JP2004195329A - Electrolytic product and its manufacturing method - Google Patents

Electrolytic product and its manufacturing method Download PDF

Info

Publication number
JP2004195329A
JP2004195329A JP2002365395A JP2002365395A JP2004195329A JP 2004195329 A JP2004195329 A JP 2004195329A JP 2002365395 A JP2002365395 A JP 2002365395A JP 2002365395 A JP2002365395 A JP 2002365395A JP 2004195329 A JP2004195329 A JP 2004195329A
Authority
JP
Japan
Prior art keywords
electrolytic
product
water
electrolyte
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365395A
Other languages
Japanese (ja)
Inventor
Masami Yada
正美 矢田
Hidekazu Katsube
英一 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP2002365395A priority Critical patent/JP2004195329A/en
Publication of JP2004195329A publication Critical patent/JP2004195329A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic product having viscosity or a gel-like electrolytic product obtained by electrolysis, and a method for manufacturing those electrolytic products. <P>SOLUTION: The electrolytic product having viscosity or the gel-like electrolytic product is obtained by electrolyzing an electrolytic base material prepared by mixing water, an electrolyte and a material for lowering the flowability of water. The electrolytic product having viscosity is manufactured by electrolyzing a electrolytic base material having a viscosity of 50 mPas or more or showing a gel-like state obtained by mixing water, the electrolyte and the material for lowering the flowability of water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気分解によって得られる粘性を呈する電解生成物又はゲル状の電解生成物、及びそれらの電解生成物の製造方法に関する。
【0002】
【従来の技術】
従来から、陽極と陰極からなる一対の電極を用い、電解質の含まれる水を電気分解することによって電解水を製造する技術が知られている。この電解水の製造技術を大別すると、陽極側と陰極側をイオン交換膜等によって隔てない無隔膜電解法と陽極側と陰極側を隔膜で隔てる有隔膜電解法がある。無隔膜電解法では、両電極で生成するイオンが混和し、pH8〜pH9の弱アルカリ性の電解水が得られる。一方、有隔膜電解法では、陽極で生成するイオンと陰極で生成するイオンが混和しないために陽極側ではpH2〜pH3の強酸性電解水及び陰極側ではpH10〜pH12の強アルカリ性電解水が得られる。これら技術によって製造された電解水は、殺菌、漂白、消臭、防錆、洗浄又は生鮮物の鮮度保持等の用途、飲料又は食品等の用途及び皮膚用外用剤等の用途に有用であることが知られ、数多くの製造方法及び製造装置が提案されている。ところで、従来の技術では電解水は常温下の「水」の状態、つまり粘性が極めて低い状態で利用することが一般化しており、提案されている製造方法及び製造装置についても常温下の「水」を使用した製造が前提となっていた。しかしながら、殺菌又は洗浄等に使用する場合には、電解水の粘性が極めて低い状態であるために対象物の施用面から流れ落ち、あるいは蒸散し易い等、電解水の残存性が悪く、十分な効果が得られないという性状に起因する問題があった。前記問題を解決する手段としては、製造した強酸性電解水又は強アルカリ性電解水に対して結合剤を添加して粘度を高くする手段が提案され(特許文献1参照)、また、前記強酸性電解水又は強アルカリ性電解水の利用形態として増粘剤、界面活性剤又は保湿剤等を配合したクリーム状の外用剤が提案されている(特許文献2、特許文献3参照)。
【0003】
【特許文献1】
特開平7−277994号公報
【特許文献2】
特開平11−60481号公報
【特許文献3】
特開2002−145787号公報
【0004】
【発明が解決しようとする課題】
前記従来の方法は、強酸性電解水又は強アルカリ性電解水を製造した後に増粘剤(結合剤)等を配合しようとするものであるが、一般に電解水は保存性が悪く、特に塩化ナトリウム等を電解質に用いて生成させる強酸性電解水では、有効成分の一つである次亜塩素酸の安定性が乏しいため、増粘剤を添加混合する作業工程中に消失する可能性がある。また、「電解水ガイド2001,p.37」(財団法人機能水研究振興財団 発行)にも記載のように電解水は極力新鮮な内に使用することが好ましいが、前記公報に開示される方法によると、電解水を新鮮な内に使用するには使用場面毎に都度電解水を製造し、かかる後に増粘剤等を添加混合する作業が必要になることが予想され、電解水を直ちに利用したい場合等には必ずしも合理的な方法ではない。更に、強酸性電解水及び強アルカリ性電解水の両方が必要な場合、有隔膜電解槽で電気分解処理した後、強酸性電解水及び強アルカリ性電解水を別々に採取し、各々について増粘剤を添加混合する作業が必用になる等、添加混合する作業が負担になり簡便な方法とは言えない。
本発明は、電気分解の度に増粘剤等を添加混合することなく粘性の高い生成物を得、また、その製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本出願人は、電解質の他に、増粘剤、乳化剤、ゲル化剤又はスラリー形成剤等を混合して、溶媒である水の流動性を低下させたもの(電解基材)を電気分解して得られる粘性又はゲル状又はスラリー状を呈する電解生成物を用いることで前記課題が解決されることを見出し、本発明を完成するに至った。即ち、本発明は以下の構成により達成される。
【0006】
(1)請求項1は、水と電解質と水の流動性を低下させる材料とを混合した電解基材を電気分解することによって得られる粘性を呈する電解生成物。
(2)請求項2は、前記電解基材が、粘度50mPa・s以上になされている電解生成物
(3)請求項3は、前記生成物が、強酸性生成物である電解生成物。
(4)請求項4は、前記生成物が、強アルカリ性生成物である電解生成物。
(5)請求項5は、前記生成物が、強酸性生成物と、強アルカリ性生成物との混合物で構成されている電解生成物。
(6)請求項6は、水と電解質と水の流動性を低下させる材料とを混合した電解基材を電気分解することによって得られるゲル状を呈する電解生成物。
(7)請求項7は、前記請求項6の電解生成物が、強酸性生成物である電解生成物。
(8)請求項8は、前記請求項6の生成物が、強アルカリ性生成物である電解生成物。
(9)請求項9は、前記請求項6の生成物が、強酸性生成物と、強アルカリ性生成物との混合物で構成されていることを特徴とする請求項6記載の電解生成物。
(10)請求項10は、水と電解質と水の流動性を低下させる材料とを混合し、粘度の50mPa・s以上の電解基材を得、該電解基材の電気分解によって粘性を呈する電解生成物の製造方法。
(11)請求項11は、前記請求項10の電解基材が、水の流動性を低下させる材料として不溶性の材料を含みスラリー状になされている電解生成物の製造方法。
(12)請求項12は、水と電解質と水の流動性を低下させる材料とを混合し、ゲル状の電解基材を得、該電解基材の電気分解によってゲル状を呈する電解生成物の製造方法。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。本発明は、水と、電解質と、水の流動性を低下させる材料(以下、流動性低化剤という)を加えた電解基材を電気分解することによって粘性又はスラリー状又はゲル状を呈する電解生成物を得ようとするものである。
【0008】
本発明で使用する電解質は無機質系でも有機質系でもよく、例えば、無機質系としては、塩化物、硫化物、炭酸化物、リン酸化物、硝酸化物等のアルカリ金属又はアルカリ土類金属との金属塩、及びアンモニアとのアンモニウム塩等が挙げられる。また、有機質系としては、酢酸、乳酸、酪酸、シュウ酸、クエン酸、フマル酸、コハク酸、グルコン酸、リンゴ酸、イタコン酸、アスコルビン酸、ピルビン酸、グルタミン酸、アスパラギン酸、アルギン酸等のカルボン酸類とアルカリ金属又はアルカリ土類金属との塩、及びアンモニアとのアンモニウム塩等が挙げられる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
【0009】
本発明では電解質の他に、溶媒である水の流動性を低下させるために、増粘剤、乳化剤、スラリー形成剤又はゲル化剤等の流動性低下剤を使用する。
例えば、増粘剤としては、デンプン、デキストラン、プルラン、レバン、イヌリン、カラギナン、ローストビーンガム、キサンタンガム、グアーガム、アラビアガム、サイリウム、メチルセルロース、カルボキシメチルセルロースナトリウム、アルギン酸、アルギン酸ナトリウム、アルギン酸プロピレングリコールデンプン、デンプングリコール酸ナトリウム、コンドロイチン硫酸、グリセリン、ポリビニルアルコール、キトサン酢酸塩、キトサン乳酸塩、キトサン塩酸塩、ヒアルロン酸等が挙げられる。
【0010】
乳化剤としては、脂肪酸モノグリセリド、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、サポニン(エンジュサポニン、キラヤ抽出物、ダイズサポニン等)、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ステアロイル乳酸カルシウム、レシチン(植物レシチン、卵黄レシチン、酵素分解レシチン、酵素転移レシチン等)、オクテニルコハク酸デンプン、グルテン部分分解物、グリアジン、カゼイン、カゼインナトリウム等が挙げられる。
【0011】
スラリー形成剤としては、酸化チタン、タルク、カオリン、マイカ、ベントナイト、ゼオライト、シリカ、シリカゲル、炭酸カルシウム、リン酸カルシウム等の無機物パウダー及びセルロース、デンプン粒、穀物等の有機物パウダーが挙げられる。これらスラリー形成剤は、不溶性の微粒子であるが、溶媒である水の中に多量に存在させることで、前記増粘剤及び乳化剤と同様に水の流動性を低下させる作用があるため、本発明において利用が可能である。
【0012】
ゲル化剤としては、寒天、カードラン、ジェランガム、ペクチン、ゼラチン、グルコマンナン、ポリアクリルアミド等が挙げられる。これらゲル化剤を混合することで、電解質を含んだ水の流動性はなくなるが、電解質の電気的な特性は維持されているため、本発明に適している。
【0013】
前記流動性低化剤は、単独で用いてもよく、2種以上を同時に使用してもよい。また、それらの添加量については、溶媒である水が粘度50mPa・s以上の粘性又は流動性のないゲル状を示す程度に添加する。また、これらの流動性低化剤は、通常、別途添加する電解質と併用するが、アルギン酸ナトリウム又はキトサン塩酸塩等のように流動性低化剤自体が電解質として機能する場合には、電解質と併用せず単独で用いることもできる。
【0014】
本発明では、前記電解質と、前記増粘剤、乳化剤、スラリー形成剤又はゲル化剤等の流動性低化剤とを混合して得られる粘度50mPa・s以上又はスラリー状又はゲル状の電解基材を電気分解するが、この時、強酸性の電解生成物が陽極の電極表面付近、また強アルカリ性の電解生成物が陰極の電極表面付近の粘性又はスラリー状又はゲル状の電解基材内に生成して来るため、他方側の電極に生成する電解生成物との混和が抑制され、結果としてイオン交換膜等の隔膜の有無に係わらず、強酸性及び強アルカリ性を示す電解生成物が得られる。一方、電解基材が、粘度50mPa・s以下の場合等は、両電極の表面付近に生成する電解生成物が拡散してしまい、強酸性及び強アルカリ性を示す電解生成物を得ることが困難になる。
【0015】
本発明に係る強酸性の電解生成物及び強アルカリ性の電解生成物は、通常それぞれ別々に使用するが、両電解生成物を混合し使用することもできる。例えば、両電解生成物の混合割合を変化させることで水素イオン濃度がpH3〜pH12の範囲で調整された電解生成物を得ることができる。また、両電解生成物を均一になるまで混合せずに、強酸性の電解生成物で構成される部分と強アルカリ性の電解生成物で構成される部分が混在するように混ぜることで、両電解生成物の機能を併せ持った電解生成物を得ることもできる。
【0016】
本発明で得られる電解生成物は、殺菌、漂白、消臭、防錆、洗浄又は生鮮物の鮮度保持等の用途、飲料又は食品等の用途、及び皮膚用外用剤等の用途に利用される。また、前記用途に応じて、電気分解前の電解基材に、他の機能性の成分を適宜添加することで、電解生成物の効果を高めたり、別の機能を付加することも可能である。
【0017】
機能性の成分としては、抗酸化作用を付加する場合、β−カロチン、ビタミンE、アスタキサンチン、ポリフェノール、アスコルビン酸、アスコルビン酸二カリウム2−サルフェート、アスコルビル2−サルフェート、アスコルビル2−モノホスフェート、アスコルビル2−ポリホスフェート、アスコルビルパルミテート、アスコルビルアセテート、アスコルビン酸2−グルコシド等を例示することができる。
【0018】
また、メラニン生成の抑制作用を付加する場合、カテキン、アスコルビン酸、アルブチン、エラグ酸、カテコール、グルタチオン、コウジ酸、システイン、パンテテイン−S−スルホン酸、ハイドロキノン、レゾルシン、レチノイン酸、乳酸、過酸化水素、臭素酸、塩素酸、プラセンタエキスおよびそれらの誘導体を例示することができる。
【0019】
また、保湿性を付加する場合、ヒアルロン酸、セラミド化合物、コラーゲン、トレハロース、ソルビトール、マルトース、マルチトール等の糖またはその還元体等を例示できる。
また、抗菌性を付加する場合、プロポリス、ヒノキチオール、ワサビ抽出オイル、バクテリオシン、キノロン系抗菌剤及び銀系無機質抗菌剤等を例示できる。
また、飲料又は食品における成分補給を目的とした場合、グルコース、異性化糖、アスパルテーム、キシリトール、エリスリトール、ステビオサイド、レバウディオサイド及びサッカリン等の甘味料、アスパラギン酸、アラニン及びγ−アミノ酪酸等のアミノ酸、ルチン及びナイアシン等のビタミン、ドコサヘキサエン酸及びエイコサペンタエン酸等の脂肪酸、食物繊維、着色料、香料等を例示できる。
尚、前記機能性の成分は、溶液、粉末又はエマルジョンなどの形態で添加できる。
【0020】
本発明に係る電解生成物は、例えば次の用途に利用される。電解質に塩化ナトリウムを用いた場合に陽極側に生成する強酸性の粘性又はゲル状又はスラリー状を呈する電解生成物は、次亜塩素酸を含んでおり、殺菌、漂白、消臭又は生鮮物の鮮度保持に対して効果があり、電解質に乳酸カルシウム等を用いた場合に陽極側に生成する強酸性の粘性又はゲル状又はスラリー状を呈する電解生成物は、アストリンゼント作用があり、皮膚用外用剤として用いることもできる。
電解質に塩化ナトリウムを用いた場合に陰極側に生成する強アルカリ性の粘性又はゲル状又はスラリー状を呈する電解生成物は、ケン化作用を持つため、タンパク質や油脂の洗浄に用いることができる。特に、シリカ粉末等の研磨作用のある流動性低下剤を用いて得られた電解生成物は、ケン化作用と研磨作用の相乗効果により高い洗浄効果が得られ、また、ポリグリセリン脂肪酸エステル等の界面活性作用のある流動性低下剤を用いて得られた電解生成物は、ケン化作用と界面活性作用の相乗効果により高い洗浄効果が得られる。また、陰極側の電解生成物は酸化還元電位が卑の方向にあるため、金属等の防錆作用を持つ。更に、慢性下痢、胃酸過多、消化不良、胃腸内異発酵等に効果があるといわれるアルカリ性の電解水を含むため、飲料又は食品の新規な素材として有効である。
本発明に係る電解生成物は、前記用途に対し、単独で用いてもよく、あるいは他の素材又は製品に配合して用いることもできる。
【0021】
【実施例】
以下、試験例に基づき本発明をより具体的に説明する。
(試験例1) 蒸留水に電解質として塩化ナトリウム、また増粘剤としてグアーガムを溶解し、電解質濃度が0.1%、粘度が10、25、50、100、200、及び500mPa・sに成された6種類の電解基材を作成した。このとき、粘度の測定は、(株)東京計器製のB型粘度計を使用し、そのローターはNo.1であり、測定時の電解基材の温度は20℃で行った。各電解基材150mlに、後述のpH万能指示薬700μlを添加したものについて、電極間に15Vの電圧を印加して、1分間電気分解を行った。
【0022】
図1に使用した電気分解装置の模式図を示す。電解槽1は、幅40mm、奥行き50mm、高さ100mmの容器に蓋3が設けられ、容器の内壁に電源2に接続する厚さ1mmのPtコーティングされた電極4・4’の2枚が、奥行き50mm、高さ100mmになされ対向するように配置されている。
電気分解後、1分間静置した後、陽極の電極表面付近に生じたpH3以下に対応する橙紅色の帯び及び陰極の電極表面付近に生じたpH10以上に対応する青色の帯びの状態を評価した。同様に増粘剤としてメチルセルロースを用いた場合についても1分間静置後の帯びの状態を評価した。
評価は、電気分解後1分間静置した段階で、橙紅色の帯び及び青色の帯びが両電極の面に対し平行な状態で明確に残っている場合を(○)、一方の色の帯びだけが電極の面に対し平行な状態で明確に残っている場合を(△)、二つの色の帯とも消失したり、乱れている場合を(×)とした際の結果を表1に示す。
【0023】
【表1】

Figure 2004195329
【0024】
試験結果から、電解基材の粘度が10mPa・s、25mPa・sの時は、pHに対応する色の帯びが電極近傍で発生する水素・酸素の上昇に伴う対流によって乱されることから、電極表面で生成した強酸性の電解生成物及び強アルカリ性の電解生成物が拡散によって消失してしまうことが分かった。一方、粘度が50mPa・s以上では、生成する電解生成物の拡散が抑制され、電極表面付近のpHに対応する色の帯び、即ち、強酸性又は強アルカリ性の電解生成物ができていることが分かった。
【0025】
図2は、電解基材の粘度が500mPa・sの時の結果を示した模式図であり、図中の電極4の表面付近にpH3以下に対応する橙紅色の帯び(強酸性電解生成物)6、電極4’の表面付近にpH10以上に対応する青色の帯び(強アルカリ性電解生成物)7の生成状況を表している。
尚、比較例として前記の電気分解装置で、本発明に係る電解基材の替わりに0.1%塩化ナトリウム溶液を用いて、同様に試験した結果、pHに対応する色の帯びが乱れ、電極間の溶液全体が青緑色になった。また、両電極付近の溶液について実際にガラス電極式のpH計で測定した結果、陽極側pH8.8及び陰極側pH9.0であり、pH3以下、及びpH10以上の値は測定できなかった。
【0026】
今回使用した「pH万能指示薬」は、フェノールフタレイン0.1g、メチルレッド0.2g、ジメチルアミノアゾベンゼン0・3g、ブロムチモールブルウ0.4g、及びチモールブルウ0・5gをメスフラスコに1リットルとり、エタノールに溶かして全量を500mlとし、0.1N水酸化ナトリウム溶液を滴下して黄色を呈するまで中和して調整したものである。表2に、pHに対する万能指示薬の呈色を示す。
【0027】
【表2】
Figure 2004195329
【0028】
(試験例2) 増粘剤にキトサン塩酸塩、カルボキシメチルセルロースNa(CMC)又はアルギン酸Naを用いた他は、実施例1と同様に操作した結果を表3に示す。
【0029】
【表3】
Figure 2004195329
【0030】
試験結果から粘度が50mPa・s以上の場合、電極表面付近に強酸性の電解生成物又は強アルカリ性の電解生成物ができていることが分かった。尚、CMCを用いた場合についても、粘度50mPa・s以上で陰極側の青色の帯が確認できたが、陽極側では、電解基材中のCMCが生成した強酸性の電解生成物を中和していると思われ、pH3以下に対応する橙紅色の帯びが確認できなかった。このことは、アルカリのみ必要な場合には、流動性低下剤としてCMCを使用すればよいことが解る。
【0031】
(試験例3) 蒸留水に電解質として乳酸カルシウム、また乳化剤としてショ糖脂肪酸エステル又はポリグリセリン脂肪酸エステルをホモジナイザーで混練し、電解質濃度が0.1%、粘度が10、25、50、及び100mPa・sの電解基材を作成した。この電解基材について試験例1に示した装置を用い、同様に試験した結果を表4に示す。
【0032】
【表4】
Figure 2004195329
【0033】
試験結果からショ糖脂肪酸エステルの場合、粘度が50mPa・s以上で、ポリグリセリン脂肪酸エステルの場合も、粘度が50mPa・s以上で、電極表面付近に強酸性及び強アルカリ性の電解生成物ができていることが分かった。
【0034】
(試験例4) 電解質としてアスコルビン酸ナトリウム、またゲル化剤として寒天、ゼラチンを加熱溶解した後、pH万能指示薬を添加し固化させ、電解質濃度が0.1%の寒天(濃度3%)及びゼラチン(濃度5%)のゲルを作成した。作成した各々のゲルを幅38mm×奥行き50mm×高さ80mmのブロックに切り出し、試験例1に示す装置に充填した後に、15Vの電圧を印加して、1分間電気分解を行った。電気分解後、1分間静置した後、陽極電極表面付近に生じたpH3以下に対応する橙紅色の帯び及び陰極電極表面付近に生じたpH10以上に対応する青色の帯びの状態を評価した。その結果を表5に示す。
【0035】
【表5】
Figure 2004195329
【0036】
試験結果から、寒天及びゼラチンの何れの場合も電極表面付近に強酸性及び強アルカリ性の電解生成物ができていることが分かった。
【0037】
(試験例5)蒸留水に電解質として塩化ナトリウム、またスラリー形成剤としてシリカ粉末(塩化ナトリウム水溶液150mlに100g添加)又はオカラ乾燥微粉末(塩化ナトリウム水溶液150mlに30g添加)を混練し、電解質濃度が0.1%のスラリー状の電解基材を作成した。作成した各々の電解基材を試験例1に示す装置に充填した後に、15Vの電圧を印加して、1分間電気分解を行った。電気分解後、1分間静置した後、陽極電極表面付近に生じたpH3以下に対応する橙紅色の帯び及び陰極電極表面付近に生じたpH10以上に対応する青色の帯びの状態を評価した。その結果を表6に示す。
【0038】
【表6】
Figure 2004195329
【0039】
試験結果から、シリカ粉末及びオカラ乾燥微粉末、何れの電解基材の場合も電極表面付近に強酸性及び強アルカリ性の電解生成物ができていることが分かった。
【0040】
(試験例6) 使用場面において対象物の施用面に対する電解生成物の残存性を評価するために、一定面積のゴム板への電解生成物の付着量を確認した。
蒸留水に電解質として塩化ナトリウム、また増粘剤としてグアーガムを溶解し、電解質濃度が0.1%、粘度が10、25、50、100、200、及び500mPa・sの6種類の電解基材を作成した。これらの電解基材について、試験例1に示した装置を用い、15Vの電圧を印加して、1分間電気分解を行った。得られた酸性電解水で構成された電解生成物に、ゴム板(50mm×50mm×2mm)を浸漬した後、ピンセットで引き上げた際のゴム板への付着量を測定した。その結果を表7に示す。結果に示されるように、電解生成物の粘度が高い程、対象物であるゴム板への付着量が多い、即ち、施用面に対して電解生成物の残存性が高いことが分かった。したがって、試験例1で示すようにグアーガムを使用した場合には強酸性及び強アルカリ性の電解生成物の生成が粘度50mPa・sより高いときに可能なことから、粘度50mPa・s以上で有効に使用できることが解る。
【0041】
【表7】
Figure 2004195329
【0042】
(試験例7) 蒸留水に電解質として塩化ナトリウム、また増粘剤としてグアーガムを溶解し、電解質濃度が0.1%、粘度が500mPa・sの電解基材を作成した。この電解基材について、試験例1に示した装置を用い、15Vの電圧を印加して、1分間電気分解を行った後、陽極の電極表面から2mm付近の電解生成物中の次亜塩素酸の濃度を水質検査用試験紙(日産アクアチェックFW;日産化学工業製)にて測定した結果、30ppmであった。
比較例として、0.1%塩化ナトリウム溶液を用いた有隔膜電解法を行い、次亜塩素酸濃度50ppmの強酸性の電解水を得、得られた強酸性電解水99mlにグアーガム1gを添加し、ホモジナイザーにて混合撹拌した後に、強酸性電解水中の次亜塩素酸の濃度を測定したところ、10ppm以下に減少していた。結果に示されるように、強酸性電解水を製造した後に増粘剤であるグアーガムを添加した場合、混合撹拌等の影響によって電気分解で生成した次亜塩素酸が減少する傾向にあり、本試験例に比べ非効率であった。
【0043】
(試験例8) 蒸留水に電解質として塩化ナトリウム、また増粘剤としてグリセリンを溶解し、電解質濃度が0.1%、粘度が90mPa・sの電解基材を作成した。この電解基材について、試験例1に示した装置を用い、15Vの電圧を印加し、1分間電気分解して得られた本発明の強酸性電解水で構成された電解生成物(pH2.9、次亜塩素酸濃度50ppm)と増粘剤を添加していない比較例の強酸性電解水(pH2.8、次亜塩素酸濃度50ppm)について、滅菌試験管に各々2ml宛て入れ、これに希釈した供試菌(Escherichia coli及び Bacillus subtilis)培養液(菌数約1×108/ml)を50μl添加混合した。10分後、それぞれの試験管に滅菌水8mlを加え希釈したものについて、希釈平板法(PD寒天培地、30℃、72時間培養)によってコロニー数(生菌数)を測定した結果を表8に示す。結果に示されるように、本発明に係る強酸性電解水で構成された電解生成物は、比較例の強酸性電解水と同じように高い殺菌効果を持っていた。
【0044】
【表8】
Figure 2004195329
【0045】
【効果】
請求項1及び請求項2記載の発明によれば、得られた電解生成物が粘性を呈し、対象物の施用面上での残存性が高いため、電気分解によって生じた作用因子の効果を十分に発揮させることができる。
請求項3記載の発明によれば、殺菌、漂白、消臭、アストリンゼント作用等の効果を持つ強酸性電解生成物が粘性を呈し、対象物の施用面上での残存性が高いため、強酸性電解生成物が持つ作用因子の効果を十分に発揮させることができる。
請求項4記載の発明によれば、脱脂、洗浄、防錆、消化不良の改善等の効果を持つ強アルカリ性電解生成物が粘性を呈し、対象物の施用面上での残存性が高いため、強アルカリ性電解生成物が持つ作用因子の効果を十分に発揮させることができる。
請求項5記載の発明に係る電解生成物は、従来の電解水では完全に混じり合うために製造することが出来なかった強酸性を示す部分と強アルカリ性を示す部分を混在させた電解生成物を得ることが可能で、このような電解生成物は、両電解生成物の効果を併せ持つため、例えば、殺菌と洗浄等の複合的な作用が期待できる。
【0046】
請求項6記載の発明に係る電解生成物は、流動性のないゲル状であるため、必要な大きさに切り出し、固体として扱うことができる。
請求項7記載の発明によれば、殺菌、漂白、消臭、アストリンゼント作用等の効果を持つ強酸性電解生成物が、流動性のないゲル状であるため、必要な大きさに切り出し、固体として扱うことができる。
請求項8記載の発明によれば、脱脂、洗浄、防錆、消化不良の改善等の効果を持つ強アルカリ性電解生成物が流動性のないゲル状であるため、必要な大きさに切り出し、固体として扱うことができる。
請求項9記載の発明によれば、強酸性電解生成物と強アルカリ性電解生成物の効果を併せ持った電解生成物が、流動性のないゲル状であるため、必要な大きさに切り出し、固体として扱うことができる。
【0047】
請求項10記載の発明によれば、陽極側と陰極側を分けるイオン交換膜等の隔膜がなくても強酸性電解生成物と強アルカリ性電解生成物が製造でき、また、これら電解生成物が、電気分解の終了した段階で直ちに得られるため、電気分解によって生じた作用因子を新鮮な内に利用することができる。
請求項11記載の発明によれば、水の流動性を低下させる材料が、不溶性の有機物及び無機物のパウダーであるため、水との混合作業が容易で、更に、使用後の電解生成物から水洗して回収することで繰り返し使用できる。
請求項12記載の発明によれば、本発明に係る電解基材が流動性のないゲル状であるため、電解基材の自由な動きがなく安定した電極間の通電を保つことが可能で、しかも、電解基材の漏れが発生せず、電気分解を容易に実施することができる。
【図面の簡単な説明】
【図1】試験に使用する電気分解装置の模式図。
【図2】電解基材の粘度が500mPa・sの時の電解生成物の発生を示す模式図。
【符号の説明】
1 電解槽
2 電源
3 蓋
4、4’電極
5 電解基材
6 強酸性電解生成物
7 強アルカリ性電解生成物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a viscous electrolytic product or a gel-like electrolytic product obtained by electrolysis, and a method for producing such an electrolytic product.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a technique of producing electrolyzed water by using a pair of electrodes including an anode and a cathode and electrolyzing water containing an electrolyte. The technology for producing electrolyzed water can be roughly classified into a non-diaphragm electrolysis method in which the anode side and the cathode side are not separated by an ion-exchange membrane or the like, and a diaphragm electrolysis method in which the anode side and the cathode side are separated by a diaphragm. In the diaphragmless electrolysis method, ions generated at both electrodes are mixed, and weakly alkaline electrolyzed water having a pH of 8 to 9 is obtained. On the other hand, in the diaphragm electrolysis method, since the ions generated at the anode and the ions generated at the cathode are not mixed, strongly acidic electrolyzed water of pH 2 to pH 3 on the anode side and strongly alkaline electrolyzed water of pH 10 to pH 12 on the cathode side are obtained. . Electrolyzed water produced by these techniques is useful for applications such as sterilization, bleaching, deodorization, rust prevention, washing or maintaining freshness of fresh products, beverages and foods, and external preparations for skin. And a number of manufacturing methods and manufacturing apparatuses have been proposed. By the way, in the prior art, it has been generalized to use the electrolyzed water in a state of “water” at room temperature, that is, in a state of extremely low viscosity, and the proposed manufacturing method and manufacturing apparatus also use “water” at room temperature. ) Was premised on the production. However, when used for sterilization or washing, etc., the electrolyzed water has a very low viscosity, so that the electrolyzed water flows down from the application surface of the object, or easily evaporates. However, there is a problem due to the property that no odor can be obtained. As means for solving the above problem, means for increasing the viscosity by adding a binder to the produced strongly acidic electrolyzed water or strongly alkaline electrolyzed water has been proposed (see Patent Document 1). As an application form of water or strongly alkaline electrolyzed water, a creamy external preparation containing a thickener, a surfactant, a humectant, or the like has been proposed (see Patent Documents 2 and 3).
[0003]
[Patent Document 1]
JP-A-7-277994
[Patent Document 2]
JP-A-11-60481
[Patent Document 3]
JP 2002-145787 A
[0004]
[Problems to be solved by the invention]
According to the conventional method, a thickener (binder) and the like are blended after the production of strongly acidic electrolyzed water or strongly alkaline electrolyzed water. However, in general, electrolyzed water has poor storage stability, and in particular, sodium chloride or the like is used. In the strongly acidic electrolyzed water produced by using as an electrolyte, the stability of hypochlorous acid, which is one of the active ingredients, is poor, so that it may disappear during the operation step of adding and mixing the thickener. As described in “Electrolyzed Water Guide 2001, p. 37” (published by the Functional Water Research Promotion Foundation), it is preferable to use electrolyzed water as fresh as possible. According to this, it is expected that in order to use electrolyzed water freshly, it will be necessary to produce electrolyzed water each time it is used and then to add and mix a thickener etc. This is not always a reasonable method if you want to do so. Furthermore, when both strongly acidic electrolyzed water and strongly alkaline electrolyzed water are required, after electrolysis treatment in a diaphragm electrolyzer, the strongly acidic electrolyzed water and strongly alkaline electrolyzed water are separately collected, and a thickener is added to each. The work of adding and mixing becomes burdensome, for example, the work of adding and mixing becomes necessary, and it cannot be said that this is a simple method.
An object of the present invention is to provide a highly viscous product without adding and mixing a thickener or the like every time of electrolysis, and to provide a method for producing the product.
[0005]
[Means for Solving the Problems]
The present applicant electrolyzes a material (electrolytic base material) in which the fluidity of water as a solvent is reduced by mixing a thickener, an emulsifier, a gelling agent, a slurry forming agent, and the like in addition to the electrolyte. The present inventors have found that the above problem can be solved by using a viscous, gel-like, or slurry-like electrolytic product obtained by the above method, and have completed the present invention. That is, the present invention is achieved by the following configurations.
[0006]
(1) An electrolysis product exhibiting viscosity obtained by electrolyzing an electrolytic base material in which water, an electrolyte, and a material that lowers the fluidity of water are mixed.
(2) The electrolytic product according to claim 2, wherein the electrolytic base material has a viscosity of 50 mPa · s or more.
(3) The electrolytic product according to claim 3, wherein the product is a strongly acidic product.
(4) The electrolytic product according to claim 4, wherein the product is a strongly alkaline product.
(5) The electrolytic product according to claim 5, wherein the product is composed of a mixture of a strongly acidic product and a strongly alkaline product.
(6) A gel-like electrolytic product obtained by electrolyzing an electrolytic base material in which water, an electrolyte, and a material that reduces the fluidity of water are mixed.
(7) An electrolytic product according to claim 7, wherein the electrolytic product according to claim 6 is a strongly acidic product.
(8) Claim 8 is an electrolytic product, wherein the product of claim 6 is a strongly alkaline product.
(9) Claim 9 is the electrolytic product according to claim 6, characterized in that the product of claim 6 is composed of a mixture of a strongly acidic product and a strongly alkaline product.
(10) A tenth aspect of the present invention is to mix water, an electrolyte, and a material that reduces the fluidity of water to obtain an electrolytic base material having a viscosity of 50 mPa · s or more, and to obtain an electrolytic material that exhibits viscosity by electrolysis of the electrolytic base material. Method for producing the product.
(11) A method for producing an electrolytic product according to claim 11, wherein the electrolytic substrate according to claim 10 contains an insoluble material as a material for reducing the fluidity of water and is in a slurry state.
(12) A twelfth aspect of the present invention is to mix a water, an electrolyte, and a material that lowers the fluidity of water to obtain a gel-like electrolytic base material, and obtain a gel-like electrolytic product by electrolysis of the electrolytic base material. Production method.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. The present invention provides an electrolysis of a viscous or slurry-like or gel-like electrolyte by electrolyzing an electrolytic base material to which water, an electrolyte, and a material for reducing the fluidity of water (hereinafter, referred to as a fluidity reducing agent) are added. The product is to be obtained.
[0008]
The electrolyte used in the present invention may be an inorganic or organic type.Examples of the inorganic type include metal salts with alkali metals or alkaline earth metals such as chlorides, sulfides, carbonates, phosphorus oxides, and nitrates. And ammonium salts with ammonia. Examples of the organic system include carboxylic acids such as acetic acid, lactic acid, butyric acid, oxalic acid, citric acid, fumaric acid, succinic acid, gluconic acid, malic acid, itaconic acid, ascorbic acid, pyruvic acid, glutamic acid, aspartic acid, and alginic acid. And alkali metals or alkaline earth metals, and ammonium salts with ammonia. These may be used alone or as a mixture of two or more.
[0009]
In the present invention, in addition to the electrolyte, a fluidity reducing agent such as a thickener, an emulsifier, a slurry forming agent or a gelling agent is used in order to reduce the fluidity of water as a solvent.
For example, as a thickener, starch, dextran, pullulan, levan, inulin, carrageenan, roasted bean gum, xanthan gum, guar gum, gum arabic, psyllium, methylcellulose, sodium carboxymethylcellulose, alginic acid, sodium alginate, propylene glycol alginate starch, starch Examples include sodium glycolate, chondroitin sulfate, glycerin, polyvinyl alcohol, chitosan acetate, chitosan lactate, chitosan hydrochloride, hyaluronic acid, and the like.
[0010]
Examples of the emulsifier include fatty acid monoglyceride, glycerin fatty acid ester, polyglycerin fatty acid ester, saponin (enjusaponin, quilla extract, soybean saponin, etc.), sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, calcium stearoyl lactate, lecithin ( Plant lecithin, egg yolk lecithin, enzyme-decomposed lecithin, enzyme-transferred lecithin), starch octenylsuccinate, partially degraded gluten, gliadin, casein, sodium caseinate and the like.
[0011]
Examples of the slurry forming agent include inorganic powders such as titanium oxide, talc, kaolin, mica, bentonite, zeolite, silica, silica gel, calcium carbonate, calcium phosphate, and the like, and organic powders such as cellulose, starch granules, and grains. These slurry-forming agents are insoluble fine particles, but when present in a large amount in water as a solvent, have the effect of reducing the fluidity of water in the same manner as the thickener and emulsifier. Can be used at
[0012]
Examples of the gelling agent include agar, curdlan, gellan gum, pectin, gelatin, glucomannan, polyacrylamide and the like. By mixing these gelling agents, the fluidity of the water containing the electrolyte is lost, but the electrical characteristics of the electrolyte are maintained, so that the present invention is suitable for the present invention.
[0013]
The fluidity reducing agent may be used alone or in combination of two or more. The amount of addition is such that water, which is a solvent, exhibits a viscosity of 50 mPa · s or more or a gel without fluidity. In addition, these fluidity reducing agents are usually used in combination with an electrolyte that is separately added, but when the fluidity reducing agent itself functions as an electrolyte, such as sodium alginate or chitosan hydrochloride, it is used in combination with the electrolyte. It can also be used alone without.
[0014]
In the present invention, a viscosity of at least 50 mPa · s or a slurry or gel electrolyte obtained by mixing the electrolyte with a fluidity reducing agent such as the thickener, emulsifier, slurry forming agent or gelling agent. The material is electrolyzed. At this time, the strongly acidic electrolytic product is placed in the viscous or slurry-like or gel-like electrolytic substrate near the anode electrode surface and the strongly alkaline electrolytic product is placed near the cathode electrode surface. Since it is generated, the mixing with the electrolytic product generated on the other side electrode is suppressed, and as a result, an electrolytic product showing strong acidity and strong alkalinity is obtained regardless of the presence or absence of a diaphragm such as an ion exchange membrane. . On the other hand, when the electrolytic base material has a viscosity of 50 mPa · s or less, the electrolytic products generated near the surfaces of both electrodes are diffused, and it is difficult to obtain an electrolytic product showing strong acidity and strong alkalinity. Become.
[0015]
The strongly acidic electrolyzed product and the strongly alkaline electrolyzed product according to the present invention are usually used separately, but both electrolyzed products can be mixed and used. For example, by changing the mixing ratio of both electrolysis products, an electrolysis product whose hydrogen ion concentration is adjusted in the range of pH 3 to pH 12 can be obtained. Also, the two electrolysis products are not mixed until they are uniform, and the two components are mixed so that the part composed of the strongly acidic electrolysis product and the part composed of the strongly alkaline electrolysis product are mixed. An electrolytic product having the function of the product can also be obtained.
[0016]
The electrolytic product obtained in the present invention is used for applications such as sterilization, bleaching, deodorization, rust prevention, washing or maintaining freshness of fresh products, applications for beverages or foods, and applications for external preparations for skin and the like. . In addition, depending on the use, the effect of the electrolytic product can be enhanced or another function can be added by appropriately adding other functional components to the electrolytic base material before electrolysis. .
[0017]
As a functional component, when an antioxidant effect is added, β-carotene, vitamin E, astaxanthin, polyphenol, ascorbic acid, dipotassium ascorbate 2-sulfate, ascorbyl 2-sulfate, ascorbyl 2-monophosphate, ascorbyl 2 -Polyphosphate, ascorbyl palmitate, ascorbyl acetate, ascorbic acid 2-glucoside and the like can be exemplified.
[0018]
In addition, when adding an inhibitory effect on melanin production, catechin, ascorbic acid, arbutin, ellagic acid, catechol, glutathione, kojic acid, cysteine, pantethein-S-sulfonic acid, hydroquinone, resorcin, retinoic acid, lactic acid, hydrogen peroxide , Bromic acid, chloric acid, placenta extract and derivatives thereof.
[0019]
In addition, when adding moisture retention, sugars such as hyaluronic acid, ceramide compounds, collagen, trehalose, sorbitol, maltose, maltitol, or reduced products thereof can be exemplified.
When the antibacterial property is added, propolis, hinokitiol, wasabi extracted oil, bacteriocin, quinolone antibacterial agent, silver-based inorganic antibacterial agent and the like can be exemplified.
Further, when the purpose of supplementing ingredients in beverages or foods, glucose, isomerized sugar, aspartame, xylitol, erythritol, stevioside, rebaudioside and saccharin and other sweeteners, aspartic acid, alanine and γ-aminobutyric acid and the like Examples include amino acids, vitamins such as rutin and niacin, fatty acids such as docosahexaenoic acid and eicosapentaenoic acid, dietary fiber, coloring agents, flavors and the like.
The functional component can be added in the form of a solution, powder or emulsion.
[0020]
The electrolytic product according to the present invention is used, for example, for the following applications. When sodium chloride is used for the electrolyte, the strongly acidic viscous or gel-like or slurry-like electrolytic product produced on the anode side contains hypochlorous acid, and is sterilized, bleached, deodorized or freshly produced. An electrolytic product that has an effect on maintaining freshness and exhibits a strongly acidic viscous or gel-like or slurry-like product generated on the anode side when calcium lactate or the like is used as an electrolyte, has an astringent effect, and is an external preparation for skin. Can also be used.
When sodium chloride is used as the electrolyte, the strongly alkaline viscous or gel-like or slurry-like electrolytic product generated on the cathode side has a saponifying effect and can be used for washing proteins and oils and fats. In particular, the electrolytic product obtained by using a fluidity reducing agent having a polishing action such as silica powder, a high cleaning effect is obtained by the synergistic effect of the saponification action and the polishing action, and also, such as polyglycerin fatty acid ester The electrolytic product obtained by using a fluidity reducing agent having a surface-active action has a high cleaning effect due to a synergistic effect of the saponification action and the surface-active action. In addition, since the oxidation-reduction potential of the electrolytic product on the cathode side is in a negative direction, it has a rust-preventive effect on metals and the like. Furthermore, since it contains alkaline electrolyzed water, which is said to be effective for chronic diarrhea, excessive gastric acidity, indigestion, and gastrointestinal dysfermentation, it is effective as a novel material for beverages or foods.
The electrolysis product according to the present invention may be used alone for the above purpose, or may be used by being blended with another material or product.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically based on test examples.
(Test Example 1) Sodium chloride as an electrolyte and guar gum as a thickener were dissolved in distilled water to give an electrolyte concentration of 0.1% and viscosities of 10, 25, 50, 100, 200, and 500 mPa · s. Six types of electrolytic base materials were prepared. At this time, the viscosity was measured using a B-type viscometer manufactured by Tokyo Keiki Co., Ltd., the rotor was No. 1, and the temperature of the electrolytic base material at the time of measurement was 20 ° C. For 150 ml of each electrolytic substrate, 700 μl of a pH universal indicator described below was added, and a voltage of 15 V was applied between the electrodes to perform electrolysis for 1 minute.
[0022]
FIG. 1 shows a schematic diagram of the electrolyzer used. The electrolytic cell 1 is provided with a lid 3 in a container having a width of 40 mm, a depth of 50 mm, and a height of 100 mm, and two 1 mm-thick Pt-coated electrodes 4 and 4 ′ connected to a power supply 2 on the inner wall of the container. It has a depth of 50 mm and a height of 100 mm and is arranged to face each other.
After standing for 1 minute after the electrolysis, the state of an orange-red band corresponding to pH 3 or lower generated near the anode electrode surface and a blue band corresponding to pH 10 or higher generated near the cathode electrode surface was evaluated. . Similarly, when methylcellulose was used as a thickener, the state of banding after standing for 1 minute was evaluated.
The evaluation was performed when the orange-red band and the blue band were clearly left in a state parallel to the surfaces of the two electrodes at the stage of standing for 1 minute after the electrolysis (、). Table 1 shows the results when () indicates that clearly remains in a state parallel to the surface of the electrode, and (x) indicates that both bands disappeared or were disturbed.
[0023]
[Table 1]
Figure 2004195329
[0024]
From the test results, when the viscosity of the electrolytic base material is 10 mPa · s and 25 mPa · s, the color cast corresponding to the pH is disturbed by the convection accompanying the rise of hydrogen and oxygen generated near the electrode. It was found that the strongly acidic and strongly alkaline electrolytic products formed on the surface disappeared by diffusion. On the other hand, when the viscosity is 50 mPa · s or more, the diffusion of the generated electrolysis product is suppressed, and a color corresponding to the pH near the electrode surface, that is, a strongly acidic or strongly alkaline electrolysis product is formed. Do you get it.
[0025]
FIG. 2 is a schematic diagram showing the result when the viscosity of the electrolytic base material is 500 mPa · s, and the orange-red band corresponding to pH 3 or less near the surface of the electrode 4 in the figure (strongly acidic electrolytic product) 6, near the surface of the electrode 4 ', shows the formation of a blue band (strong alkaline electrolytic product) 7 corresponding to pH 10 or more.
As a comparative example, a similar test was conducted using the 0.1% sodium chloride solution in place of the electrolytic substrate according to the present invention in the above-described electrolysis apparatus. The entire solution in between turned blue-green. In addition, as a result of actually measuring the solution near both electrodes with a glass electrode type pH meter, the pH on the anode side was 8.8 and the pH on the cathode side was 9.0, and values of pH 3 or less and pH 10 or more could not be measured.
[0026]
The pH universal indicator used this time was 0.1 g of phenolphthalein, 0.2 g of methyl red, 0.3 g of dimethylaminoazobenzene, 0.4 g of bromthymol blue and 0.5 g of thymol blue in a measuring flask. The total volume was adjusted to 500 ml by dissolving in ethanol, and 0.1 N sodium hydroxide solution was added dropwise to neutralize the solution to a yellow color. Table 2 shows the coloration of the universal indicator with respect to pH.
[0027]
[Table 2]
Figure 2004195329
[0028]
(Test Example 2) Table 3 shows the results of the same operation as in Example 1 except that chitosan hydrochloride, carboxymethylcellulose Na (CMC) or sodium alginate was used as the thickener.
[0029]
[Table 3]
Figure 2004195329
[0030]
From the test results, it was found that when the viscosity was 50 mPa · s or more, a strongly acidic or strongly alkaline electrolytic product was formed near the electrode surface. In the case of using CMC, a blue band on the cathode side was confirmed at a viscosity of 50 mPa · s or more, but on the anode side, the strongly acidic electrolytic product generated by CMC in the electrolytic base material was neutralized. It seems that orange-red coloration corresponding to pH 3 or less could not be confirmed. This indicates that when only an alkali is required, CMC may be used as a fluidity reducing agent.
[0031]
(Test Example 3) Calcium lactate as an electrolyte and sucrose fatty acid ester or polyglycerin fatty acid ester as an emulsifier were kneaded in distilled water with a homogenizer, and the electrolyte concentration was 0.1% and the viscosity was 10, 25, 50, and 100 mPa ·. s electrolytic substrate was prepared. Table 4 shows the results of similar tests performed on the electrolytic substrate using the apparatus shown in Test Example 1.
[0032]
[Table 4]
Figure 2004195329
[0033]
From the test results, in the case of sucrose fatty acid ester, the viscosity is 50 mPa · s or more, and also in the case of polyglycerin fatty acid ester, the viscosity is 50 mPa · s or more, and a strongly acidic and strongly alkaline electrolytic product is formed near the electrode surface. I knew it was there.
[0034]
(Test Example 4) Sodium ascorbate as an electrolyte, agar as a gelling agent, and gelatin after heating and dissolving, then solidifying by adding a pH universal indicator, agar with an electrolyte concentration of 0.1% (concentration 3%) and gelatin (Concentration 5%) was prepared. Each of the prepared gels was cut into blocks each having a width of 38 mm, a depth of 50 mm, and a height of 80 mm, and charged into the apparatus shown in Test Example 1. After that, a voltage of 15 V was applied to perform electrolysis for 1 minute. After the electrolysis, the mixture was allowed to stand for 1 minute, and the state of an orange-red band corresponding to pH 3 or lower generated near the surface of the anode electrode and a blue band corresponding to pH 10 or higher generated near the surface of the cathode electrode was evaluated. Table 5 shows the results.
[0035]
[Table 5]
Figure 2004195329
[0036]
From the test results, it was found that in both cases of agar and gelatin, strongly acidic and strongly alkaline electrolytic products were formed near the electrode surface.
[0037]
(Test Example 5) Distilled water was kneaded with sodium chloride as an electrolyte and silica powder (100 g added to 150 ml of sodium chloride aqueous solution) or dry powder of okara (30 g added to 150 ml of sodium chloride aqueous solution) as a slurry forming agent, and the electrolyte concentration was reduced. A 0.1% slurry-like electrolytic substrate was prepared. After filling each of the prepared electrolytic base materials into the device shown in Test Example 1, a voltage of 15 V was applied to perform electrolysis for 1 minute. After the electrolysis, the mixture was allowed to stand for 1 minute, and the state of an orange-red band corresponding to pH 3 or lower generated near the surface of the anode electrode and a blue band corresponding to pH 10 or higher generated near the surface of the cathode electrode was evaluated. Table 6 shows the results.
[0038]
[Table 6]
Figure 2004195329
[0039]
From the test results, it was found that a strongly acidic and strongly alkaline electrolytic product was formed in the vicinity of the electrode surface in the case of both the silica powder and the Okara dried fine powder.
[0040]
(Test Example 6) In order to evaluate the persistence of the electrolytic product on the application surface of the object in use, the amount of the electrolytic product adhered to a rubber plate having a fixed area was confirmed.
Sodium chloride as an electrolyte and guar gum as a thickener are dissolved in distilled water, and an electrolyte concentration of 0.1% and viscosities of 10, 25, 50, 100, 200, and 500 mPa · s are used as six kinds of electrolytic base materials. Created. Using the apparatus shown in Test Example 1, a voltage of 15 V was applied to these electrolytic substrates to perform electrolysis for 1 minute. After a rubber plate (50 mm × 50 mm × 2 mm) was immersed in the electrolytic product composed of the obtained acidic electrolyzed water, the amount of adhesion to the rubber plate when pulled up with tweezers was measured. Table 7 shows the results. As shown in the results, it was found that the higher the viscosity of the electrolytic product, the larger the amount of adhesion to the rubber plate as the target, that is, the higher the residual property of the electrolytic product on the application surface. Therefore, as shown in Test Example 1, when guar gum is used, generation of a strongly acidic and strongly alkaline electrolytic product is possible when the viscosity is higher than 50 mPa · s. Understand what you can do.
[0041]
[Table 7]
Figure 2004195329
[0042]
(Test Example 7) Sodium chloride as an electrolyte and guar gum as a thickener were dissolved in distilled water to prepare an electrolytic base material having an electrolyte concentration of 0.1% and a viscosity of 500 mPa · s. The electrolytic substrate was subjected to electrolysis for 1 minute by applying a voltage of 15 V using the apparatus shown in Test Example 1 and then hypochlorous acid in the electrolytic product at about 2 mm from the anode electrode surface. Was measured with a water quality test paper (Nissan Aqua Check FW; manufactured by Nissan Chemical Industries, Ltd.). As a result, it was 30 ppm.
As a comparative example, a diaphragm electrolysis method using a 0.1% sodium chloride solution was performed to obtain strongly acidic electrolyzed water having a hypochlorous acid concentration of 50 ppm, and 1 g of guar gum was added to 99 ml of the obtained strongly acidic electrolyzed water. After mixing and stirring with a homogenizer, the concentration of hypochlorous acid in the strongly acidic electrolyzed water was measured and found to have decreased to 10 ppm or less. As shown in the results, when guar gum, a thickener, was added after the production of strongly acidic electrolyzed water, hypochlorous acid generated by electrolysis tended to decrease due to the effects of mixing and stirring, etc. It was inefficient compared to the example.
[0043]
(Test Example 8) Sodium chloride as an electrolyte and glycerin as a thickener were dissolved in distilled water to prepare an electrolytic base material having an electrolyte concentration of 0.1% and a viscosity of 90 mPa · s. An electrolytic product (pH 2.9) composed of the strongly acidic electrolyzed water of the present invention obtained by applying a voltage of 15 V and electrolyzing for 1 minute using the apparatus shown in Test Example 1 for this electrolytic substrate. , Hypochlorite concentration of 50 ppm) and the strongly acidic electrolyzed water (pH 2.8, hypochlorous acid concentration of 50 ppm) of the comparative example to which no thickener was added, each of which was placed in a sterile test tube at 2 ml and diluted therewith. Culture solution of the test bacteria (Escherichia coli and Bacillus subtilis) 8 / Ml) was added and mixed. Ten minutes later, 8 ml of sterile water was added to each test tube and diluted, and the number of colonies (viable cell count) was measured by the dilution plate method (PD agar medium, culture at 30 ° C. for 72 hours). Show. As shown in the results, the electrolysis product composed of the strongly acidic electrolyzed water according to the present invention had a high bactericidal effect similarly to the strongly acidic electrolyzed water of the comparative example.
[0044]
[Table 8]
Figure 2004195329
[0045]
【effect】
According to the first and second aspects of the present invention, the obtained electrolytic product exhibits viscosity and the object has a high persistence on the application surface, so that the effect of the action factor generated by the electrolysis can be sufficiently reduced. Can be demonstrated.
According to the third aspect of the present invention, a strongly acidic electrolytic product having effects such as sterilization, bleaching, deodorization, and astringent action exhibits viscosity, and has a high persistence on the application surface of the object. The effect of the action factor of the electrolysis product can be sufficiently exhibited.
According to the invention as set forth in claim 4, the strongly alkaline electrolytic product having effects such as degreasing, washing, rust prevention, and improvement of indigestion exhibits viscosity, and has high persistence on the application surface of the object. The effect of the acting factor possessed by the strongly alkaline electrolytic product can be sufficiently exhibited.
The electrolysis product according to the invention according to claim 5 is an electrolysis product obtained by mixing a strongly acidic portion and a strongly alkaline portion, which cannot be produced due to complete mixing with conventional electrolyzed water. It is possible to obtain such an electrolysis product, which has the effects of both electrolysis products, so that a combined action such as sterilization and washing can be expected.
[0046]
Since the electrolytic product according to the invention of claim 6 is a gel having no fluidity, it can be cut into a required size and handled as a solid.
According to the invention as set forth in claim 7, since the strongly acidic electrolytic product having effects such as sterilization, bleaching, deodorization, and astringent action is a gel having no fluidity, it is cut into a required size and cut as a solid. Can handle.
According to the invention as set forth in claim 8, since the strongly alkaline electrolytic product having effects such as degreasing, washing, rust prevention, and improvement of indigestion is a gel having no fluidity, the product is cut into a required size and solidified. Can be treated as
According to the ninth aspect of the present invention, since the electrolyzed product having both the effects of the strongly acidic electrolyzed product and the strongly alkaline electrolyzed product is a gel having no fluidity, the electrolyzed product is cut into a necessary size and solidified. Can handle.
[0047]
According to the invention as set forth in claim 10, a strongly acidic electrolytic product and a strongly alkaline electrolytic product can be produced without a membrane such as an ion exchange membrane separating an anode side and a cathode side, and these electrolytic products are Since it is obtained immediately after the electrolysis is completed, the agent produced by the electrolysis can be used fresh.
According to the eleventh aspect of the present invention, since the material that lowers the fluidity of water is insoluble organic and inorganic powders, the work of mixing with water is easy, and furthermore, the electrolytic product after use is washed with water. It can be used repeatedly by collecting it.
According to the invention as set forth in claim 12, since the electrolytic base material according to the present invention is in a gel state without fluidity, it is possible to maintain a stable energization between the electrodes without free movement of the electrolytic base material, Moreover, the electrolysis can be easily performed without causing leakage of the electrolytic base material.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrolyzer used for a test.
FIG. 2 is a schematic diagram showing generation of an electrolytic product when the viscosity of an electrolytic base material is 500 mPa · s.
[Explanation of symbols]
1 electrolytic cell
2 Power supply
3 lid
4, 4 'electrode
5 Electrolytic substrate
6 Strongly acidic electrolytic products
7 Strong alkaline electrolysis products

Claims (12)

水と電解質と水の流動性を低下させる材料とを混合した電解基材を電気分解することによって得られる粘性を呈する生成物であることを特徴とする電解生成物。An electrolytic product characterized by being a viscous product obtained by electrolyzing an electrolytic base material in which water, an electrolyte, and a material that reduces the fluidity of water are mixed. 前記電解基材が、粘度50mPa・s以上になされていることを特徴とする請求項1記載の電解生成物The electrolytic product according to claim 1, wherein the electrolytic base material has a viscosity of 50 mPa · s or more. 前記生成物が、強酸性生成物であることを特徴とする請求項1および2記載の電解生成物。3. The electrolytic product according to claim 1, wherein the product is a strongly acidic product. 前記生成物が、強アルカリ性生成物であることを特徴とする請求項1および2記載の電解生成物。3. The electrolytic product according to claim 1, wherein the product is a strongly alkaline product. 前記生成物が、強酸性生成物と、強アルカリ性生成物との混合物で構成されていることを特徴とする請求項1および2記載の電解生成物。3. The electrolytic product according to claim 1, wherein the product is composed of a mixture of a strongly acidic product and a strongly alkaline product. 水と電解質と水の流動性を低下させる材料とを混合した電解基材を電気分解することによって得られるゲル状を呈する生成物であること特徴とする電解生成物。An electrolytic product characterized by being a gel-like product obtained by electrolyzing an electrolytic base material in which water, an electrolyte, and a material that lowers the fluidity of water are mixed. 前記電解生成物が、強酸性生成物であることを特徴とする請求項6記載の電解生成物。The electrolytic product according to claim 6, wherein the electrolytic product is a strongly acidic product. 前記生成物が、強アルカリ性生成物であることを特徴とする請求項6記載の電解生成物。The electrolytic product according to claim 6, wherein the product is a strongly alkaline product. 前記生成物が、強酸性生成物と、強アルカリ性生成物との混合物で構成されていることを特徴とする請求項6記載の電解生成物。7. The electrolytic product according to claim 6, wherein the product is composed of a mixture of a strongly acidic product and a strongly alkaline product. 水と電解質と水の流動性を低下させる材料とを混合し、粘度の50mPa・s以上の電解基材を得、該電解基材の電気分解によって粘性を呈する電解生成物を得ることを特徴とする電解生成物の製造方法。Mixing water, an electrolyte and a material that reduces the fluidity of water to obtain an electrolytic base material having a viscosity of 50 mPa · s or more, and obtaining an electrolytic product exhibiting viscosity by electrolysis of the electrolytic base material. Of producing an electrolytic product. 前記電解基材が、水の流動性を低下させる材料として不溶性の材料を含みスラリー状になされていることを特徴とする請求項10記載の電解生成物の製造方法。The method for producing an electrolytic product according to claim 10, wherein the electrolytic base material is in the form of a slurry containing an insoluble material as a material for reducing the fluidity of water. 水と電解質と水の流動性を低下させる材料とを混合し、ゲル状の電解基材を得、該電解基材の電気分解によってゲル状を呈する電解生成物を得ることを特徴とする電解生成物の製造方法。Mixing water, an electrolyte and a material that reduces the fluidity of water to obtain a gel-like electrolytic base material, and obtaining a gel-like electrolytic product by electrolysis of the electrolytic base material. Method of manufacturing a product.
JP2002365395A 2002-12-17 2002-12-17 Electrolytic product and its manufacturing method Pending JP2004195329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365395A JP2004195329A (en) 2002-12-17 2002-12-17 Electrolytic product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365395A JP2004195329A (en) 2002-12-17 2002-12-17 Electrolytic product and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004195329A true JP2004195329A (en) 2004-07-15

Family

ID=32762958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365395A Pending JP2004195329A (en) 2002-12-17 2002-12-17 Electrolytic product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004195329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175051A (en) * 2009-02-02 2010-08-12 Honda Motor Co Ltd Disk brake rotor and rust preventive liquid used for the disk brake rotor
JP2016534983A (en) * 2013-09-30 2016-11-10 エフ エム シー コーポレーションFmc Corporation Foam preparation and delivery device
US10631535B2 (en) 2014-06-24 2020-04-28 Fmc Corporation Foam formulations and emulsifiable concentrates
US11632959B2 (en) 2015-12-23 2023-04-25 Fmc Corporation In situ treatment of seed in furrow

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175051A (en) * 2009-02-02 2010-08-12 Honda Motor Co Ltd Disk brake rotor and rust preventive liquid used for the disk brake rotor
JP2016534983A (en) * 2013-09-30 2016-11-10 エフ エム シー コーポレーションFmc Corporation Foam preparation and delivery device
US10785974B2 (en) 2013-09-30 2020-09-29 Fmc Corporation Foam formulations and apparatus for delivery
US10834921B2 (en) 2013-09-30 2020-11-17 Fmc Corporation Foam formulations and apparatus for delivery
US11330815B2 (en) 2013-09-30 2022-05-17 Fmc Corporation Foam formulations and apparatus for delivery
US10631535B2 (en) 2014-06-24 2020-04-28 Fmc Corporation Foam formulations and emulsifiable concentrates
US11632959B2 (en) 2015-12-23 2023-04-25 Fmc Corporation In situ treatment of seed in furrow

Similar Documents

Publication Publication Date Title
KR102076611B1 (en) Oral composition
KR20140114855A (en) Calcium phosphate dispersion composition
JP2012529909A (en) Composition and method for producing stable negative redox potential in food and drink
CN102458423B (en) Collagen production enhancer
JP2004195329A (en) Electrolytic product and its manufacturing method
EP2647383A1 (en) Breast enhancement accelerator
JP6246328B2 (en) Enzyme
JP6085625B2 (en) Cosmetic liquid and method for producing the same
JP2005120051A (en) External preparation for skin
CN105748358A (en) Aquilaria agallocha essence activating lotion and preparation method thereof
KR20150121409A (en) Method for stabilizing ascorbic acid 2-glucoside and a cosmetic composition containing the stabilized ascorbic acid 2-glucoside
JP6985752B2 (en) Kit for external skin preparation
JP2004285166A (en) Antioxidant, stabilized gold colloidal solution and method for preparing the same
JPH10114897A (en) Powdery perfume, preparation thereof and use thereof
JP2013075860A (en) Methylmercaptan formation inhibitor
RU2009144466A (en) METHOD FOR CONSERVATION OF BACKGROUND CONTAINING RAW MATERIALS
JP4920276B2 (en) Noble metal colloid-encapsulating lamella structure, dispersion thereof, cosmetic containing the same, and method for producing the dispersion
JP5709371B2 (en) Noodle food
JP2007296434A (en) Electrolytic water and its production method
JP2005281177A (en) Cosmetic gel and dentifrice
JP2006160688A (en) Cosmetic composition
JP2005068103A (en) Cosmetic for skin
JP7118931B2 (en) oral composition
JP3908139B2 (en) Cosmetics
CN109568168B (en) Skin external preparation composition having excellent effect of promoting skin cutin renewal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071025

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324