705B1 (en) Nanowire-carbon nano tube hybrid film and method for manufacturing the same
JP2004195993A (en) Antistatic transparent resin plate
JP4087508B2 (en) Antistatic resin molded product and its secondary molded product
JP2016139600A (en) Transparent conductive film
JP4488826B2 (en) Antistatic resin molding
KR101627799B1 (en) Transparent electrode based on mesh structure and method for fabricating the transparent electrode using imprinting process
KR101859777B1 (en) Optical film with improved visibility of Ag nanowire
US6214451B1 (en) Formable antistatic resin molded article
JP2001332322A (en) Low-resistance connector
JP2008103354A (en) Antistatic resin molding, and secondary molding thereof
KR102561949B1 (en) The polymer dispersed liquid crystal display device
JPH0250214A (en) Touch panel
JPS6242813A (en) Electroconductive casting film
US20180067602A1 (en) Transparent pressure sensing film composition
JP2009104927A (en) Composite film or composite sheet transparent and with conductivity, and resistance film type touch panel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees