JP2004191963A - Wavelength conversion method and wavelength conversion apparatus - Google Patents

Wavelength conversion method and wavelength conversion apparatus Download PDF

Info

Publication number
JP2004191963A
JP2004191963A JP2003397644A JP2003397644A JP2004191963A JP 2004191963 A JP2004191963 A JP 2004191963A JP 2003397644 A JP2003397644 A JP 2003397644A JP 2003397644 A JP2003397644 A JP 2003397644A JP 2004191963 A JP2004191963 A JP 2004191963A
Authority
JP
Japan
Prior art keywords
wavelength conversion
temperature
conversion element
wavelength
heating block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397644A
Other languages
Japanese (ja)
Other versions
JP4003740B2 (en
JP2004191963A5 (en
Inventor
Genta Masada
元太 政田
Hiroyuki Shiraishi
浩之 白石
Ichiro Sekine
一郎 関根
Nobuhiko Sarukura
信彦 猿倉
Sukehito Suzuki
祐仁 鈴木
Shingo Ono
晋吾 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003397644A priority Critical patent/JP4003740B2/en
Publication of JP2004191963A publication Critical patent/JP2004191963A/en
Priority to US10/938,772 priority patent/US7218653B2/en
Publication of JP2004191963A5 publication Critical patent/JP2004191963A5/ja
Application granted granted Critical
Publication of JP4003740B2 publication Critical patent/JP4003740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a UV laser beam suitable for a precision fabrication by enhancing the conversion efficiency of the laser beam when the wavelength of the laser beam is converted to generate harmonic waves at <355 nm wavelength in a wavelength conversion element consisting of a lithium tetraborate single crystal. <P>SOLUTION: The wavelength conversion element is heated while controlling and kept at a specified temperature (e.g. 200°C) in the temperature range from 200 to 450°C. The temperature accuracy is controlled to ±0.3°C, preferably ±0.1°C. The two-photon absorption in the lithium tetraborate single crystal decreases by heating the wavelength conversion element. Therefore, even when the intensity of the incident light is increased, transmittance for the laser beam hardly decreases, which improves the conversion efficiency for the laser beam. As heat generation caused by two-photon absorption is suppressed, a problem that the refractive index changes to degrade phase matching can be avoided, loss or an unstable state in the output can be prevented and the quality of the beam can be maintained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、主に紫外レーザーを発生させることを目的として、非線形光学結晶からなる波長変換素子でレーザービームを波長変換するための波長変換方法、および、この波長変換素子を一定温度に加熱・制御するための加熱機構に関するものである。   The present invention provides a wavelength conversion method for converting the wavelength of a laser beam with a wavelength conversion element made of a nonlinear optical crystal for the purpose of mainly generating an ultraviolet laser, and heating and controlling the wavelength conversion element to a constant temperature. And a heating mechanism for performing the heating.

近年、この種の波長変換においては、化学的安定性および耐レーザー損傷性に優れた四ホウ酸リチウム単結晶(Li2 4 7 )からなる波長変換素子を用いる手法が注目されつつある。この手法によれば、第2高調波の原理や和周波の原理に基づき、各種の基本波から各種の高調波を得ることができる。例えば、第2高調波の原理から、Nd:YAGレーザーの2倍波(波長532nmのグリーン光)を波長変換素子に入射させて4倍波(波長266nmの紫外光)を発生させることができる。或いは、和周波の原理から、Nd:YAGレーザーの基本波とその2倍波とを同時に波長変換素子に入射させて3倍波(波長355nmの紫外光)を発生させたり、Nd:YAGレーザーの基本波とその4倍波とを同時に波長変換素子に入射させて5倍波(波長213nmの紫外光)を発生させたりすることもできる。 In recent years, in this type of wavelength conversion, a method using a wavelength conversion element made of a lithium tetraborate single crystal (Li 2 B 4 O 7 ) having excellent chemical stability and laser damage resistance has been attracting attention. According to this method, various harmonics can be obtained from various fundamental waves based on the principle of the second harmonic and the principle of the sum frequency. For example, based on the principle of the second harmonic, a second harmonic (green light having a wavelength of 532 nm) of an Nd: YAG laser can be made incident on a wavelength conversion element to generate a fourth harmonic (ultraviolet light having a wavelength of 266 nm). Alternatively, based on the principle of the sum frequency, the fundamental wave of the Nd: YAG laser and its second harmonic are simultaneously made incident on the wavelength conversion element to generate a third harmonic (ultraviolet light having a wavelength of 355 nm), The fundamental wave and its fourth harmonic can be simultaneously incident on the wavelength conversion element to generate a fifth harmonic (ultraviolet light having a wavelength of 213 nm).

ところが、四ホウ酸リチウム単結晶の非線形光学定数が0.16pm/Vと小さいため、波長変換における変換効率が低いという欠点があった。そこで、従来は入射光をレンズで集光して高出力の紫外レーザーを発生させることにより、この変換効率の低さを補うようにしていた。   However, since the nonlinear optical constant of the lithium tetraborate single crystal is as small as 0.16 pm / V, there is a disadvantage that conversion efficiency in wavelength conversion is low. Therefore, conventionally, the low conversion efficiency has been compensated by condensing incident light with a lens to generate a high-output ultraviolet laser.

しかし、この四ホウ酸リチウム単結晶からなる波長変換素子による波長変換で発生する高調波が波長355nm未満のもの(4倍波、5倍波など)である場合、四ホウ酸リチウム単結晶の2光子吸収が起こり、波長変換素子の内部で発熱するので、屈折率が変化して位相整合性が崩れてしまう。その結果、出力のロスや不安定化が生じたり、ビーム品質が劣化したりするため、プリント基板の穴あけ加工や各種電子部品のスクライブ加工などの精密加工には適さないという不都合があった。   However, when the harmonics generated by wavelength conversion by the wavelength conversion element made of the lithium tetraborate single crystal are those having a wavelength of less than 355 nm (fourth harmonic, fifth harmonic, etc.), the lithium tetraborate single crystal 2 Since photon absorption occurs and heat is generated inside the wavelength conversion element, the refractive index changes and the phase matching property is lost. As a result, output loss or instability occurs, or beam quality deteriorates, which is not suitable for precision processing such as drilling of printed circuit boards and scribing of various electronic components.

本発明は、このような事情に鑑み、レーザービームの変換効率を高めると同時に、精密加工に適した紫外レーザーなど波長355nm未満の高調波を発生させることが可能な波長変換方法を提供することを目的とする。   In view of such circumstances, the present invention provides a wavelength conversion method capable of increasing the conversion efficiency of a laser beam and generating a harmonic having a wavelength of less than 355 nm such as an ultraviolet laser suitable for precision processing. Aim.

本発明では、四ホウ酸リチウム単結晶は加熱することによって2光子吸収が減少する特性を備えていることに着目した。   In the present invention, attention has been paid to the fact that a lithium tetraborate single crystal has a property of reducing two-photon absorption by heating.

すなわち、請求項1に記載の本発明は、四ホウ酸リチウム単結晶からなる波長
変換素子でレーザービームを波長変換して波長355nm未満の高調波を発生させる際に、前記波長変換素子を加熱制御して200〜450℃の温度範囲内の特定温度に所定の温度精度で保持して構成される。また、請求項2に記載の本発明は、前記波長変換素子の温度精度を±0.3℃以内として構成される。さらに、請求項3に記載の本発明は、前記波長変換素子の温度精度を±0.1℃以内として構成される。
That is, the present invention according to claim 1 controls the heating of the wavelength conversion element when the wavelength conversion element made of lithium tetraborate single crystal converts the wavelength of the laser beam to generate a harmonic having a wavelength of less than 355 nm. Then, it is configured to be maintained at a specific temperature within a temperature range of 200 to 450 ° C. with a predetermined temperature accuracy. Further, the present invention according to claim 2 is configured such that the temperature accuracy of the wavelength conversion element is within ± 0.3 ° C. Furthermore, the present invention according to claim 3 is configured such that the temperature accuracy of the wavelength conversion element is within ± 0.1 ° C.

こうした構成を採用することで、波長変換素子の加熱によって四ホウ酸リチウム単結晶の2光子吸収が減少するため、入射光の強度を増してもレーザービームの透過率が低下しにくくなるとともに、2光子吸収に起因する発熱が抑制されるように作用する。   By adopting such a configuration, the two-photon absorption of the lithium tetraborate single crystal is reduced by heating the wavelength conversion element, so that even if the intensity of the incident light is increased, the transmittance of the laser beam is hardly reduced, and It acts to suppress heat generation due to photon absorption.

また、請求項4に記載の本発明は、非線形光学結晶からなる波長変換素子にレーザービームを入射して波長変換を行う波長変換装置において、前記波長変換素子の入射端面と出射端面を除く外表面を覆い、ヒーターにて前記波長変換素子を外側より加熱する加熱ブロックと、当該加熱ブロックの温度を検出する温度センサーと、当該温度センサーの検出温度に基づき、前記加熱ブロックを一定温度に制御する温度制御部を有し、前記波長変換素子の長さをLとした時、当該波長変換素子の縦と横の幅をL/4以下とし、且つ、前記加熱ブロックを、前記波長変換素子の入射端面および出射端面より長さ方向にL/3以上突出させて構成されている。   According to a fourth aspect of the present invention, there is provided a wavelength conversion device for performing wavelength conversion by injecting a laser beam into a wavelength conversion element made of a nonlinear optical crystal, wherein an outer surface of the wavelength conversion element excluding an incident end face and an emission end face is provided. A heating block that heats the wavelength conversion element from the outside with a heater, a temperature sensor that detects the temperature of the heating block, and a temperature that controls the heating block to a constant temperature based on the temperature detected by the temperature sensor. When the length of the wavelength conversion element is L, the width and height of the wavelength conversion element are set to L / 4 or less, and the heating block is connected to the incident end face of the wavelength conversion element. And it is configured to protrude L / 3 or more in the length direction from the emission end face.

また、請求項5に記載の発明は、非線形光学結晶からなる波長変換素子にレーザービームを入射して波長変換を行う波長変換装置において、前記波長変換素子の外表面を覆い、ヒーターにて前記波長変換素子を外側より加熱する加熱ブロックと、当該加熱ブロックの温度を検出する温度センサーと、当該温度センサーの検出温度に基づき、前記加熱ブロックを一定温度に制御する温度制御部を有し、且つ、前記加熱ブロックの入射側および出射側の光軸上の面にレーザービームが通過する光路を形成して構成されている。   According to a fifth aspect of the present invention, there is provided a wavelength conversion device for converting a wavelength by inputting a laser beam to a wavelength conversion element made of a nonlinear optical crystal, wherein an outer surface of the wavelength conversion element is covered, and the wavelength is converted by a heater. A heating block that heats the conversion element from the outside, a temperature sensor that detects the temperature of the heating block, and a temperature controller that controls the heating block to a constant temperature based on the temperature detected by the temperature sensor, and An optical path through which a laser beam passes is formed on a surface of the heating block on the optical axis on the entrance side and the exit side.

また、請求項6に記載の本発明は、前記加熱ブロックは、長さ方向に沿ってヒータを内蔵した銅等の熱伝導率の高い金属材と、当該金属材の外側を覆うセラミックスと、当該セラミックスの外側を覆う耐熱性樹脂材で構成される筒体で構成され、請求項7に記載の本発明は、前記金属材の表面に耐熱性のあるメッキ処理を施して構成される。   Further, according to the present invention as set forth in claim 6, the heating block includes a metal material having a high thermal conductivity such as copper having a built-in heater along a length direction, a ceramic covering the outside of the metal material, The present invention according to a seventh aspect of the present invention is configured by applying a heat-resistant plating process to the surface of the metal material.

このように構成することで、波長変換素子を長さ方向に亘って、均一に、且つ、精度良く加熱することができ、これにより、波長変換素子の温度分布を無くし、安定した波長変換効率を得ることができる。   With such a configuration, the wavelength conversion element can be uniformly and accurately heated in the length direction, thereby eliminating the temperature distribution of the wavelength conversion element and achieving stable wavelength conversion efficiency. Obtainable.

以上説明したように、請求項1〜3に記載の本発明によれば、波長変換素子の加熱によって四ホウ酸リチウム単結晶の2光子吸収が減少するため、入射光の強度を増してもレーザービームの透過率が低下しにくくなるとともに、2光子吸収に起因する発熱が抑制されることから、レーザービームの変換効率を高めると同時に、精密加工に適した紫外レーザーなど波長355nm未満の高調波を発生させることが可能な波長変換方法を提供することができる。   As described above, according to the present invention, the two-photon absorption of the lithium tetraborate single crystal is reduced by heating the wavelength conversion element. Since the transmittance of the beam is hardly reduced and the heat generated by two-photon absorption is suppressed, the conversion efficiency of the laser beam is increased, and at the same time, the harmonics having a wavelength of less than 355 nm such as an ultraviolet laser suitable for precision processing are increased. A wavelength conversion method that can be generated can be provided.

また、請求項4〜6に記載の本発明によれば、波長変換素子の温度分布を無くし、結晶全体に亘って波長変換効率を安定に維持できるため、波長変換素子を有効に利用して効率的な波長変換を行うことができる。   According to the present invention, the temperature distribution of the wavelength conversion element can be eliminated, and the wavelength conversion efficiency can be stably maintained over the entire crystal. Wavelength conversion can be performed.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

この実施形態では、四ホウ酸リチウム単結晶からなるブロック状の波長変換素子を加熱制御し、200〜450℃の温度範囲内の特定温度に保持する。このとき、この温度精度を±0.3℃(好ましくは±0.1℃)とする。例えば、特定温度が300℃の場合、波長変換素子を299.7〜300.3℃(好ましくは299.9〜300.1℃)に保つのである。そして、波長変換素子を特定温度に所定の温度精度で保持したまま、この波長変換素子にNd:YAGレーザーの2倍波(波長532nmのグリーン光)を入射させる。すると、この2倍波のレーザービームが波長変換素子を透過するときに波長が半分に逓減され、4倍波(波長266nmの紫外光)が出射して発生する。   In this embodiment, a block-shaped wavelength conversion element made of a lithium tetraborate single crystal is heated and controlled to be maintained at a specific temperature within a temperature range of 200 to 450 ° C. At this time, the temperature accuracy is set to ± 0.3 ° C (preferably ± 0.1 ° C). For example, when the specific temperature is 300 ° C., the wavelength conversion element is kept at 299.7 to 300.3 ° C. (preferably 299.9 to 300.1 ° C.). Then, a second harmonic (green light having a wavelength of 532 nm) of an Nd: YAG laser is incident on the wavelength conversion element while maintaining the wavelength conversion element at a specific temperature with a predetermined temperature accuracy. Then, when the second harmonic laser beam passes through the wavelength conversion element, the wavelength is reduced by half, and the fourth harmonic (ultraviolet light having a wavelength of 266 nm) is emitted and generated.

この4倍波が発生する際、波長変換素子は特定温度に保持されているので、波長変換素子を構成する四ホウ酸リチウム単結晶の2光子吸収が減少する。そのため、入射光の強度を増してもレーザービームの透過率が低下しにくくなるので、レーザービームの変換効率が向上する。また、2光子吸収に起因する発熱が抑制されるので、屈折率が変化して位相整合性が崩れる不具合を避け、出力のロスや不安定化を防ぎ、ビーム品質を維持することができる。したがって、こうして得られた紫外レーザーでプリント基板の穴あけ加工などの精密加工を行うことが可能となる。   When this fourth harmonic is generated, the wavelength conversion element is kept at a specific temperature, so that the two-photon absorption of the lithium tetraborate single crystal constituting the wavelength conversion element is reduced. Therefore, even if the intensity of the incident light is increased, the transmittance of the laser beam does not easily decrease, and the conversion efficiency of the laser beam is improved. Further, since heat generation due to two-photon absorption is suppressed, it is possible to avoid a problem in which the refractive index changes and phase matching is lost, prevent output loss and instability, and maintain beam quality. Therefore, precision processing such as drilling of a printed circuit board can be performed with the ultraviolet laser thus obtained.

なお、上述の実施形態では、波長変換素子に入射させる光としてNd:YAGレーザーの2倍波を用い、第2高調波の原理に基づいて4倍波(波長266nmの紫外光)を発生させる場合について説明したが、本発明では、波長355nm未満の高調波が発生するものである限り、入射光や出射光(発生光)の種類も波長変換の原理も問わない。例えば、入射光としてNd:YLFレーザーの基本波と(波長1046nm)その4倍波(波長262nmの紫外光)を用い、和周波の原理に基づいて5倍波(波長209nmの紫外光)を発生させる場合に本発明を適用することも可能である。   In the above-described embodiment, the second harmonic of the Nd: YAG laser is used as the light to be incident on the wavelength conversion element, and the fourth harmonic (ultraviolet light having a wavelength of 266 nm) is generated based on the principle of the second harmonic. However, in the present invention, the type of incident light or outgoing light (generated light) and the principle of wavelength conversion are not limited as long as a harmonic having a wavelength of less than 355 nm is generated. For example, using a fundamental wave of an Nd: YLF laser and a fourth harmonic thereof (ultraviolet light having a wavelength of 262 nm) as an incident light, a fifth harmonic wave (ultraviolet light having a wavelength of 209 nm) is generated based on the principle of the sum frequency. In this case, the present invention can be applied.

上述した効果を確認するため、繰返し数が30kHz、10kHzのNd:YLFレーザーの4倍波(波長262nmの紫外光)を用いて波長変換を行い、波長変換素子の温度を25〜300℃の温度範囲内で変化させたときに2光子吸収係数βがどのように変化するかを調べた。その結果を図1にグラフで示す。このグラフにおいて、横軸は波長変換素子の温度を表し、縦軸は2光子吸収係数βを表す。図1のグラフから明らかなように、波長変換素子を加熱すると、2光子吸収係数βが指数関数的に低下し、200〜450℃の温度範囲では2光子吸収係数βが著しく減少する。そして、2光子吸収量は2光子吸収係数βに比例するので、200〜450℃の温度範囲では2光子吸収量は大幅に小さくなる。   In order to confirm the effects described above, wavelength conversion was performed using the fourth harmonic (ultraviolet light having a wavelength of 262 nm) of a Nd: YLF laser having a repetition rate of 30 kHz and 10 kHz, and the temperature of the wavelength conversion element was set to a temperature of 25 to 300 ° C. It was examined how the two-photon absorption coefficient β changes when it is changed within the range. The results are shown graphically in FIG. In this graph, the horizontal axis represents the temperature of the wavelength conversion element, and the vertical axis represents the two-photon absorption coefficient β. As is clear from the graph of FIG. 1, when the wavelength conversion element is heated, the two-photon absorption coefficient β decreases exponentially, and in the temperature range of 200 to 450 ° C., the two-photon absorption coefficient β significantly decreases. Since the two-photon absorption is proportional to the two-photon absorption coefficient β, the two-photon absorption is significantly reduced in the temperature range of 200 to 450 ° C.

また、波長変換素子の温度が室温(約20℃、グラフ中に「RT」と表示)、100℃、200℃および300℃のとき、入射紫外レーザーの強度変化に伴ってレーザービームの透過率がどのように変化するかを調べた。その結果を図2にグラフで示す。このグラフにおいて、横軸は入射紫外レーザーの強度を表し、縦軸はレーザービームの透過率を表す。図2のグラフから明らかなように、いずれの温度においても、入射光の強度が増すとレーザービームの透過率が低下するが、特に200℃以上の高温になれば、入射光の強度を増してもレーザービームの透過率があまり低下しなくなることが判った。   Further, when the temperature of the wavelength conversion element is room temperature (about 20 ° C., indicated as “RT” in the graph), 100 ° C., 200 ° C., and 300 ° C., the transmittance of the laser beam changes with the intensity change of the incident ultraviolet laser. We examined how it changed. The result is shown by a graph in FIG. In this graph, the horizontal axis represents the intensity of the incident ultraviolet laser, and the vertical axis represents the transmittance of the laser beam. As is clear from the graph of FIG. 2, at any temperature, the transmittance of the laser beam decreases as the intensity of the incident light increases, but especially at a high temperature of 200 ° C. or higher, the intensity of the incident light increases. It was also found that the transmittance of the laser beam did not decrease so much.

さらに、繰返し数が10kHzで出力が20WのNd:YLFレーザーの2倍波(波長523nmのグリーン光)を用いて波長変換を行い、波長変換素子の温度が室温(約20℃、グラフ中に「RT」と表示)、100℃、200℃、300℃および385℃のとき、入射光の出力変化に伴って変換効率や出力パワーがどのように変化するかを調べた。その結果を図3および図4にグラフで示す。図3のグラフにおいて、横軸は入射光の出力を表し、縦軸は変換効率を表す。一方、図4のグラフにおいて、横軸は入射光の出力を表し、縦軸は出力パワーを表す。図3、図4のグラフから明らかなように、波長変換素子を加熱しない室温の状態では、2光子吸収の影響を受け、変換効率の上限値は約7%に止まり(図3参照)、1.1W以上の出力を発生させようとすると不安定となった(図4参照)。それに対し、波長変換素子を加熱すると、2光子吸収の影響が低減し、385℃では変換効率が約15%にも到達し(図3参照)、約3Wの出力を発生させることができた(図4参照)。   Further, wavelength conversion is performed by using a second harmonic (green light having a wavelength of 523 nm) of a Nd: YLF laser having a repetition rate of 10 kHz and an output of 20 W, and the temperature of the wavelength conversion element is set to room temperature (about 20 ° C .; RT), 100 ° C., 200 ° C., 300 ° C., and 385 ° C., how the conversion efficiency and the output power change with the change in the output of the incident light. The results are shown graphically in FIGS. In the graph of FIG. 3, the horizontal axis represents the output of the incident light, and the vertical axis represents the conversion efficiency. On the other hand, in the graph of FIG. 4, the horizontal axis represents the output of the incident light, and the vertical axis represents the output power. As is clear from the graphs of FIGS. 3 and 4, in the state at room temperature where the wavelength conversion element is not heated, the upper limit of the conversion efficiency is only about 7% due to the influence of two-photon absorption (see FIG. 3). Attempts to generate an output of .1 W or more became unstable (see FIG. 4). On the other hand, when the wavelength conversion element was heated, the effect of two-photon absorption was reduced, and at 385 ° C., the conversion efficiency reached about 15% (see FIG. 3), and an output of about 3 W was generated (see FIG. 3). (See FIG. 4).

また、波長変換素子の特定温度を200℃とし、その近傍における紫外レーザーの発生出力を測定した。その結果を図5にグラフで示す。このグラフにおいて、横軸は波長変換素子の温度を表し、縦軸は紫外レーザーの発生出力を表す。図5のグラフから明らかなように、波長変換素子の温度が特定温度(200℃)から正負両側に乖離すると、紫外レーザーの発生出力が急激に低下する傾向がみられるが、温度精度を±0.3℃以内とすれば、紫外レーザーの発生出力の変動が5%以内となり、温度精度を±0.1℃以内とすれば、紫外レーザーの発生出力の変動が1%以内となることが判った。   The specific output of the wavelength conversion element was set to 200 ° C., and the output of the ultraviolet laser in the vicinity of the specific temperature was measured. The results are shown in a graph in FIG. In this graph, the horizontal axis represents the temperature of the wavelength conversion element, and the vertical axis represents the output of the ultraviolet laser. As is clear from the graph of FIG. 5, when the temperature of the wavelength conversion element deviates from the specific temperature (200 ° C.) to both the positive and negative sides, the generation output of the ultraviolet laser tends to sharply decrease. When the temperature is within 3 ° C., the variation of the output of the ultraviolet laser is within 5%, and when the temperature accuracy is within ± 0.1 ° C., the variation of the output of the ultraviolet laser is within 1%. Was.

次に、図6〜図9に基づいて、波長変換素子を精度良く加熱するための好適な加熱機構の一実施形態を説明する。   Next, an embodiment of a suitable heating mechanism for accurately heating the wavelength conversion element will be described with reference to FIGS.

図6は本実施形態の波長変換装置を示し、波長変換素子1と、波長変換素子1を加熱する加熱ブロック2と、加熱ブロック2を一定温度に加熱・制御する温度制御部3を備え、この加熱ブロック2と温度制御部3とで上記した加熱機構が構成されている。   FIG. 6 shows a wavelength converter of the present embodiment, which includes a wavelength converter 1, a heating block 2 for heating the wavelength converter 1, and a temperature controller 3 for heating and controlling the heating block 2 to a constant temperature. The heating block 2 and the temperature control unit 3 constitute the above-described heating mechanism.

加熱ブロック2は、2本のセラミックヒータ4、4を内蔵した円筒状の銅材5と、銅材5の外側を覆うように設けた断熱用のセラミックス6と、セラミックス6の外側を覆う、例えば、テフロン等の耐熱性樹脂材7で構成されており、この銅材5の中心部に長さ方向に角状空間部を設けて端面が正方形の細長角柱体で成る波長変換素子1(四ホウ酸リチウム単結晶)を収容している。   The heating block 2 includes a cylindrical copper material 5 containing two ceramic heaters 4, 4, a heat insulating ceramic 6 provided so as to cover the outside of the copper material 5, and a material that covers the outside of the ceramic 6, for example. , Teflon or the like, and a wavelength conversion element 1 (four-hole) in which a rectangular space portion is provided in the center of the copper material 5 in the length direction and the end face is a square prism. (Lithium oxide single crystal).

上記した2本のセラミックスヒータ4、4は、この波長変換素子1の上下位置に、その長さ方向に沿って配設されており、それぞれの通電端子が温度制御部3に接続されている。また、この銅材5の長さ方向の中央付近に温度センサー8が取り付けてあり、その出力端子が上記した温度制御部3に接続されている。そして、温度制御部3は、この温度センサー8からの検出温度に基づいて、加熱ブロック2が一定温度となるようにセラミックスヒータ4、4への通電を制御するようになっている。   The above-mentioned two ceramic heaters 4, 4 are arranged at the upper and lower positions of the wavelength conversion element 1 along the length direction thereof, and each energization terminal is connected to the temperature control unit 3. A temperature sensor 8 is attached near the center of the copper material 5 in the length direction, and its output terminal is connected to the above-mentioned temperature control unit 3. The temperature controller 3 controls energization of the ceramic heaters 4 and 4 based on the temperature detected by the temperature sensor 8 so that the heating block 2 has a constant temperature.

また、本実施形態では、銅材5を、一対の断面L形の半割銅材5a、5bによる組合構造として、加熱ブロック2の作製および組み立てを容易にすると共に、これら銅材5a、5bの表面に、例えば、Niメッキ等の耐熱性のあるメッキ処理を施して銅材5の酸化を防止し、レーザービームの通過の妨げとなる粉塵等の発生を防止している。   Further, in the present embodiment, the copper material 5 is formed as a combined structure of a pair of half-shaped copper materials 5a and 5b having an L-shaped cross section to facilitate the production and assembly of the heating block 2 and to form the copper materials 5a and 5b. For example, the surface is subjected to a heat-resistant plating process such as Ni plating to prevent oxidation of the copper material 5 and to prevent generation of dust or the like that hinders passage of a laser beam.

ところで、図6に示すように、本実施形態の加熱ブロック2は、長さ方向の寸法を波長変換素子1より長くし、且つ、加熱ブロック2の両端を波長変換素子1の端面1a、1bより一定長突出させた構造としている。   By the way, as shown in FIG. 6, the heating block 2 of the present embodiment has the length dimension longer than the wavelength conversion element 1 and both ends of the heating block 2 are closer to the end faces 1 a and 1 b of the wavelength conversion element 1. It has a structure that protrudes by a certain length.

波長変換素子では、長さ方向(即ち、光路方向)に温度分布が生じると、結晶内において屈折率が変化して波長変換効率が低下してしまうことは既述した通りである。   As described above, in the wavelength conversion element, when a temperature distribution occurs in the length direction (that is, in the optical path direction), the refractive index changes in the crystal and the wavelength conversion efficiency decreases, as described above.

上記した加熱ブロック2の突出構造は、外気との遮断効果を得て、直接外気に触れる波長変換素子1の両端面(入射端面1aおよび出射端面1b)での熱の発散を抑制し、結晶の長さ方向における温度分布を極力少なくするための施策である。これにより、結晶の長さ方向に関係なく安定した波長変換効率が得られるようになり、波長変換素子1を全長に亘って有効に利用することができ、効率的な波長変換が行えるようになる。   The above-described projecting structure of the heating block 2 obtains an effect of blocking the outside air, suppresses heat dissipation at both end faces (the input end face 1a and the output end face 1b) of the wavelength conversion element 1 that directly contacts the outside air, and This is a measure to minimize the temperature distribution in the length direction. Thereby, stable wavelength conversion efficiency can be obtained regardless of the length direction of the crystal, the wavelength conversion element 1 can be effectively used over the entire length, and efficient wavelength conversion can be performed. .

本実施形態では、この加熱ブロック2の突出構造による効果を確認するため、以下の温度試験を行った。この時の波長変換素子1の加熱温度は何れも400℃としている。
図8は加熱ブロック2の突出量(X)に対する結晶の光軸方向の温度分布を示しており、横軸は結晶の光軸方向の距離を表し(結晶の長手中央部を0mmとする)、縦軸は温度を表す。
尚、波長変換素子1として、結晶の縦・横幅(D)が12mm、長さ(L)が60mmの四ホウ酸リチウム単結晶を用い、また、加熱ブロック2の銅材5は、板厚10mmを使用し、結晶端面1a、1bからの各突出量(X)は、0mm(突出せず)、10mm、20mm、30mmの4種類とした。
In the present embodiment, the following temperature test was performed to confirm the effect of the projecting structure of the heating block 2. The heating temperature of the wavelength conversion element 1 at this time is set to 400 ° C.
FIG. 8 shows the temperature distribution in the optical axis direction of the crystal with respect to the amount of protrusion (X) of the heating block 2, and the horizontal axis represents the distance of the crystal in the optical axis direction (the longitudinal center of the crystal is assumed to be 0 mm). The vertical axis represents temperature.
Note that, as the wavelength conversion element 1, a lithium tetraborate single crystal having a crystal length and width (D) of 12 mm and a length (L) of 60 mm is used. The copper material 5 of the heating block 2 has a thickness of 10 mm. And the amount of projection (X) from the crystal end faces 1a and 1b was set to four types of 0 mm (no projection), 10 mm, 20 mm, and 30 mm.

図8より明らかなように、突出量(X)が10mm以下では、結晶端面での熱放出が顕著になって、結晶端面1a、1bの付近で光軸方向に温度分布が生じているが、突出量(X)を20mm以上にすると温度分布が生じなくなり、結晶の長さ方向の全体に亘って均一に加熱できるようになることが判る。
この突出量(X)の20mmは、結晶長(L)60mmの1/3に当たることから、結晶に温度分布を生じない好適な加熱機構を実現するため、本発明では、加熱ブロック2の突出量(X)を少なくとも結晶長(L)の1/3以上確保することとした。
As is apparent from FIG. 8, when the protrusion amount (X) is 10 mm or less, heat release at the crystal end faces becomes remarkable, and a temperature distribution occurs in the optical axis direction near the crystal end faces 1a and 1b. It is understood that when the protrusion amount (X) is set to 20 mm or more, the temperature distribution does not occur, and the crystal can be heated uniformly over the entire length direction.
Since the protrusion amount (X) of 20 mm corresponds to 1/3 of the crystal length (L) of 60 mm, a preferable heating mechanism that does not generate a temperature distribution in the crystal is realized. (X) is to be secured at least 1/3 or more of the crystal length (L).

また、図9は結晶の幅(D)に対する光軸方向の温度分布を示しており、横軸は結晶の光軸方向の距離を表し(結晶の長手中央部を0mmとする)、縦軸は温度を表す。
尚、銅材5は板厚10mmを使用し、結晶端面1a、1bからの各突出量(X)は20mmとした。また、波長変換素子1は長さ(L)が60mmの四ホウ酸リチウム単結晶を用い、その縦・横の幅(D)は、12mm、20mm、30mm、40mmの4種類とした。
FIG. 9 shows a temperature distribution in the optical axis direction with respect to the width (D) of the crystal. Represents temperature.
The copper material 5 used had a plate thickness of 10 mm, and each protrusion (X) from the crystal end faces 1a and 1b was 20 mm. The wavelength conversion element 1 is made of a single crystal of lithium tetraborate having a length (L) of 60 mm, and has four kinds of vertical and horizontal widths (D) of 12 mm, 20 mm, 30 mm, and 40 mm.

図9より明らかなように、結晶の・縦横幅(D)が20mmの場合では、結晶端面近傍において光軸方向に幾分温度分布が生じており、幅(D)を12mm以下にすると、温度分布が生じなくなることが判る。幅20mmで温度分布が生じたのは、厚みが増すことにより、波長変換素子1の端面側の開口面積が広くなり過ぎて、突出構造による外気遮断効果が薄れ、結晶端部が外気の影響を受け易くなっためである。
この幅(D)の20mmは、結晶長(L)60mmの1/3に当たることから、結晶の長さ方向の温度分布を生じなくするため、本発明では、結晶の縦と横の幅を結晶長(L)の1/4以下に規定した。
As is clear from FIG. 9, when the vertical / horizontal width (D) of the crystal is 20 mm, a slight temperature distribution occurs in the optical axis direction near the crystal end face, and when the width (D) is 12 mm or less, the temperature becomes lower. It turns out that distribution does not occur. The temperature distribution occurred at a width of 20 mm because the opening area on the end face side of the wavelength conversion element 1 became too large due to the increase in the thickness, the outside air blocking effect by the protruding structure was weakened, and the crystal end was affected by the outside air. This is because it is easy to receive.
Since the width (D) of 20 mm corresponds to one third of the crystal length (L) of 60 mm, the longitudinal and lateral widths of the crystal are determined by the present invention in order to eliminate the temperature distribution in the length direction of the crystal. The length (L) was set to 1/4 or less.

以上、図8および図9の結果を総合して、本発明では、波長変換素子1の縦と横の幅(D)を結晶長(L)の1/4以下とし、且つ、加熱ブロック2を、波長変換素子1の入射端面1aおよび出射端面1bより長さ方向に向けて結晶長(L)の1/3以上突出させることとした。   As described above, based on the results of FIGS. 8 and 9, in the present invention, the vertical and horizontal widths (D) of the wavelength conversion element 1 are set to 1 / or less of the crystal length (L), and the heating block 2 is In addition, the wavelength conversion element 1 is made to protrude from the incident end face 1a and the output end face 1b in the length direction by at least 1 / of the crystal length (L).

また、図7は、加熱ブロック2の別の実施形態を示している。
本実施形態は、図6と相違し、波長変換素子1の入射端面1aと出射端面1bを含めた結晶全体を加熱ブロック2で覆う構造とし、加熱ブロック2の端面の光軸上にレーザービームが通過する光路となる孔9を形成したものである。
FIG. 7 shows another embodiment of the heating block 2.
The present embodiment is different from FIG. 6 in that the entire crystal including the incident end face 1a and the outgoing end face 1b of the wavelength conversion element 1 is covered with the heating block 2, and the laser beam is placed on the optical axis of the end face of the heating block 2. A hole 9 serving as an optical path passing therethrough is formed.

但し、この孔9は、最低限、結晶の角度調整が可能な範囲の大きさとする必要があるが、レーザービームの進行を妨げない範囲で極力小さい方が外気との遮断効果に優れる。また、本実施形態では、結晶端面と加熱ブロック端面との間に空間が設けてあるが、両者を密接する構造としても構わない。
尚、図7では、加熱ブロック2を構成する銅材5の構造のみを示しており、これを被覆する各断熱材の構成は図6の場合と同様であるため省略してある。
However, it is necessary that the size of the hole 9 is at least as small as possible so that the angle of the crystal can be adjusted. The smaller the hole 9 is, the better the effect of blocking the progress of the laser beam is. Further, in this embodiment, a space is provided between the crystal end face and the heating block end face, but a structure in which both are closely contacted may be used.
FIG. 7 shows only the structure of the copper material 5 constituting the heating block 2, and the structure of each heat insulating material covering the same is omitted because it is the same as that of FIG. 6.

このように、結晶端面をも加熱ブロック2で覆う構造とすることにより、外気との遮断効果は著しく向上し、グラフで示していないが、加熱ブロック2の突出量(X)や結晶の縦・横幅(D)に左右されることなく、波長変換素子1の長さ方向の温度分布を生じなくすることができる。   As described above, by adopting a structure in which the end face of the crystal is also covered with the heating block 2, the effect of blocking the outside air is remarkably improved, and although not shown in the graph, the protrusion amount (X) of the heating block 2 and the vertical and vertical A temperature distribution in the length direction of the wavelength conversion element 1 can be prevented without being affected by the width (D).

波長変換素子の温度が2光子吸収係数に及ぼす影響を示すグラフである。5 is a graph showing the effect of the temperature of the wavelength conversion element on the two-photon absorption coefficient. 入射紫外レーザーの強度と透過率との関係を波長変換素子の温度別に示すグラフである。6 is a graph showing the relationship between the intensity of the incident ultraviolet laser and the transmittance for each temperature of the wavelength conversion element. 入射光の出力と変換効率との関係を波長変換素子の温度別に示すグラフである。6 is a graph showing the relationship between the output of incident light and the conversion efficiency for each temperature of the wavelength conversion element. 入射光の出力と出力パワーとの関係を波長変換素子の温度別に示すグラフである。6 is a graph showing the relationship between the output of the incident light and the output power for each temperature of the wavelength conversion element. 波長変換素子の温度精度が紫外レーザーの発生出力に及ぼす影響を示すグラフである。4 is a graph showing the effect of the temperature accuracy of the wavelength conversion element on the output of an ultraviolet laser. 本発明に係る波長変換装置の構成を示し、(a)は正面図、(b)は側面図である。1 shows a configuration of a wavelength conversion device according to the present invention, in which (a) is a front view and (b) is a side view. 加熱ブロックを構成する銅材の構造を示す側断面図である。It is a sectional side view which shows the structure of the copper material which comprises a heating block. 加熱ブロックの突出量に対する波長変換素子の光軸方向の温度分布を示すグラフである。5 is a graph illustrating a temperature distribution in a direction of an optical axis of a wavelength conversion element with respect to a protrusion amount of a heating block. 波長変換素子の幅に対する光軸方向の温度分布を示すグラフである。5 is a graph illustrating a temperature distribution in an optical axis direction with respect to a width of a wavelength conversion element.

符号の説明Explanation of reference numerals

1 波長変換素子
1a 入射端面
1b 出射端面
2 加熱ブロック
3 温度制御部
4 ヒーター(セラミックスヒーター)
6 セラミックス
7 樹脂材
8 温度センサー
9 光路(孔)
DESCRIPTION OF SYMBOLS 1 Wavelength conversion element 1a Incident end face 1b Outgoing end face 2 Heating block 3 Temperature controller 4 Heater (ceramic heater)
6 Ceramics 7 Resin material 8 Temperature sensor 9 Optical path (hole)

Claims (7)

四ホウ酸リチウム単結晶からなる波長変換素子でレーザービームを波長変換して波長355nm未満の高調波を発生させる際に、
前記波長変換素子を加熱制御して200〜450℃の温度範囲内の特定温度に所定の温度精度で保持することを特徴とする波長変換方法。
When a laser beam is wavelength-converted by a wavelength conversion element made of lithium tetraborate single crystal to generate a harmonic having a wavelength of less than 355 nm,
A wavelength conversion method, wherein the wavelength conversion element is controlled to be heated and maintained at a specific temperature within a temperature range of 200 to 450 ° C. with a predetermined temperature accuracy.
前記波長変換素子の温度精度を±0.3℃以内としたことを特徴とする請求項1に記載の波長変換方法。 The wavelength conversion method according to claim 1, wherein the temperature accuracy of the wavelength conversion element is within ± 0.3 ° C. 前記波長変換素子の温度精度を±0.1℃以内としたことを特徴とする請求項1に記載の波長変換方法。 The wavelength conversion method according to claim 1, wherein the temperature accuracy of the wavelength conversion element is within ± 0.1 ° C. 非線形光学結晶からなる波長変換素子にレーザービームを入射して波長変換を行う波長変換装置において、
前記波長変換素子の入射端面と出射端面を除く外表面を覆い、ヒータにて前記波長変換素子を外側より加熱する加熱ブロックと、当該加熱ブロックの温度を検出する温度センサーと、当該温度センサーの検出温度に基づき、前記加熱ブロックを一定温度に制御する温度制御部を有し、
前記波長変換素子の長さをLとした時、当該波長変換素子の縦と横の幅をL/4以下とし、且つ、前記加熱ブロックを、前記波長変換素子の入射端面および出射端面より長さ方向にL/3以上突出させたことを特徴とする波長変換装置。
In a wavelength conversion device that performs wavelength conversion by injecting a laser beam into a wavelength conversion element made of a nonlinear optical crystal,
A heating block that covers an outer surface of the wavelength conversion element excluding an incident end face and an emission end face and heats the wavelength conversion element from the outside with a heater, a temperature sensor that detects the temperature of the heating block, and detection of the temperature sensor Based on the temperature, having a temperature control unit to control the heating block to a constant temperature,
When the length of the wavelength conversion element is L, the vertical and horizontal widths of the wavelength conversion element are L / 4 or less, and the heating block is longer than the entrance end face and the exit end face of the wavelength conversion element. A wavelength conversion device characterized by projecting L / 3 or more in the direction.
非線形光学結晶からなる波長変換素子にレーザービームを入射して波長変換を行う波長変換装置において、
前記波長変換素子の全面を覆い、ヒータにて前記波長変換素子を外側より加熱する加熱ブロックと、当該加熱ブロックの温度を検出する温度センサーと、当該温度センサーの検出温度に基づいて前記加熱ブロックを一定温度に制御する温度制御部を有し、且つ、前記加熱ブロックの入射側および出射側の光軸上の面にレーザービームが通過する光路を形成したことを特徴とする波長変換装置。
In a wavelength conversion device that performs wavelength conversion by injecting a laser beam into a wavelength conversion element made of a nonlinear optical crystal,
A heating block that covers the entire surface of the wavelength conversion element and heats the wavelength conversion element from the outside with a heater, a temperature sensor that detects the temperature of the heating block, and the heating block based on the temperature detected by the temperature sensor. A wavelength conversion device having a temperature control unit for controlling the temperature to a constant temperature, and an optical path through which a laser beam passes is formed on a surface on an optical axis on an entrance side and an exit side of the heating block.
前記加熱ブロックは、長さ方向に沿ってヒーターを内蔵した銅等の熱伝導率の高い金属材と、当該金属材の外側を覆うセラミックスと、当該セラミックスの外側を覆う耐熱性樹脂材で構成される筒体であることを特徴とする請求項4または請求項5の何れかに記載の波長変換装置。 The heating block is composed of a metal material having a high thermal conductivity such as copper having a built-in heater along the length direction, a ceramic covering the outside of the metal material, and a heat-resistant resin material covering the outside of the ceramic. The wavelength conversion device according to claim 4, wherein the wavelength conversion device is a cylindrical body. 前記金属材の表面に耐熱性のあるメッキ処理を施して成ることを特徴とする請求項6に記載の波長変換装置。 7. The wavelength converter according to claim 6, wherein a heat-resistant plating process is performed on a surface of the metal material.
JP2003397644A 2002-11-29 2003-11-27 Wavelength conversion method and wavelength conversion apparatus Expired - Fee Related JP4003740B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003397644A JP4003740B2 (en) 2002-11-29 2003-11-27 Wavelength conversion method and wavelength conversion apparatus
US10/938,772 US7218653B2 (en) 2003-11-27 2004-09-09 Wavelength conversion method and wavelength conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002347771 2002-11-29
JP2003397644A JP4003740B2 (en) 2002-11-29 2003-11-27 Wavelength conversion method and wavelength conversion apparatus

Publications (3)

Publication Number Publication Date
JP2004191963A true JP2004191963A (en) 2004-07-08
JP2004191963A5 JP2004191963A5 (en) 2006-11-24
JP4003740B2 JP4003740B2 (en) 2007-11-07

Family

ID=32774921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397644A Expired - Fee Related JP4003740B2 (en) 2002-11-29 2003-11-27 Wavelength conversion method and wavelength conversion apparatus

Country Status (1)

Country Link
JP (1) JP4003740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298933A (en) * 2006-05-03 2007-11-15 Mitsubishi Materials Corp Wave length conversion method
JP2014174379A (en) * 2013-03-11 2014-09-22 Okamoto Kogaku Kakosho:Kk Infrared solid-state laser oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298933A (en) * 2006-05-03 2007-11-15 Mitsubishi Materials Corp Wave length conversion method
JP2014174379A (en) * 2013-03-11 2014-09-22 Okamoto Kogaku Kakosho:Kk Infrared solid-state laser oscillator

Also Published As

Publication number Publication date
JP4003740B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4590578B1 (en) Light source apparatus, mask inspection apparatus, and coherent light generation method
EP2059839B1 (en) Reducing thermal load on optical head
Bethea Megawatt power at 1.318 µ in Nd 3+: YAG and simultaneous oscillation at both 1.06 and 1.318 µ
JP2007298933A (en) Wave length conversion method
JP3389197B2 (en) Laser wavelength converter
WO2007052702A1 (en) Wavelength converter
Sinha et al. Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal
JPWO2009031278A1 (en) Wavelength conversion device, image display device, and processing device
JP2004191963A (en) Wavelength conversion method and wavelength conversion apparatus
US7218653B2 (en) Wavelength conversion method and wavelength conversion element
Smith et al. Operation of the continuously pumped, repetitive Q-switched YAlG: Nd laser
JP2000284334A (en) Crystal holding device
KR100830030B1 (en) Optical wavelength conversion method, optical wavelength conversion system, and laser oscillation system
JP2003075877A (en) Laser light source and temperature control method for nonlinear optical element
Takahashi et al. Reduction of nonlinear absorption in Li2B4O7 by temperature-and repetition rate-control
JP2012033818A (en) Semiconductor laser-excited solid-state laser apparatus
JP6974719B2 (en) Optical beam scanner module
JP2003295241A (en) Holding box for laser device and laser system
JP5825642B2 (en) Light source device, inspection device, and wavelength conversion method
JP2001053356A (en) Crystal retainer used for laser device for processing
Carstens et al. Cavity-enhanced 196 kW average-power infrared pulses
JP2000091673A (en) Solid-state laser and its control method
JP2010179325A (en) Laser machining apparatus
KR100532888B1 (en) controlled beam divergence in copper vapor laser
Roy et al. Nonlinear optical responses of all-inorganic lead halide perovskite nanostructures by time-resolved beam-deflection technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees