JP2004194421A - Power multiplier - Google Patents

Power multiplier Download PDF

Info

Publication number
JP2004194421A
JP2004194421A JP2002358908A JP2002358908A JP2004194421A JP 2004194421 A JP2004194421 A JP 2004194421A JP 2002358908 A JP2002358908 A JP 2002358908A JP 2002358908 A JP2002358908 A JP 2002358908A JP 2004194421 A JP2004194421 A JP 2004194421A
Authority
JP
Japan
Prior art keywords
magnetic
coil
switching
magnetic switching
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002358908A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002358908A priority Critical patent/JP2004194421A/en
Publication of JP2004194421A publication Critical patent/JP2004194421A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical energy which can easily produce a large amount of power based on small electrical energy by a power multiplier in which a permanent magnet and magnetic switching are applied. <P>SOLUTION: The large amount of the power is produced by circulating the magnetic force energy of a strong permanent magnet in a power generating coil by the small power by utilizing the magnetic switching. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、 商用電源回路 及び 電気自動車等の電源回路において電力エネルギーを効率良く増殖する装置に関するものである。
【0002】
【従来の技術】
従来は、倍電力変圧器(特願2002−147155号) 電力増殖装置(特願2002−250117号) 高効率型倍電力変圧器(特願2002−301350号参照)等があったが電力倍増率において改良の余地があった。
【0003】
【発明が解決しようとする課題】
前記3件の性能より効率を上げる。
【0004】
【課題を解決するための手段】
前記3件の方式より異なった方式で電力を増殖する。
【0005】
【実施例】
本発明は、透磁率の大きい珪素鋼等のコアに永久磁石を完全閉磁路に構成し、そのコアに磁気スイッチング用コイル 及び 発電用コイルを巻設したシンプル構造の電力増殖器である。
請求項第1項を第1図によって説明すると、透磁率の大きい珪素鋼板等を多数重ね合わせたコアの中央に永久磁石を磁気漏れのないよう完全閉磁路とし、そのコアの両端に磁気スイッチング用コイルと側部には発電用コイルをそれぞれ巻設する。
動作については電力増殖器コア1aの中央に設けた永久磁石2aの磁力線は左右のコアに自己透磁力によって50%ずつ流回している、(この電力増殖器コア1aのどの部分も永久磁石2aの磁束密度100%全てを流回する容量がある)そこに磁気スイッチングコイル4aと磁気スイッチングコイル5aに商用交流電源や直流電源をインバーター等で交流化した電流をダイオード等により2分割し(図6の脈流電流cとd)交互に印加する。
【0006】
先ず脈流電流の半波(図6の脈流電流c)を磁気スイッチングコイル4aに入力する(永久磁石と磁気スイッチングコイルの磁極を同極となるように電極を合わせて入力する)磁気スイッチングコイル4aの磁極と永久磁石2aの磁極が同極なので反発をして閉磁路を磁気的に遮断をし磁力線も遮断するので永久磁石2aの磁力エネルギー100%全てが発電コイル9a側に流回する、この時磁気スイッチングコイル4aの方に流回している磁力線は永久磁石2aの磁束密度の50%なので反発をさせる電気エネルギーは永久磁石2aの磁束密度の50%でよい、又 時間と共にスイッチングコイル4aに印加した脈流電流が途切れると、反発した磁力線、つまり永久磁石2aの磁束密度の50%だけ磁気スイッチングコイル4aと発電コイル8aの方へ外部からのエネルギーに関係なく閉磁路の自己透磁力によって戻ってくると同時に脈流電流の反対側の半波(図6の脈流電流d)が磁気スイッチングコイル5aに流れると永久磁石2aの磁力線とスイッチングコイル5aの磁力線と反発をし、閉磁路を磁気的に遮断をし磁力線も遮断するので、この時も永久磁石2aの磁束密度の50%だけ反発してやる事で永久磁石2aの磁束密度100%全てが発電コイル8a内部を流回するので発電コイル8aに永久磁石2aの性能100%の起電力が発生する。
【0007】
つまり永久磁石2aの磁力エネルギーの50%の電気エネルギーを交互に入力する事で永久磁石2aの磁力エネルギー100%を発電コイル8a、発電コイル9a内部を流回させることが出来る、永久磁石の性能の50%の電気エネルギーを入力すれば永久磁石の性能の100%の電気出力が得られる事になる。
請求項第2項について説明すると、請求項第2項も請求項第1項とほぼ同じであるが違うところは、請求項第1項の方は磁気スイッチングコイルの磁力線が永久磁石の磁力線と直接反発をして空中へ流れるのに対して、請求項第2項の方は磁気スイッチングコイル独自の磁路を構成しており磁気スイッチングが動作中の磁力線は自己の磁路を流回しながら永久磁石の磁力線に反発をして閉磁路を磁気的に遮断し磁力線を遮断する。
【0008】
請求項第2項を第2図について説明をすると、永久磁石2bの磁力線は磁気スイッチングコイル4b内コア 及び 磁気スイッチング磁路4ba側と磁気スイッチングコイル5b内コア 及び 磁気スイッチング磁路5ba側へ閉磁路の自己透磁力によって50%づつ流回している、そこで先ず商用交流電源をダイオード等によって2分割した脈流電流の半波を磁気スイッチングコイル4bに印加すると磁気スイッチングコイル4bの磁力線は磁気スイッチング磁路4baを流回しながら永久磁石2bの磁力線と反発をして閉磁路を磁気的に磁気スイッチングコイル4b側だけ遮断をし磁力線も遮断する、この時磁気スイッチングコイル4b側に流回している磁力線は永久磁石2bの磁束密度の50%なのでこの50%の磁力線だけを反発してやれば発電コイル9b側には閉磁路の自己透磁力によって流回していた50%の磁力線と合成されて永久磁石2bの磁力線100%全てが流回するので発電コイル9bに多大な起電力が発生すると同時に磁気スイッチングコイル4bに印加されていた脈流電流が時間と共に途切れると再び閉磁路の自己透磁力によって磁気ス
【0009】
イッチングコイル4b側と磁気スイッチングコイル5b側へ50%づつの流回状態となると同時に脈流電流半波の逆の方が磁気スイッチングコイル5bに印加するので、磁気スイッチングコイル5bの磁力線は磁気スイッチング磁路5ba内を流回しながら永久磁石2bの磁力線と反発をして閉磁路を磁気的に磁気スイッチングコイル5b側だけ遮断し磁力線も遮断する、この時磁気スイッチングコイル5b側に流回している磁力線も永久磁石2bの磁束密度の50%なのでこの50%の磁力線だけを反発してやれば発電コイル8b側には閉磁路の自己透磁力によって流回していた50%の磁力線と合成されて永久磁石2bの持つ全ての磁力エネルギーが発電コイル8b内を流回するので発電コイル8bに多大な起電力が発生する。
【0010】
請求項第3項は、 請求項第2項の磁気スイッチング磁路にエアーギャップを設けたもので、普通は磁気スイッチング磁路用エアーギャップ4cb、磁気スイッチング磁路用エアーギャップ5cbには磁力線は流れていない、磁気スイッチングコイル4c、磁気スイッチングコイル5cに脈流電流が印加された時だけ流れる、その他は請求項第2項と同じなので説明を省略する。
上記請求項第1項、第2項 及び 第3項の発電コイル8a、発電コイル9a、発電コイル8b、発電コイル9b、発電コイル8c、及び 発電コイル9cの起電力を合成して出力電力とする。
請求項第4項を第4図によって説明をすると、中央に発電コイル8dを巻設した電力増殖器コア1dの、両側部にある永久磁石2d、永久磁石3d、磁気スイッチングコイル4d内コア部、磁気スイッチング磁路4da、磁気スイッチングコイル5d内コア部、磁気スイッチング磁路5daは完全閉磁路状態にある。
【0011】
そこに磁気スイッチングコイル4dと磁気スイッチングコイル5dに商用交流電源をダイオード等で2分割して印加する、先ず 2分割した半波を磁気スイッチングコイル4dに入力されるとその磁力線は、磁気スイッチング磁路4daを流回しながら永久磁石2dの磁力線と反発をして磁気的に閉磁路を磁気スイッチングコイル4dと磁気スイッチング磁路4daの部分で遮断し磁力線も遮断するので永久磁石2dの磁力線は、磁気スイッチング磁路4db 及び 磁気スイッチング磁路用エアーギャップ4dcを流れて消費されるので、永久磁石3dの磁力線は電力増殖器コア1dを介して発電コイル8d内を第4図上方から流回して発電コイル8dに起電力を発生させる、又 磁気スイッチングコイル4dに入力した脈流電流は時間と共に途切れて同時に反対側の脈流電流が磁気スイッチングコイル5dに入力され、その磁力線は磁気スイッチング磁路5daを流回しながら永久磁石3dの磁力線と反発をして磁気的に閉磁路を磁気スイッチングコイル5dと磁気スイッチング磁路5daの部分で遮断し磁力線も遮断するので永久磁石3dの磁力線は磁気スイッチング磁路5dbと磁気スイッチング磁路用エアーギャップ5dcを流れて消費されると同時に永久磁石2dの磁力線は電力増殖器コア1dを介して発電コイル8d内を第4図下方から流回して発電コイル8dに起電力を発生させる。
【0012】
この時永久磁石2dの磁力線と永久磁石3dの磁力線が発電コイル8dに第4図上下方向から交互に流れるので交流電流が出力される。
請求項第5項を第5図によって説明をすると、本装置は前記請求項第2項の装置を二台合体して同時に作動させるもので、大きな違いは発電コイルの出力電流は請求項第4項と同じ交流のみである。 (前記請求項第1項、第2項 及び 第3項の装置は、交流電流、又は 直流電流の出力選択が出来る)電力増殖器コア1e、永久磁石2e、永久磁石3e、磁気スイッチングコイル4e内コア、磁気スイッチング磁路4ea、磁気スイッチングコイル5e内コア、磁気スイッチング磁路5ea、磁気スイッチングコイル6e内コア、磁気スイッチング磁路6ea、磁気スイッチングコイル7e内コア、磁気スイッチング磁路7ea、発電コイル8eのコア部、発電コイル9eのコア部は完全閉磁路状態を構成しており、永久磁石2eの磁力線と永久磁石3eの磁力線は磁気スイッチングコイル4e、磁気スイッチングコイル5e側と磁気スイッチングコイル7e、磁気スイッチングコイル6e側へ自己透磁力によってそれぞれ流回し合った状態にある。
【0013】
先ず 商用交流電源をダイオード等によって2分割をして脈流電流にして磁気スイッチングコイル4eと磁気スイッチングコイル6eへ同時に印加するとそこで出来た磁力線は、磁気スイッチング磁路4ea、及び 磁気スイッチング磁路6eaを流回して永久磁石2e 及び 永久磁石3eの閉磁路を磁気的に遮断し磁力線も磁気スイッチング磁路4eaと磁気スイッチング磁路6ea側を遮断するので、永久磁石2eの磁力線は磁気スイッチングコイル7eコア内、磁気スイッチング磁路7ea、発電コイル9e内を流回して大きな起電力を発生させる。又永久磁石3eの磁力線は磁気スイッチングコイル5eコア内、磁気スイッチング磁路5ea、発電コイル8e内を流回して大きな起電力を発生させる、この時流回する磁力線は永久磁石2eと永久磁石3eの100%の磁力エネルギーである為発電コイルで発生する起電力は永久磁石の性能100%である。
【0014】
磁気スイッチングコイル4eと磁気スイッチングコイル6eに印加された脈流電流は時間と共に途切れて磁気スイッチング磁路4ea、及び 磁気スイッチング磁路6eaの磁力線遮断作用が終わると永久磁石2eの磁力線と永久磁石3eの磁力線は 又 外部エネルギーに関係なく自己透磁力によって流回し合った状態となり2分割した脈流電流の他側方の電流が磁気スイッチングコイル5eと磁気スイッチングコイル7eに印加されるので、その磁力線は磁気スイッチング磁路5eaと磁気スイッチング磁路7eaを流回して永久磁石2eと永久磁石3eの閉磁路を磁気的に遮断し磁力線も磁気スイッチング磁路5eaと磁気スイッチング磁路7ea側を遮断すると永久磁石2eの磁力線は磁気スイッチングコイル4e内コア、磁気スイッチング磁路4eaと発電コイル8e内を流回して大きな起電力を発生する、又 永久磁石3eの磁力線は磁気スイッチングコイル6e内コア、磁気スイッチング磁路6eaと発電コイル9e内を流回して大きな起電力を発生する。 この二つの発電コイルに発生した起電力は同位相に合成して出力電流とする。
【0015】
【発明の効果】
A−少ない電気料金で沢山の電気が使える。
B−小さな発電所で多くの電気が使える。
C−小さなバッテリーを使用して大きな電気自動車を走らせながら且つバッテリーの充電もできる永久サイクルが可能である。
D−送電設備が小型化 及び コストダウンできる等の多くのメリットがある。
E−原子力発電所等危険な設備が無くても人類は文化生活が営める。
【図面の簡単な説明】
【図1】本発明請求項第1項の正面図である。
【図2】本発明請求項第2項の正面図である。
【図3】本発明請求項第3項の正面図である。
【図4】本発明請求項第4項の正面図である。
【図5】本発明請求項第5項の正面図である。
【図6】本発明装置の入力電流 及び 出力電流の波形
【符号の説明】
1a 電力増殖器コア
1b 電力増殖器コア
1c 電力増殖器コア
1d 電力増殖器コア
1e 電力増殖器コア
2a 永久磁石
2b 永久磁石
2c 永久磁石
2d 永久磁石
2e 永久磁石
3d 永久磁石
3e 永久磁石
4a 磁気スイッチングコイル
4b 磁気スイッチングコイル
4c 磁気スイッチングコイル
4d 磁気スイッチングコイル
4e 磁気スイッチングコイル
4ba 磁気スイッチング磁路
4ca 磁気スイッチング磁路
4cb 磁気スイッチング磁路用エアーギャップ
4da 磁気スイッチング磁路
4db 磁気スイッチング磁路
4dc 磁気スイッチング磁路用エアーギャップ
4ea 磁気スイッチング磁路
5a 磁気スイッチングコイル
5b 磁気スイッチングコイル
5ba 磁気スイッチング磁路
5c 磁気スイッチングコイル
5ca 磁気スイッチング磁路
5cb 磁気スイッチング磁路用エアーギャップ
5d 磁気スイッチングコイル
5da 磁気スイッチング磁路
5db 磁気スイッチング磁路
5dc 磁気スイッチング磁路用エアーギャップ
5e 磁気スイッチングコイル
5ea 磁気スイッチング磁路
6e 磁気スイッチングコイル
6ea 磁気スイッチング磁路
7e 磁気スイッチングコイル
7ea 磁気スイッチング磁路
8a 発電コイル
8b 発電コイル
8c 発電コイル
8d 発電コイル
8e 発電コイル
9a 発電コイル
9b 発電コイル
9c 発電コイル
9e 発電コイル
c 交流電流を2分割した脈流電流波形
d 交流電流を2分割した脈流電流波形
e 発電コイル8aと発電コイル9a、発電コイル8bと発電コイル9b、発電コイル8cと発電コイル9c、を同位相に接続した出力電流波形
f 発電コイル8aと発電コイル9a、発電コイル8bと発電コイル9b、発電コイル8cと発電コイル9cを逆位相に接続した場合と発電コイル8eと発電コイル9eを同位相に接続した場合と発電コイル8dの出力電流波形
N 永久磁石 及び スイッチング電磁石の磁極性
S 永久磁石 及び スイッチング電磁石の磁極性
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a commercial power supply circuit and a device for efficiently multiplying power energy in a power supply circuit such as an electric vehicle.
[0002]
[Prior art]
Conventionally, there was a power doubler (Japanese Patent Application No. 2002-147155), a power multiplication device (Japanese Patent Application No. 2002-250117), and a high-efficiency type double power transformer (see Japanese Patent Application No. 2002-301350). There was room for improvement.
[0003]
[Problems to be solved by the invention]
Efficiency is higher than the performance of the above three cases.
[0004]
[Means for Solving the Problems]
The power is multiplied by a method different from the above three methods.
[0005]
【Example】
The present invention is a power breeder having a simple structure in which a permanent magnet is formed in a completely closed magnetic circuit around a core made of silicon steel or the like having a high magnetic permeability, and a magnetic switching coil and a power generation coil are wound around the core.
Claim 1 will be described with reference to FIG. 1. A permanent magnet is formed as a completely closed magnetic path at the center of a core in which a large number of silicon steel sheets having high magnetic permeability are superimposed so as to prevent magnetic leakage, and magnetic switching is provided at both ends of the core. A coil for power generation is wound around the coil and the side part, respectively.
Regarding the operation, the lines of magnetic force of the permanent magnet 2a provided at the center of the power breeder core 1a are circulated by 50% to the left and right cores by the self-permeability. (Every part of the power breeder core 1a is The magnetic switching coil 4a and the magnetic switching coil 5a divide the current obtained by converting a commercial AC power supply or a DC power supply with an inverter or the like into two parts by a diode or the like into a magnetic switching coil 4a and a magnetic switching coil 5a (FIG. 6). Pulsating currents c and d) are applied alternately.
[0006]
First, a half-wave of the pulsating current (pulsating current c in FIG. 6) is input to the magnetic switching coil 4a (the permanent magnet and the magnetic switching coil are input by combining the electrodes so that the magnetic poles are the same). Since the magnetic pole of the permanent magnet 2a and the magnetic pole of the permanent magnet 2a are of the same polarity, they repel each other, magnetically cut off the closed magnetic circuit and also cut off the magnetic flux, so that 100% of the magnetic energy of the permanent magnet 2a flows to the power generation coil 9a. At this time, the magnetic lines of force flowing toward the magnetic switching coil 4a are 50% of the magnetic flux density of the permanent magnet 2a, so that the repulsive electric energy may be 50% of the magnetic flux density of the permanent magnet 2a. When the applied pulsating current is interrupted, the magnetic switching coil 4a and the power generating coil are repelled by 50% of the repelled magnetic force lines, that is, the magnetic flux density of the permanent magnet 2a. 8a is returned by the self-permeability of the closed magnetic circuit irrespective of external energy, and at the same time, a half-wave opposite to the pulsating current (pulsating current d in FIG. 6) flows through the magnetic switching coil 5a. Since the magnetic lines of force of the magnet 2a and the magnetic lines of the switching coil 5a are repelled, the closed magnetic circuit is magnetically cut off and the magnetic lines of force are also cut off, so that at this time, the permanent magnet 2a is repelled by 50% of the magnetic flux density of the permanent magnet 2a. All of the magnetic flux density of 100% flows through the inside of the power generation coil 8a, so that an electromotive force of 100% of the performance of the permanent magnet 2a is generated in the power generation coil 8a.
[0007]
That is, by alternately inputting electric energy of 50% of the magnetic energy of the permanent magnet 2a, 100% of the magnetic energy of the permanent magnet 2a can be circulated inside the power generation coil 8a and the power generation coil 9a. If 50% electric energy is input, 100% electric output of the performance of the permanent magnet will be obtained.
Describing the second aspect, the second aspect is almost the same as the first aspect, except that the magnetic field line of the magnetic switching coil is directly connected to the magnetic field line of the permanent magnet. In contrast to the repulsion and flowing into the air, the second aspect constitutes a magnetic path unique to the magnetic switching coil. The magnetic field lines are repelled to magnetically cut off the closed magnetic path and cut off the magnetic lines of force.
[0008]
The magnetic field lines of the permanent magnet 2b are closed to the core and the magnetic switching magnetic path 4ba side of the permanent magnet 2b and to the core and the magnetic switching magnetic path 5ba side of the magnetic switching coil 5b. When a half-wave of a pulsating current obtained by dividing a commercial AC power supply into two parts by a diode or the like is applied to the magnetic switching coil 4b, the magnetic flux lines of the magnetic switching coil 4b become magnetic switching magnetic paths. 4ba, the magnetic field lines of the permanent magnet 2b are repelled, and the closed magnetic circuit is magnetically cut off only on the side of the magnetic switching coil 4b to cut off the lines of magnetic force. At this time, the lines of magnetic force flowing on the side of the magnetic switching coil 4b are permanent. Since it is 50% of the magnetic flux density of the magnet 2b, repel only this 50% line of magnetic force. For example, on the side of the power generation coil 9b, the magnetic flux of 50% that was circulated by the self-permeability of the closed magnetic circuit is combined and 100% of the magnetic flux of the permanent magnet 2b flows all over, so that a large electromotive force is generated in the power generation coil 9b. At the same time, when the pulsating current applied to the magnetic switching coil 4b is interrupted with time, the magnetic flux is again generated by the self-permeability of the closed magnetic circuit.
Since the reverse half of the pulsating current half-wave is applied to the magnetic switching coil 5b at the same time as the current flowing to the switching coil 4b side and the magnetic switching coil 5b side by 50%, the lines of magnetic force of the magnetic switching coil 5b become magnetic switching magnetic fields. While flowing in the path 5ba, the magnetic field lines of the permanent magnet 2b repel and repel the magnetic field of the closed magnetic circuit only on the side of the magnetic switching coil 5b to cut off the lines of magnetic force. At this time, the lines of magnetic force flowing on the side of the magnetic switching coil 5b also Since the magnetic flux density of the permanent magnet 2b is 50%, if only the magnetic line of 50% is repelled, it is combined with the magnetic line of 50% flowing around by the self-permeation force of the closed magnetic circuit on the generating coil 8b side, and the permanent magnet 2b has Since all magnetic energy flows in the power generation coil 8b, a large electromotive force is generated in the power generation coil 8b.
[0010]
The third aspect of the present invention is the one in which an air gap is provided in the magnetic switching magnetic path of the second aspect. Usually, the magnetic flux flows through the air gap 4cb for the magnetic switching magnetic path and the air gap 5cb for the magnetic switching magnetic path. The second embodiment is the same as the second embodiment except that the pulsating current flows only when a pulsating current is applied to the magnetic switching coil 4c and the magnetic switching coil 5c.
The electromotive force of the power generating coil 8a, the power generating coil 9a, the power generating coil 8b, the power generating coil 9b, the power generating coil 8c, and the power generating coil 9c according to the first, second, and third aspects is combined to obtain output power. .
Claim 4 will be described with reference to FIG. 4. The permanent magnet 2d, the permanent magnet 3d, and the core part in the magnetic switching coil 4d on both sides of the power breeder core 1d having the power generation coil 8d wound in the center, The magnetic switching magnetic path 4da, the core inside the magnetic switching coil 5d, and the magnetic switching magnetic path 5da are in a completely closed magnetic circuit state.
[0011]
Then, a commercial AC power is applied to the magnetic switching coil 4d and the magnetic switching coil 5d in two parts by means of a diode or the like. First, when a half-wave divided into two is input to the magnetic switching coil 4d, the magnetic lines of force become magnetic switching magnetic paths. While flowing around 4da, the magnetic field lines of the permanent magnet 2d are repelled by the magnetic lines of force of the permanent magnet 2d, and the magnetically closed magnetic circuit is cut off by the magnetic switching coil 4d and the magnetic switching magnetic path 4da. Since the magnetic flux is consumed by flowing through the magnetic path 4db and the air gap 4dc for the magnetic switching magnetic path, the lines of magnetic force of the permanent magnet 3d flow through the power generation coil 8d from above in FIG. And the pulsating current input to the magnetic switching coil 4d changes with time. At the same time, the pulsating current on the opposite side is input to the magnetic switching coil 5d, and the lines of magnetic force repel the lines of magnetic force of the permanent magnet 3d while flowing through the magnetic switching magnetic path 5da, thereby magnetically closing the magnetic switching coil 5d. And the magnetic switching magnetic path 5da is cut off and the magnetic lines of force are also cut off, so that the magnetic lines of force of the permanent magnet 3d are consumed by flowing through the magnetic switching magnetic path 5db and the air gap 5dc for the magnetic switching magnetic path, and at the same time, the magnetic lines of force of the permanent magnet 2d are An electric power is generated in the power generation coil 8d by flowing through the power generation coil 8d from below in FIG. 4 via the power multiplying core 1d.
[0012]
At this time, since the magnetic lines of force of the permanent magnet 2d and the magnetic lines of force of the permanent magnet 3d alternately flow through the power generation coil 8d from the vertical direction in FIG. 4, an alternating current is output.
Claim 5 will be described with reference to FIG. 5. This device is a device in which two devices of the above-mentioned claim 2 are combined and operated at the same time. Only the same exchange as the item. (The devices according to the first, second and third aspects are capable of selecting an output of an alternating current or a direct current.) In the power breeder core 1e, the permanent magnet 2e, the permanent magnet 3e, and the magnetic switching coil 4e. Core, magnetic switching magnetic path 4ea, core in magnetic switching coil 5e, magnetic switching magnetic path 5ea, core in magnetic switching coil 6e, magnetic switching magnetic path 6ea, core in magnetic switching coil 7e, magnetic switching magnetic path 7ea, power generation coil 8e Of the permanent magnet 2e and the magnetic line of the permanent magnet 3e are connected to the magnetic switching coil 4e, the magnetic switching coil 5e and the magnetic switching coil 7e. The state where the current flows to the switching coil 6e side by self-permeability. A.
[0013]
First, when a commercial AC power supply is divided into two by a diode or the like and converted into a pulsating current and applied to the magnetic switching coil 4e and the magnetic switching coil 6e at the same time, the lines of magnetic force generated therefrom pass through the magnetic switching magnetic path 4ea and the magnetic switching magnetic path 6ea. The magnetic flux lines circulate and magnetically block the closed magnetic paths of the permanent magnets 2e and 3e, and the magnetic lines of force also block the magnetic switching magnetic path 4ea and the magnetic switching magnetic path 6ea, so that the magnetic lines of magnetic force of the permanent magnet 2e are in the core of the magnetic switching coil 7e. A large electromotive force is generated by flowing through the magnetic switching magnetic path 7ea and the power generation coil 9e. The lines of magnetic force of the permanent magnet 3e circulate in the core of the magnetic switching coil 5e, the magnetic switching magnetic path 5ea, and the inside of the power generation coil 8e to generate a large electromotive force. %, The electromotive force generated by the power generating coil is 100% of the performance of the permanent magnet.
[0014]
The pulsating currents applied to the magnetic switching coil 4e and the magnetic switching coil 6e are interrupted with time, and when the magnetic switching magnetic path 4ea and the magnetic switching magnetic path 6ea complete the magnetic field line blocking action, the magnetic field lines of the permanent magnet 2e and the permanent magnet 3e The lines of magnetic force are also circulated by self-permeability regardless of external energy, and the current on the other side of the pulsating current divided into two is applied to the magnetic switching coil 5e and the magnetic switching coil 7e. When the switching magnetic path 5ea and the magnetic switching magnetic path 7ea are circulated, the closed magnetic path of the permanent magnet 2e and the permanent magnet 3e is magnetically cut off, and the magnetic field lines also cut off the magnetic switching magnetic path 5ea and the magnetic switching magnetic path 7ea side. Are the cores in the magnetic switching coil 4e and the magnetic switches A large electromotive force is generated by flowing through the magnetic path 4ea and the power generation coil 8e, and the lines of magnetic force of the permanent magnet 3e flow through the core in the magnetic switching coil 6e, the magnetic switching magnetic path 6ea, and the power generation coil 9e. Generate power. The electromotive forces generated in the two power generation coils are combined in the same phase to obtain an output current.
[0015]
【The invention's effect】
A-A lot of electricity can be used for a small electricity fee.
B-A lot of electricity can be used in a small power plant.
C—Permanent cycles are possible, while running a large electric vehicle using a small battery and also charging the battery.
D-There are many advantages such as downsizing and cost reduction of power transmission equipment.
E- Mankind can live a cultural life without dangerous facilities such as nuclear power plants.
[Brief description of the drawings]
FIG. 1 is a front view of the first aspect of the present invention.
FIG. 2 is a front view according to the second aspect of the present invention.
FIG. 3 is a front view of the third aspect of the present invention.
FIG. 4 is a front view of the fourth aspect of the present invention.
FIG. 5 is a front view of the fifth aspect of the present invention.
FIG. 6 shows waveforms of an input current and an output current of the device of the present invention.
1a Power multiplying core 1b Power multiplying core 1c Power multiplying core 1d Power multiplying core 1e Power multiplying core 2a Permanent magnet 2b Permanent magnet 2c Permanent magnet 2d Permanent magnet 2e Permanent magnet 3d Permanent magnet 3e Permanent magnet 4a Magnetic switching coil 4b Magnetic switching coil 4c Magnetic switching coil 4d Magnetic switching coil 4e Magnetic switching coil 4ba Magnetic switching magnetic path 4ca Magnetic switching magnetic path 4cb Air gap 4da for magnetic switching magnetic path Magnetic switching magnetic path 4db Magnetic switching magnetic path 4dc Magnetic switching magnetic path Air gap 4ea Magnetic switching magnetic path 5a Magnetic switching coil 5b Magnetic switching coil 5ba Magnetic switching magnetic path 5c Magnetic switching coil 5ca Magnetic switching magnetic 5cb Air gap for magnetic switching magnetic path 5d Magnetic switching coil 5da Magnetic switching magnetic path 5db Magnetic switching magnetic path 5dc Magnetic gap for magnetic switching magnetic path 5e Magnetic switching coil 5ea Magnetic switching magnetic path 6e Magnetic switching coil 6ea Magnetic switching magnetic path 7e Magnetic Switching coil 7ea Magnetic switching magnetic path 8a Generating coil 8b Generating coil 8c Generating coil 8d Generating coil 8e Generating coil 9a Generating coil 9b Generating coil 9c Generating coil 9e Generating coil c Pulsating current waveform d obtained by dividing AC current into two Divided pulsating current waveform e Output current waveform f in which power generation coil 8a and power generation coil 9a, power generation coil 8b and power generation coil 9b, and power generation coil 8c and power generation coil 9c are connected in phase. 8a and the power generating coil 9a, the power generating coil 8b and the power generating coil 9b, the power generating coil 8c and the power generating coil 9c connected in opposite phases, the power generating coil 8e and the power generating coil 9e connected in the same phase, and the output of the power generating coil 8d. Current waveform N Magnetic polarity of permanent magnet and switching electromagnet S Magnetic polarity of permanent magnet and switching electromagnet

Claims (5)

電力増殖器コア1aに永久磁石2a、磁気スイッチングコイル4a、磁気スイッチングコイル5a、発電コイル8a、発電コイル9aを設け、永久磁石と磁気スイッチングを応用した事を特徴とする電力増殖器。A power multiplying device characterized in that a permanent magnet 2a, a magnetic switching coil 4a, a magnetic switching coil 5a, a power generating coil 8a, and a power generating coil 9a are provided in a power multiplying core 1a, and permanent magnets and magnetic switching are applied. 電力増殖器コア1bに永久磁石2b、磁気スイッチングコイル4b、磁気スイッチング磁路4ba、磁気スイッチングコイル5b、磁気スイッチング磁路5ba、発電コイル8b、発電コイル9bを設け、永久磁石と磁気スイッチングを応用した事を特徴とする電力増殖器。A permanent magnet 2b, a magnetic switching coil 4b, a magnetic switching magnetic path 4ba, a magnetic switching coil 5b, a magnetic switching magnetic path 5ba, a power generating coil 8b, and a power generating coil 9b are provided in the power breeder core 1b, and permanent magnet and magnetic switching are applied. Power breeder characterized by things. 電力増殖器コア1cに永久磁石2c、磁気スイッチングコイル4c、磁気スイッチング磁路4ca、磁気スイッチング磁路用エアーギャップ4cb、磁気スイッチングコイル5c、磁気スイッチング磁路5ca、磁気スイッチング磁路用エアーギャップ5cb、発電コイル8c、発電コイル9cを設け、永久磁石と磁気スイッチングを応用した事を特徴とする電力増殖器。A permanent magnet 2c, a magnetic switching coil 4c, a magnetic switching magnetic path 4ca, an air gap 4cb for a magnetic switching magnetic path, a magnetic switching coil 5c, a magnetic switching magnetic path 5ca, an air gap 5cb for a magnetic switching magnetic path, A power multiplying device comprising a power generating coil 8c and a power generating coil 9c, wherein permanent magnets and magnetic switching are applied. 中央に発電コイル8dを巻設した電力増殖器コア1dの両端部に磁気スイッチング磁路用エアーギャップ4dcを設けた磁気スイッチング磁路4db 及び 磁気スイッチング磁路用エアーギャップ5dcを設けた磁気スイッチング磁路5dbを、又 側部には磁気スイッチングコイル4d、磁気スイッチング磁路4da、及び 磁気スイッチングコイル5d、磁気スイッチング磁路5daを設け、永久磁石と磁気スイッチングを応用した事を特徴とする電力増殖器。A magnetic switching magnetic path 4db provided with a magnetic switching magnetic path air gap 4dc at both ends of a power breeder core 1d having a power generating coil 8d wound at the center, and a magnetic switching magnetic path provided with a magnetic switching magnetic air gap 5dc. A power multiplying device characterized in that a magnetic switching coil 4d, a magnetic switching magnetic path 4da, and a magnetic switching coil 5d and a magnetic switching magnetic path 5da are provided on the sides and permanent magnets and magnetic switching are applied. 電力増殖器コア1eに永久磁石2e、永久磁石3e、磁気スイッチングコイル4e、磁気スイッチング磁路4ea、磁気スイッチングコイル5e、磁気スイッチング磁路5ea、磁気スイッチングコイル6e、磁気スイッチング磁路6ea、磁気スイッチングコイル7e、磁気スイッチング磁路7ea、発電コイル8e、発電コイル9eを設け、永久磁石と磁気スイッチングを応用した事を特徴とする電力増殖器。Permanent magnet 2e, permanent magnet 3e, magnetic switching coil 4e, magnetic switching magnetic path 4ea, magnetic switching coil 5e, magnetic switching magnetic path 5ea, magnetic switching coil 6e, magnetic switching magnetic path 6ea, magnetic switching coil 7e, a magnetic switching magnetic path 7ea, a power generation coil 8e, and a power generation coil 9e, wherein a permanent magnet and magnetic switching are applied.
JP2002358908A 2002-12-11 2002-12-11 Power multiplier Withdrawn JP2004194421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358908A JP2004194421A (en) 2002-12-11 2002-12-11 Power multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358908A JP2004194421A (en) 2002-12-11 2002-12-11 Power multiplier

Publications (1)

Publication Number Publication Date
JP2004194421A true JP2004194421A (en) 2004-07-08

Family

ID=32758459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358908A Withdrawn JP2004194421A (en) 2002-12-11 2002-12-11 Power multiplier

Country Status (1)

Country Link
JP (1) JP2004194421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446656A (en) * 2007-02-16 2008-08-20 Zahoor Akram Shaikh Electricity generation from the magnetic field of a permanent magnet
WO2010083538A2 (en) * 2009-01-16 2010-07-22 Hoang Giang Dinh Generators and motors using propagated magnetic field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446656A (en) * 2007-02-16 2008-08-20 Zahoor Akram Shaikh Electricity generation from the magnetic field of a permanent magnet
WO2010083538A2 (en) * 2009-01-16 2010-07-22 Hoang Giang Dinh Generators and motors using propagated magnetic field
WO2010083538A3 (en) * 2009-01-16 2011-11-17 Hoang Giang Dinh Generators and motors using propagated magnetic field

Similar Documents

Publication Publication Date Title
Almoraya et al. Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters
Xue et al. Control and integrated half bridge to winding circuit development for switched reluctance motors
US20070063606A1 (en) Dual machine, and method of power generation and electromotive operation using the same
JP2004194421A (en) Power multiplier
CN206135564U (en) Three -phase mixed excitation magnetic flow switches motor structure
Papathanassiou et al. Direct-coupled permanent magnet wind turbine design considerations
KR101082879B1 (en) transformer using double-core structure.
JP2004140053A (en) High efficiency power doubler transformer
CN210669845U (en) Bipolar multi-winding permanent magnet power generation device body
JP2006121889A (en) Device for converting energy of permanent magnet into electrical energy
CN107222042A (en) Electromagnetic driver
Yasuhiro et al. Design of the unidirectional current type coreless DC brushless motor for electrical vehicle with low cost and high efficiency
JP2003338413A (en) Power doubler transformer
JP2004274932A (en) Electric power multiplication machine
Ullah et al. Design and electromagnetic performance analysis of linear hybrid excited flux switching machine for long stroke applications
JP3563455B2 (en) Generator coil device
Fortes et al. Optimized Double Sided Linear Generator for Wave Energy in Sao Paulo’s Coast
TWI678863B (en) Power generation device with magnetic group opposite to magnetic pole
Naing Design and Simulation of Permanent Magnet Linear Generator for Wave Energy Power Plant
JP2008220138A (en) Permanent magnet generator
KR20080096155A (en) The method of frame to high efficiency generator
Vining et al. Linear generators for direct-drive ocean wave energy conversion
KR19980084438A (en) Commutator and Brushless DC Power Generation Method and Generator
JP2017208994A (en) Mono pole multistage transformer motor
JPH11150938A (en) Diamagnetism counterannihilated perpetual generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070731