JP2004194384A - Cooling device for motor vehicle battery - Google Patents

Cooling device for motor vehicle battery Download PDF

Info

Publication number
JP2004194384A
JP2004194384A JP2002356854A JP2002356854A JP2004194384A JP 2004194384 A JP2004194384 A JP 2004194384A JP 2002356854 A JP2002356854 A JP 2002356854A JP 2002356854 A JP2002356854 A JP 2002356854A JP 2004194384 A JP2004194384 A JP 2004194384A
Authority
JP
Japan
Prior art keywords
air
battery
switching valve
side switching
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356854A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hanada
知之 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002356854A priority Critical patent/JP2004194384A/en
Publication of JP2004194384A publication Critical patent/JP2004194384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for a motor vehicle battery capable of cooling the battery while reducing a burden on an air conditioner by selectively introducing inside air and outside air to a separately formed path for cooling the battery, and by selectively exhausting the air after cooling the battery to the inside and outside of a vehicle. <P>SOLUTION: A midway of an air duct 13 for communicating an air intake opening 11 with an air exhaust opening 12 is communicated with a cooling case 17 of the battery 15. The battery 15 is cooled by flowing air in a direction from the air intake opening 11 to the air exhaust opening 12 by a blower 14 provided on the air duct 13. Switching between inside and outside air introduction of an air intake opening 11 is conducted by an air intake side change-over valve 20. Switching between discharge to vehicle inside and outside of the air exhaust opening 12 is conducted by an exhaust side change-over valve 21. A change-over operation for air intake between the inside and outside of the vehicle by the air intake side change-over valve, and a change-over operation for exhaustion between the inside and outside of the vehicle by the exhaust side change-over valve, are controlled by a controller 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電動車両用バッテリの冷却装置に関する。
【0002】
【従来の技術】
ハイブリッドカーの駆動源はエンジンと電動モータとの併用であり、また、電気自動車の駆動源は電動モータとなっており、いずれの車両にあっても電動モータを駆動するためにバッテリを備える。バッテリは充電時や放電時に発熱し、この発熱がバッテリ性能の低下原因になるため、積極的にバッテリを冷却する必要がある。
【0003】
従来の電動車両用バッテリの冷却装置としては、バッテリを冷却液体によって冷却するようになっており、この冷却液体を、ファンにより導入した外気で冷却する第1熱交換器を設けるとともに、空調装置によって冷却した第2熱交換器を前記第1熱交換器の外気導入方向に対して上流側に配置して、第1熱交換器の冷却、ひいては、前記冷却液体を冷却するようにしたものがある(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−1911904号公報(第4頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の電動車両用バッテリの冷却装置にあっては、空調装置を利用してバッテリを冷却するものであるため、空調装置を常時作動することになって燃費が悪化してしまう。
【0006】
そこで、本発明はバッテリを冷却する通路を別途形成し、その通路に内気と外気を選択的に導入するとともに、バッテリ冷却後の空気を車内と車外に選択的に排出することにより、空調装置の負担を軽減しつつバッテリを冷却できる電動車両用バッテリの冷却装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の電動車両用バッテリの冷却装置にあっては、駆動源の一部若しくは全部に電動機を用いた電動車両に搭載したバッテリを冷却するにあたって、空気吸入口と空気排出口とを連通する空気通路を設け、この空気通路の途中をバッテリの冷却ケースに連通して、この空気通路に送風機を設けて空気吸入口から空気排出口方向に空気を流し、冷却ケースを通過する空気によってバッテリを冷却し、空気吸入口の内気導入と外気導入を吸気側切換弁によって切換えるとともに、空気排出口の車内排出と車外排出を排気側切換弁によって切換え、かつ、これら吸気側切換弁による内気・外気の導入切換え、および排気側切換弁による車内・車外の排出切換えをコントローラによって制御するようにしている。
【0008】
【発明の効果】
本発明によれば、空気通路に内気を導入してバッテリを冷却するモードと、空気通路に外気を導入してバッテリを冷却するモードとを使い分けることにより、外気でバッテリを冷却するモードでは車室内の空調空気をバッテリ冷却に使用しないため、空調装置に負担をかけるのを防止することができ、また、バッテリを冷却した後の空気の排出先も車内側と車外側に切換え可能なため、車外側に選択したときには車室内温度の上昇を防止して、空調装置に負担をかけるのを防止できる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0010】
図1,図2は本発明にかかる電動車両用バッテリの冷却装置の第1実施形態を示し、図1は冷却装置の概略構成図、図2はコントローラによるバッテリ冷却風の制御態様を示す説明図である。
【0011】
この第1実施形態の電動車両用バッテリの冷却装置10は、ハイブリッドカーのように駆動源の一部、若しくは電気自動車のように駆動源の全部に電動機としての電動モータを用いた電動車両に適用され、その電動車両に搭載した電動モータの電源となるバッテリを冷却するようになっている。
【0012】
即ち、この実施形態の冷却装置10は、内気(車室内空気)導入と外気(車外空気)導入を選択的に切換え可能な空気吸入口11と、車内排出と車外排出を選択的に切換え可能な空気排出口12とを連通する空気通路としての冷却ダクト13を設け、この冷却ダクト13に送風機14によって空気吸入口11から空気排出口12方向に空気を流すとともに、この冷却ダクト13を流通する空気でバッテリ15を冷却するようになっており、かつ、空気吸入口11の内気・外気の導入切換え、および空気排出口12の車内・車外の排出切換えをコントローラ16によって制御するようになっている。
【0013】
空気吸入口11は、内気導入口11aと外気導入口11bを設けてあり、これら両導入口11a,11bは吸気側切換弁としての第1切換ドア20によって選択的に開閉される。
【0014】
空気排出口12は、車内排出口12aと車外排出口12bを設けてあり、これら両排出口12a,12bは排気側切換弁としての第2切換ドア21によって選択的に開閉される。
【0015】
尚、前記第1切換ドア20および前記第2切換ドア21は、図示状態では内気,外気導入口11a,11bの両方および車内,車外排出口12a,12bの両方を閉塞した状態を示すが、実際は第1切換ドア20および第2切換ドア21は1つであり、内気,外気導入口11a,11bのいずれか一方および車内,車外排出口12a,12bのいずれか一方が閉止されることになる。
【0016】
また、前記空気吸入口11および前記空気排出口12は、それぞれを1つづつ設けた場合を図示したが、これに限ることなく空気吸入口11および空気排出口12を複数設けることもできる。
【0017】
バッテリ15はこの実施形態では2個が並設して搭載され、それぞれは冷却ケース17に独立して収納してあり、各冷却ケース17には空気入口17aと空気出口17bを設けてある。
【0018】
そして、空気吸入口11と空気排出口12を連通する冷却ダクト13の途中を分断して、空気吸入口11側の導入ダクト13aを冷却ケース17の空気入口17aに接続するとともに、空気排出口12側の排出ダクト13bを冷却ケース17の空気出口17bに接続してある。
【0019】
前記送風機14は前記排出ダクト13bに設けられ、この送風機14によって冷却ダクト13内の空気を空気吸入口11側から空気排出口12方向へと強制的に流すようになっており、その途中で冷却ケース17を空気が通過することによりバッテリ15を空冷するようになっている。
【0020】
前記コントローラ16には、バッテリ温度センサー22および吸気温度センサー23の各検出信号が入力されるとともに、更に、外気温信号、車速信号、エアコンインテーク位置信号等が入力され、かつ、このコントローラ16からは送風機14を駆動する指令信号、および第1,第2切換ドア20,21の切換信号を出力するようになっている。
【0021】
従って、前記各種入力信号に基づいて、コントローラ16から第1,第2切換ドア20,21に切換え信号を出力することにより、バッテリ15の冷却風を適正に制御するようになっており、例えば図2に示すように外気温、車速およびインテーク位置に応じてバッテリ冷却風の吸気側と排気側とを制御するようになっている。
【0022】
即ち、コントローラ16から吸気側切換弁20および排気側切換弁21に出力する切換信号は、第1の態様として吸気側切換弁20および排気側切換弁21を、外気温の高,中,低に基づいて切換えるようになっている。
【0023】
また、第2の態様として吸気側切換弁20および排気側切換弁21を、車速の高速域,低速域に基づいて切換えるようになっており、更に、第3の態様として停車時には、吸気側切換弁20を内気導入側に切換えるとともに、排気側切換弁21を車外排出側に切換えるようになっている。
【0024】
更に、第4の態様として吸気側切換弁20および排気側切換弁21を、バッテリの温度に基づいて切換えるようになっており、また、第5の態様として吸気側切換弁20および排気側切換弁21を、図外の空調装置のインテーク設定位置(外気導入モードFREまたは内気循環モードREC)に基づいて切換えるようになっている。
【0025】
即ち、この実施形態の冷却装置10では、図外の空調装置によって車内が冷房されている状態で制御される場合であり、高外気温の場合で高速時にバッテリ15温度の許容温度に余裕がある場合(図2中、通常時)は、空調装置の内外気循環モードにかかわらず、吸気側切換弁20を外気導入口11bの開放側に切り換えて、空気吸入口11から吸入するバッテリ冷却風として可能な限り外気を使用することで、空調装置の負荷を低減するようになっている。
【0026】
このとき、空気排出口12は排気側切換弁21を車外排出口12bの開放側に切り換えて、バッテリ15を通過して暖められた冷却風を車外側に排出して、車室内に暖められた空気が戻されないようにしてある。
【0027】
また、バッテリ15が許容温度に余裕が無い場合(図2中、バッテリ温高温時)、および車両周辺の雰囲気温度の高い低速時は、吸気側切換弁20を内気導入口11aの開放側に切り換えてバッテリ冷却風の吸入口11を冷房された内気とし、バッテリ15の冷却を優先させる。
【0028】
このとき、空気排出口12は空調装置のインテーク設定位置が内気循環モード(REC)の場合を除き、排気側切換弁21を車外排出口12bの開放側に切り換えて、バッテリ15を通過して暖められた冷却風を車外側に排出して、車室内に暖められた空気が戻されないようにしてある。
【0029】
因に、低速域ではバッテリ15の負荷は高速域に比較して小さいので、バッテリ15の発熱量も小さくなり、バッテリ15の下流域の空気の温度上昇代が高速域のそれに比較して小さいことと、このモード(外気温高,低速域)では外気温度が高く、バッテリ15の下流域の空気を車外に排出した分、導入しなければならない外気の温度もまた高いことを考慮すると、空調装置のインテーク位置が内気循環モード(REC)のときにバッテリ15の下流域の空気を車室内に戻しても、空調装置の負担はさほど変化が無い。
【0030】
更に、車室内を冷房しない低外気温時には、外気をバッテリ15に導入するとバッテリ15の温度が下がり過ぎる恐れ(バッテリ15は低温状態で効率が悪化する)があるため、特に、低外気温での始動時には吸気側切換弁20を内気導入口11aの開放側に切り換えて、空気吸入口11から吸入した内気でバッテリ15の温度を上昇させるようになっている。
【0031】
また、停車時には、空気吸入口11および空気排出口12のうち、一方を外気連通し、他方を内気連通することにより、通常のドラフター(換気)として機能させることができる。
【0032】
以上の構成により本実施形態の電動車両用バッテリの冷却装置10にあっては、冷却ダクト13に内気を導入してバッテリ15を冷却するモードと、冷却ダクト13に外気を導入してバッテリ15を冷却するモードとを使い分けることにより、外気でバッテリ15を冷却するモードでは車室内の空調空気をバッテリ15の冷却に使用しないため、空調装置への負担を無くすことができる。
【0033】
そして、バッテリ15を冷却した後の暖まった空気の排出先も車内側と車外側に切換え可能なため、車外側に選択したときには車室内温度の上昇を防止して、空調装置に負担をかけるのを防止できる。
【0034】
また、吸気側切換弁20および排気側切換弁21を、外気温に基づいて切換えたことにより、バッテリ15を冷却するのに適した温度の空気を、高外気温時に空調装置で冷房した内気、または低外気温時に冷房しない内気、あるいは中外気温時に外気から導入して、バッテリ15を効果的に冷却することができる。
【0035】
更に、吸気側切換弁20および排気側切換弁21を、車速に基づいて切換えたことにより、高外気温時に、車両の周囲温度が外気温よりも高くなる低速時には、内気でバッテリ15を冷却し、車両の周囲温度が外気相当となる高速時には、バッテリ15の温度によっては外気でバッテリ15を冷却することができるため、空調装置の負荷を軽減させることができる。
【0036】
更にまた、停車時は、吸気側切換弁20を内気導入側に切換えるとともに、排気側切換弁21を車外排出側に切換えたことにより、停車時はドアを開閉する可能性があり、この状況で通常のドラフターの機能を持たせることができ、ドア開閉時の影響を減少することができる。
【0037】
また、吸気側切換弁20および排気側切換弁21を、バッテリ15の温度に基づいて切換えたので、外気による冷却を行っている場合に、バッテリ15の温度が高い状態では空調装置による内気導入モードでバッテリ15を冷却するため、効果的にバッテリ15を冷却することができる。
【0038】
更に、吸気側切換弁20および排気側切換弁21を、空調装置のインテーク設定位置(FREまたはREC)に基づいて切り換えたので、外気導入モード(FRE)でバッテリ15を通過して暖められた冷却風が、車内に戻されないように車外側に排出できるため、空調装置の負担を軽減することができる。
【0039】
図3は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0040】
図3は冷却装置の要部を示す概略構成図であり、この第2実施形態の冷却装置10aでは、吸気側切換弁20および排気側切換弁21に、それぞれの開度割合を調節する制御を付加するようにしている。
【0041】
即ち、吸気側切換弁20は、第1実施形態のように内気導入口11aまたは外気導入口11bを閉止する位置への切換えが可能なことは勿論のこと、それらの途中の開度設定が可能となり、内気導入口11aおよび外気導入口11bから適宜割合をもって内気および外気を混合して吸入することができる。
【0042】
また、排気側切換弁21にあっても、車内排出口12aまたは車外排出口12bを閉止する位置への切換えが可能なことは勿論のこと、それらの途中の開度設定が可能となり、バッテリ15を冷却した後の空気を車内排出口12aおよび車外排出口12bから適宜割合をもって車内および車外に排出することができる。
【0043】
従って、この第2実施形態のバッテリ冷却装置10aにあっては、内気吸入モードと外気導入モードの中間位置の設定、および車内排気モードと車外排気モードの中間位置の設定が可能となるため、各種条件、例えば第1実施形態に示した外気温、車速、バッテリ温度、インテーク設定位置等に応じて、バッテリ冷却温度や車室内温度をより緻密に制御することが可能となり、空調装置の負担をより軽減化させることができる。
【0044】
ところで、本発明は前記第1,第2実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で各種実施形態を採ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における冷却装置の概略構成図。
【図2】本発明の第1実施形態におけるコントローラによるバッテリ冷却風の制御態様を示す説明図。
【図3】本発明の第1実施形態における冷却装置の要部を示す概略構成図。
【符号の説明】
10,10a 冷却装置
11 空気吸入口
11a 内気導入口
11b 外気導入口
12 空気排出口
12a 車内排出口
12b 車外排出口
13 冷却ダクト(空気通路)
14 送風機
15 バッテリ
16 コントローラ
17 冷却ケース
20 第1切換ドア(吸気側切換弁)
21 第2切換ドア(排気側切換弁)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery cooling device for an electric vehicle.
[0002]
[Prior art]
The drive source of a hybrid car is a combination of an engine and an electric motor, and the drive source of an electric vehicle is an electric motor, and any vehicle has a battery to drive the electric motor. The battery generates heat during charging and discharging, and this heat generation causes deterioration of the battery performance. Therefore, it is necessary to actively cool the battery.
[0003]
As a conventional battery cooling device for an electric vehicle, a battery is cooled by a cooling liquid, and a first heat exchanger for cooling the cooling liquid by outside air introduced by a fan is provided, and an air conditioning device is provided. There is one in which the cooled second heat exchanger is disposed upstream of the first heat exchanger with respect to the outside air introduction direction to cool the first heat exchanger and, consequently, the cooling liquid. (For example, refer to Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2002-1911904 (page 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in such a conventional battery cooling device for an electric vehicle, which uses an air conditioner to cool the battery, the air conditioner is always operated, and fuel efficiency is deteriorated.
[0006]
Therefore, the present invention separately forms a passage for cooling the battery, selectively introduces inside air and outside air into the passage, and selectively discharges the air after the battery is cooled to the inside and outside of the vehicle, so that the air conditioner is provided. An object of the present invention is to provide an electric vehicle battery cooling device capable of cooling a battery while reducing a load.
[0007]
[Means for Solving the Problems]
In the battery cooling device for an electric vehicle according to the present invention, when cooling a battery mounted on an electric vehicle using an electric motor for a part or all of a drive source, air that communicates between an air inlet and an air outlet is provided. A passage is provided, and the middle of the air passage is communicated with the battery cooling case.A blower is provided in the air passage to flow air from the air inlet to the air outlet, and the battery is cooled by the air passing through the cooling case. In addition, switching between the introduction of inside air and the introduction of outside air at the air intake port is performed by an intake side switching valve, and the inside and outside of the air exhaust port are switched by an exhaust side switching valve, and the introduction of inside air and outside air by these intake side switching valves. The switching and the switching between the inside and outside of the vehicle by the exhaust side switching valve are controlled by a controller.
[0008]
【The invention's effect】
According to the present invention, the mode of cooling the battery by introducing outside air into the air passage and the mode of cooling the battery by introducing outside air into the air passage can be selectively used. Since the air-conditioned air is not used for cooling the battery, it is possible to prevent a burden on the air conditioner, and the air discharge destination after cooling the battery can be switched between the inside and the outside of the vehicle. When it is selected to the outside, it is possible to prevent the temperature in the vehicle compartment from rising, thereby preventing a burden on the air conditioner.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
1 and 2 show a first embodiment of a battery cooling device for an electric vehicle according to the present invention, FIG. 1 is a schematic configuration diagram of the cooling device, and FIG. 2 is an explanatory diagram showing a control mode of battery cooling air by a controller. It is.
[0011]
The battery cooling device 10 for an electric vehicle according to the first embodiment is applied to an electric vehicle using an electric motor as an electric motor for a part of a driving source such as a hybrid car or an entire driving source such as an electric vehicle. In addition, a battery serving as a power source of an electric motor mounted on the electric vehicle is cooled.
[0012]
That is, the cooling device 10 of this embodiment is capable of selectively switching between the introduction of inside air (vehicle air) and the introduction of outside air (external air), and is capable of selectively switching between interior exhaust and exterior exhaust. A cooling duct 13 is provided as an air passage communicating with the air outlet 12. Air is flowed from the air inlet 11 to the air outlet 12 by a blower 14 through the cooling duct 13, and air flowing through the cooling duct 13 is also provided. The battery 15 is cooled by the controller 16, and the controller 16 controls the switching between the introduction of the inside air and the outside air at the air inlet 11 and the switching between the inside and outside of the air outlet 12.
[0013]
The air inlet 11 is provided with an inside air inlet 11a and an outside air inlet 11b, and both the inlets 11a and 11b are selectively opened and closed by a first switching door 20 as an intake switching valve.
[0014]
The air outlet 12 is provided with an in-vehicle outlet 12a and an out-vehicle outlet 12b, and these two outlets 12a and 12b are selectively opened and closed by a second switching door 21 as an exhaust-side switching valve.
[0015]
Note that the first switching door 20 and the second switching door 21 show a state in which both the inside air and outside air introduction ports 11a and 11b and both the inside and outside exhaust ports 12a and 12b are closed in the illustrated state. The number of the first switching door 20 and the second switching door 21 is one, and one of the inside air and the outside air inlets 11a and 11b and one of the inside and outside exhaust ports 12a and 12b are closed.
[0016]
In addition, although the case where each of the air inlet 11 and the air outlet 12 is provided one by one is illustrated, a plurality of the air inlets 11 and the air outlets 12 may be provided without being limited to this.
[0017]
In this embodiment, two batteries 15 are mounted side by side, each of which is housed independently in a cooling case 17, and each cooling case 17 is provided with an air inlet 17a and an air outlet 17b.
[0018]
The cooling duct 13 communicating the air inlet 11 and the air outlet 12 is cut off in the middle, and the introduction duct 13 a on the side of the air inlet 11 is connected to the air inlet 17 a of the cooling case 17. The discharge duct 13b on the side is connected to the air outlet 17b of the cooling case 17.
[0019]
The blower 14 is provided in the discharge duct 13b. The blower 14 forces the air in the cooling duct 13 to flow from the air suction port 11 toward the air discharge port 12. The battery 15 is air-cooled by passing air through the case 17.
[0020]
Each of the detection signals of the battery temperature sensor 22 and the intake air temperature sensor 23 is input to the controller 16, and further, an outside air temperature signal, a vehicle speed signal, an air-conditioner intake position signal, and the like are input to the controller 16. A command signal for driving the blower 14 and a switching signal for the first and second switching doors 20 and 21 are output.
[0021]
Therefore, by outputting a switching signal from the controller 16 to the first and second switching doors 20 and 21 based on the various input signals, the cooling air of the battery 15 is appropriately controlled. As shown in FIG. 2, the intake side and the exhaust side of the battery cooling air are controlled according to the outside air temperature, the vehicle speed, and the intake position.
[0022]
That is, the switching signal output from the controller 16 to the intake-side switching valve 20 and the exhaust-side switching valve 21 changes the intake-side switching valve 20 and the exhaust-side switching valve 21 to high, middle, and low outside air temperatures as the first mode. The switching is performed based on this.
[0023]
As a second mode, the intake side switching valve 20 and the exhaust side switching valve 21 are switched based on a high speed range and a low speed range of the vehicle speed. As a third mode, when the vehicle is stopped, the intake side switching valve is switched. The valve 20 is switched to the inside air introduction side, and the exhaust side switching valve 21 is switched to the outside exhaust side.
[0024]
Further, as a fourth mode, the intake side switching valve 20 and the exhaust side switching valve 21 are switched based on the temperature of the battery. As a fifth mode, the intake side switching valve 20 and the exhaust side switching valve are switched. 21 is switched based on an intake setting position (outside air introduction mode FRE or inside air circulation mode REC) of an air conditioner (not shown).
[0025]
That is, in the cooling device 10 of this embodiment, the control is performed in a state where the inside of the vehicle is cooled by an air conditioner (not shown). In the case of a high outside air temperature, there is a margin in the allowable temperature of the battery 15 at a high speed. In the case (in FIG. 2, during normal operation), regardless of the inside / outside air circulation mode of the air conditioner, the intake side switching valve 20 is switched to the open side of the outside air introduction port 11 b, and the battery cooling wind sucked from the air intake port 11 By using outside air as much as possible, the load on the air conditioner is reduced.
[0026]
At this time, the air discharge port 12 switches the exhaust side switching valve 21 to the open side of the outside discharge port 12b, discharges the cooling air heated through the battery 15 to the outside of the vehicle, and is heated into the vehicle interior. Air is not returned.
[0027]
In addition, when the battery 15 has no allowance for the allowable temperature (in FIG. 2, when the battery temperature is high) and when the ambient temperature around the vehicle is high and the speed is low, the intake side switching valve 20 is switched to the open side of the inside air inlet 11 a. Thus, the battery cooling air suction port 11 is set to the cooled inside air, and the cooling of the battery 15 is prioritized.
[0028]
At this time, except for the case where the intake setting position of the air conditioner is in the inside air circulation mode (REC), the air discharge port 12 switches the exhaust side switching valve 21 to the open side of the vehicle outside discharge port 12b and passes through the battery 15 to warm. The cooling air is discharged to the outside of the vehicle so that the warmed air is not returned to the vehicle interior.
[0029]
However, since the load on the battery 15 is smaller in the low speed range than in the high speed range, the calorific value of the battery 15 is also small, and the temperature rise of the air downstream of the battery 15 is smaller than that in the high speed range. Considering that in this mode (high outside air temperature, low speed range), the outside air temperature is high and the temperature of the outside air to be introduced is also high because the air in the downstream area of the battery 15 is discharged outside the vehicle. When the intake position is in the inside air circulation mode (REC), even if the air in the downstream area of the battery 15 is returned to the vehicle interior, the load on the air conditioner does not change much.
[0030]
Furthermore, when the outside air is introduced into the battery 15, the temperature of the battery 15 may be too low when the outside air is introduced into the battery 15 (the efficiency of the battery 15 is deteriorated in a low temperature state). At the time of starting, the intake side switching valve 20 is switched to the open side of the inside air introduction port 11a, and the temperature of the battery 15 is raised by the inside air sucked from the air suction port 11.
[0031]
When the vehicle is stopped, one of the air inlet 11 and the air outlet 12 communicates with the outside air, and the other communicates with the inside air, so that it can function as a normal drafter (ventilation).
[0032]
With the above configuration, in the electric vehicle battery cooling device 10 of the present embodiment, the mode in which the inside air is introduced into the cooling duct 13 to cool the battery 15 and the mode in which the outside air is introduced into the cooling duct 13 By properly using the cooling mode, the conditioned air in the vehicle compartment is not used for cooling the battery 15 in the mode in which the battery 15 is cooled by the outside air, so that the load on the air conditioner can be reduced.
[0033]
Since the destination of the warmed air after cooling the battery 15 can be switched between the inside and the outside of the vehicle, when the outside is selected, it is possible to prevent the temperature inside the vehicle from rising and to place a burden on the air conditioner. Can be prevented.
[0034]
Further, by switching the intake-side switching valve 20 and the exhaust-side switching valve 21 based on the outside air temperature, air having a temperature suitable for cooling the battery 15 can be cooled by the air conditioner at a high outside air temperature, Alternatively, the battery 15 can be effectively cooled by being introduced from inside air that is not cooled at a low outside air temperature or from outside air at a middle or outside air temperature.
[0035]
Further, by switching the intake-side switching valve 20 and the exhaust-side switching valve 21 based on the vehicle speed, the battery 15 is cooled by the inside air at a high outside air temperature and at a low speed when the ambient temperature of the vehicle becomes higher than the outside air temperature. At a high speed when the ambient temperature of the vehicle is equivalent to the outside air, the battery 15 can be cooled by the outside air depending on the temperature of the battery 15, so that the load on the air conditioner can be reduced.
[0036]
Furthermore, when the vehicle is stopped, the door may be opened and closed when the vehicle is stopped by switching the intake side switching valve 20 to the inside air introduction side and switching the exhaust side switching valve 21 to the outside exhaust side. The function of a normal drafter can be provided, and the effect of opening and closing the door can be reduced.
[0037]
Further, since the intake side switching valve 20 and the exhaust side switching valve 21 are switched based on the temperature of the battery 15, when cooling by outside air is performed, if the temperature of the battery 15 is high, the inside air introduction mode by the air conditioner is set. Thus, the battery 15 can be effectively cooled.
[0038]
Further, since the intake side switching valve 20 and the exhaust side switching valve 21 are switched based on the intake setting position (FRE or REC) of the air conditioner, the cooling heated through the battery 15 in the outside air introduction mode (FRE). Since the wind can be discharged to the outside of the vehicle so as not to return to the inside of the vehicle, the load on the air conditioner can be reduced.
[0039]
FIG. 3 shows a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and a duplicate description will be omitted.
[0040]
FIG. 3 is a schematic configuration diagram showing a main part of the cooling device. In the cooling device 10a according to the second embodiment, the intake side switching valve 20 and the exhaust side switching valve 21 are controlled to adjust the respective opening ratios. I am trying to add it.
[0041]
That is, the intake side switching valve 20 can be switched to a position for closing the inside air introduction port 11a or the outside air introduction port 11b as in the first embodiment, and the opening degree can be set in the middle thereof. Thus, the inside air and the outside air can be mixed and inhaled from the inside air inlet 11a and the outside air inlet 11b at an appropriate ratio.
[0042]
In addition, even in the exhaust side switching valve 21, it is possible to switch to the position where the in-vehicle outlet 12a or the out-vehicle outlet 12b is closed, and it is also possible to set the opening degree in the middle thereof, and After cooling, the air can be discharged into and out of the vehicle at an appropriate ratio from the in-vehicle outlet 12a and the out-vehicle outlet 12b.
[0043]
Therefore, in the battery cooling device 10a of the second embodiment, it is possible to set an intermediate position between the inside air intake mode and the outside air introduction mode, and an intermediate position between the inside exhaust mode and the outside exhaust mode. The battery cooling temperature and the vehicle interior temperature can be more precisely controlled according to conditions, for example, the outside air temperature, the vehicle speed, the battery temperature, the intake setting position, and the like shown in the first embodiment, and the burden on the air conditioner can be reduced. It can be reduced.
[0044]
The present invention has been described by taking the first and second embodiments as examples. However, the present invention is not limited to these embodiments, and various embodiments can be adopted without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cooling device according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating a control mode of battery cooling air by a controller according to the first embodiment of the present invention.
FIG. 3 is a schematic configuration diagram illustrating a main part of the cooling device according to the first embodiment of the present invention.
[Explanation of symbols]
10, 10a Cooling device 11 Air inlet 11a Inside air inlet 11b Outside air inlet 12 Air outlet 12a Car outlet 12b Car outlet 13 Cooling duct (air passage)
14 blower 15 battery 16 controller 17 cooling case 20 first switching door (intake side switching valve)
21 Second switching door (exhaust side switching valve)

Claims (7)

駆動源の一部若しくは全部に電動機を用いた電動車両であって、搭載したバッテリを冷却する電動車両用バッテリの冷却装置において、
内気導入と外気導入を吸気側切換弁によって切換える、1つまたは複数の空気吸入口と、
車内排出と車外排出を排気側切換弁によって切換える、1つまたは複数の空気排出口と、
空気吸入口と空気排出口とを連通するとともに、途中をバッテリの冷却ケースに連通した空気通路と、
この空気通路に空気吸入口から空気排出口方向に空気を流すとともに、この空気を前記冷却ケースに通過させてバッテリを冷却する送風機と、
吸気側切換弁による内気・外気の導入切換え、および排気側切換弁による車内・車外の排出切換えを制御するコントローラと、を備えたことを特徴とする電動車両用バッテリの冷却装置。
An electric vehicle using an electric motor for part or all of a drive source, and a battery cooling device for an electric vehicle that cools a mounted battery.
One or more air inlets for switching between inside air introduction and outside air introduction by an intake side switching valve;
One or more air outlets for switching between in-vehicle discharge and out-vehicle discharge by an exhaust-side switching valve;
An air passage communicating with the air inlet and the air outlet, and an intermediate passage communicating with the battery cooling case;
A blower that cools the battery by flowing air from the air inlet to the air outlet in the air passage, and passing the air through the cooling case;
An electric vehicle battery cooling device, comprising: a controller that controls switching between introduction of inside air and outside air by an intake side switching valve and switching between inside and outside discharge by an exhaust side switching valve.
吸気側切換弁および排気側切換弁は、外気温に基づいて切換えることを特徴とする請求項1に記載の電動車両用バッテリの冷却装置。The cooling device for an electric vehicle battery according to claim 1, wherein the intake side switching valve and the exhaust side switching valve are switched based on an outside air temperature. 吸気側切換弁および排気側切換弁は、車速に基づいて切換えることを特徴とする請求項1に記載の電動車両用バッテリの冷却装置。The cooling device for an electric vehicle battery according to claim 1, wherein the intake side switching valve and the exhaust side switching valve are switched based on a vehicle speed. 停車時は、吸気側切換弁を内気導入側に切換えるとともに、排気側切換弁を車外排出側に切換えることを特徴とする請求項3に記載の電動車両用バッテリの冷却装置。4. The electric vehicle battery cooling device according to claim 3, wherein when the vehicle is stopped, the intake side switching valve is switched to the inside air introduction side, and the exhaust side switching valve is switched to the outside discharge side. 吸気側切換弁および排気側切換弁は、バッテリの温度に基づいて切換えることを特徴とする請求項1に記載の電動車両用バッテリの冷却装置。The cooling device for an electric vehicle battery according to claim 1, wherein the intake side switching valve and the exhaust side switching valve are switched based on a temperature of the battery. 吸気側切換弁および排気側切換弁は、空調装置のインテーク設定位置に基づいて切換えることを特徴とする請求項1に記載の電動車両用バッテリの冷却装置。The cooling device for an electric vehicle battery according to claim 1, wherein the intake side switching valve and the exhaust side switching valve are switched based on an intake set position of the air conditioner. 吸気側切換弁および排気側切換弁は、それぞれの開度割合を調節する制御を付加したことを特徴とする請求項1〜6のいずれかに記載の電動車両用バッテリの冷却装置。The battery cooling device for an electric vehicle according to any one of claims 1 to 6, wherein the intake side switching valve and the exhaust side switching valve are provided with control for adjusting respective opening ratios.
JP2002356854A 2002-12-09 2002-12-09 Cooling device for motor vehicle battery Pending JP2004194384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356854A JP2004194384A (en) 2002-12-09 2002-12-09 Cooling device for motor vehicle battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356854A JP2004194384A (en) 2002-12-09 2002-12-09 Cooling device for motor vehicle battery

Publications (1)

Publication Number Publication Date
JP2004194384A true JP2004194384A (en) 2004-07-08

Family

ID=32757072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356854A Pending JP2004194384A (en) 2002-12-09 2002-12-09 Cooling device for motor vehicle battery

Country Status (1)

Country Link
JP (1) JP2004194384A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185997A (en) * 2006-01-11 2007-07-26 Denso Corp Battery cooling system
JP2008132855A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Vehicular battery cooling device
US20090248204A1 (en) * 2006-06-15 2009-10-01 Toyota Jidosha Kabushiki Kaisha Cooling system and control method of cooling system
CN102049988A (en) * 2009-11-04 2011-05-11 现代自动车株式会社 Air conditioning system for electric vehicle and method for controlling the same
US9236589B2 (en) 2012-01-26 2016-01-12 Samsung Sdi Co., Ltd. Battery module including opening/closing member to control opening state of inlet of housing
CN111403849A (en) * 2020-03-28 2020-07-10 哈尔滨工程大学 Series-parallel controllable power battery air-cooling heat management experimental system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185997A (en) * 2006-01-11 2007-07-26 Denso Corp Battery cooling system
JP4710616B2 (en) * 2006-01-11 2011-06-29 株式会社デンソー Vehicle battery cooling system
US20090248204A1 (en) * 2006-06-15 2009-10-01 Toyota Jidosha Kabushiki Kaisha Cooling system and control method of cooling system
US8527095B2 (en) 2006-06-15 2013-09-03 Toyota Jidosha Kabushiki Kaisha Cooling system and control method of cooling system
JP2008132855A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Vehicular battery cooling device
JP4670797B2 (en) * 2006-11-28 2011-04-13 日産自動車株式会社 Vehicle battery cooling system
CN102049988A (en) * 2009-11-04 2011-05-11 现代自动车株式会社 Air conditioning system for electric vehicle and method for controlling the same
US9236589B2 (en) 2012-01-26 2016-01-12 Samsung Sdi Co., Ltd. Battery module including opening/closing member to control opening state of inlet of housing
CN111403849A (en) * 2020-03-28 2020-07-10 哈尔滨工程大学 Series-parallel controllable power battery air-cooling heat management experimental system

Similar Documents

Publication Publication Date Title
KR100392622B1 (en) Vehicular air conditioner
US20190202261A1 (en) Vehicle equipped with electric motor
JP4192625B2 (en) Battery cooling system
KR101628530B1 (en) Air conditioner for vehicle
KR20170037850A (en) Air-conditioning system for conditioning the air of a passenger compartment of a motor vehicle and air guiding arrangement for selectively supplying air mass flows in the air-conditioning system
JPH0640240A (en) Device for control of air in vehicle cabin
JP2005093434A (en) Cooling system of vehicle battery
JP7329453B2 (en) Vehicle battery cooling system
JP2013141931A (en) Vehicle air conditioner
JP2007185997A (en) Battery cooling system
JP5323960B2 (en) Air conditioner for vehicles
JP4650108B2 (en) High-power cooling system for vehicles
JP4632030B2 (en) Intercooler system and intake air cooling method
JPH05147423A (en) Air conditioner for vehicle
JP2008247341A (en) Cooling device of in-vehicle heating element
JP2004194384A (en) Cooling device for motor vehicle battery
JP2007153054A (en) Cooling device of electric equipment mounted on vehicle
JP5045643B2 (en) Blower, battery cooling device including the same, and vehicle air conditioner
JP2006341841A (en) Seat air conditioning unit
JP6881036B2 (en) Cooling structure of vehicle power supply
JP2006341840A (en) Seat air conditioning unit
JP2002200916A (en) Air conditioner for vehicle
JPH11115473A (en) Air conditioning device for vehicle
JPH06206433A (en) Heat pump type air-conditioning device for vehicle
KR101000643B1 (en) Cooling and heating structure of electronic unit in-vehicle