JP2004191632A - Mode field conversion optical fiber and its manufacturing method - Google Patents

Mode field conversion optical fiber and its manufacturing method Download PDF

Info

Publication number
JP2004191632A
JP2004191632A JP2002359480A JP2002359480A JP2004191632A JP 2004191632 A JP2004191632 A JP 2004191632A JP 2002359480 A JP2002359480 A JP 2002359480A JP 2002359480 A JP2002359480 A JP 2002359480A JP 2004191632 A JP2004191632 A JP 2004191632A
Authority
JP
Japan
Prior art keywords
optical fiber
core
mode field
field conversion
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359480A
Other languages
Japanese (ja)
Inventor
Shinji Kusaka
眞二 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002359480A priority Critical patent/JP2004191632A/en
Publication of JP2004191632A publication Critical patent/JP2004191632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mode field conversion optical fiber which has a wide transmission band as well as a greatly increased signal transmission rate and distance using a single mode optical fiber as an inexpensive general-purpose optical fiber. <P>SOLUTION: The mode field conversion optical fiber is provided with a core which is formed in a shape tapered narrower in diameter from one end to the other and which transmits an optical signal and a clad which is installed on the outer circumference of the core and which has a refractive index lower than that of the core. Since the core 11 for transmitting an optical signal is formed taperingly, an optical signal from a light source 5 is made incident on the larger diameter end, with a single mode optical fiber connected to a the smaller diameter end as an inexpensive general-purpose optical fiber. Consequently, a transmission band becomes wider, enabling the signal transmission rate and distance to be greatly increased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、モードフィールド変換光ファイバ及びその製造方法に関する。
【0002】
【従来の技術】
LED(発光ダイオード)光源とSMF(シングルモード光ファイバ)とを結合したり、光源用テールファイバ、或いはコア径標準値50μmのGI(グレーデッドインデックス)型光ファイバとMFD(モードフィールド径)標準値9μmのSMFを接続するMFD変換光ファイバが開発されている(例えば、特許文献1参照)。
【0003】
LED光源には結合損失を小さくするため開口数の大きいGI型光ファイバが用いられる。そのため、伝送線路にもGI型光ファイバが用いられている。
【0004】
【特許文献1】
特開平05−224060号公報(第3頁、図3)
【0005】
【発明が解決しようとする課題】
しかしながら、GI型光ファイバは高価であり、マルチモード伝送システムにおいて、伝送帯域あるいは伝送信号速度とその伝送距離がSMFに比べて相当制限されるという問題があった。
【0006】
そこで、本発明の目的は、上記課題を解決し、安価で汎用光ファイバとしてのシングルモード光ファイバを用いて伝送帯域が広く、伝送信号速度と伝送距離とを大幅に伸ばしたモードフィールド変換光ファイバを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、一方の端部から他方の端部へ向かって径が細いテーパ状に形成され光信号が伝搬するコアと、コアの外周に設けられコアより屈折率の低いクラッドとを備えたモードフィールド変換光ファイバである。
【0008】
請求項2の発明は、請求項1に記載の構成に加え、クラッドの外周が紫外線硬化樹脂からなる被覆体で覆われているのが好ましい。
【0009】
請求項3の発明は、請求項1または2に記載の構成に加え、コアの一方の端部の外径が標準値50μmであり、他方の端部の外径が標準値10μmであるのが好ましい。
【0010】
請求項4の発明は、請求項3に記載の構成に加え、クラッドの一方の端部の外径が標準値625μmであり、クラッドの他方の端部の外径が標準値125μmであるのが好ましい。
【0011】
請求項5の発明は、請求項1から4のいずれかに記載の構成に加え、コアとクラッドとの比屈折率差が約1.0%であり、コア及びクラッドの他方の端部のモードフィールド径が7μm〜9μmの範囲内にあるのが好ましい。
【0012】
請求項6の発明は、光信号が伝搬するコアの外周をコアより屈折率の低いクラッドで覆った光ファイバを長手方向に沿ってバーナで往復加熱すると共に光ファイバの両端を長手方向に引っ張ることにより、両端から中央に向かって径が細くなるように形成した後、光ファイバを中央部で切断して略テーパ状とするモードフィールド変換光ファイバの製造方法である。
【0013】
請求項7の発明は、請求項6に記載の構成に加え、光ファイバを略テーパ状に形成した後、外周に紫外線硬化樹脂を塗布し、紫外線照射により紫外線硬化樹脂を硬化させて被覆体を形成するのが好ましい。
【0014】
本発明によれば、光信号が伝搬するコアが略テーパ状に形成されているので、外径の大きい方の端部に光源からの光信号を入射させ、外径の小さい方の端部に安価で汎用光ファイバとしてのシングルモード光ファイバを接続することができる。その結果、伝送帯域が広くなり、伝送信号速度と伝送距離が大幅に伸びる。
【0015】
また、光ファイバの両端を引っ張ると共に長手方向に沿ってバーナで往復加熱することにより、両端から中央に向かって径が細くなるように形成した後、光ファイバを中央で切断するという簡単な方法でモードフィールド変換光ファイバが得られるので、低コスト化が図れる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0017】
図1は本発明のモードフィールド変換光ファイバの一実施の形態を示す側面断面図である。
【0018】
本モードフィールド変換光ファイバ1は、一方の端部(図では左側)から他方の端部(この場合右側)へ向かって径が細いテーパ状に形成され光信号が伝搬するコア2と、コア2の外周に設けられコア2より屈折率の低いクラッド3と、クラッド3の外周に設けられた紫外線硬化樹脂4とを有するものである。
【0019】
コア2の一方の端部の外径は標準値50μmであり、コア2の他方の端部の外径は標準値10μmであるのが好ましい。モードフィールド変換光ファイバ1のコア2とクラッド3との比屈折率差は約1.0%であり、クラッド3の一方の端部の外径は標準値625μmであり、クラッド3の他方の端部の外径は標準値125μmであるのが好ましい。
【0020】
このようなモードフィールド変換光ファイバ1の外径の大きい一方の端部に光源、例えばLED光源5を配置し、外径の小さい他方の端部にSMF(シングルモード光ファイバ)用コネクタ6を接続するのが好ましい。
【0021】
本モードフィールド変換光ファイバ1は、光信号が伝搬するコア2がテーパ状に形成されているので、一方の端部にLED光源(若しくはLD光源)5からの光信号を入射させ、他方の端部に安価で汎用光ファイバとしてのシングルモード光ファイバ(SMF)を接続することができる。その結果、伝送帯域が広くなり、伝送信号速度と伝送距離とを大幅に伸ばすことができる。
【0022】
図2は本発明のモードフィールド変換光ファイバの製造方法の一実施の形態を示す概念図である。本実施の形態ではGI型の光ファイバをモードフィールド変換光ファイバにする場合で説明する。
【0023】
まず、MCVD、VAD若しくはOVDにより、コア11の径が標準値50μm、クラッド12の径が標準値625μmであるGI型光ファイバ10を比屈折率差が標準値約1.0%になるように製造しておく。
【0024】
光信号が伝搬するコア(外径50μm)11の外周をコア11より屈折率の低いクラッド(外径625μm)12で覆ったGI型の光ファイバ10の両端を水平方向に移動自在なチャック13−1、13−2、14−1、14−2で水平に保持し、その光ファイバ10を長手方向に沿ってバーナ15で矢印16、17方向に往復加熱すると共にチャック14−1、14−2で長手方向(矢印18、19方向)に引っ張って、両端から中央に向かって径が細くなるようにテーパ延伸を行い、光ファイバ10の中央のクラッド径を標準値125μmにする。光ファイバ10のテーパ延伸終了後、光ファイバ10を中央で切断することで図1に示したようなモードフィールド変換光ファイバ1が得られる。
【0025】
このモードフィールド変換光ファイバ1の外径の大きい方の端部とLED光源とは通常のGI型光ファイバと同じ結合損失性能を有し、外径の小さい方の端部とSMFとは0.1〜0.2dBの小さい接続損失性能が得られた。
【0026】
LED光源とGI光ファイバとで構成された、10Gb/sイーサネットワークのローブ長が30〜100mに対し、LED光源、本モードフィールド変換光ファイバ1及びSMFが適用された10Gb/sイーサネットワークのローブ長は1〜50kmに伸びる。
【0027】
以上において、本発明によれば、LED光源とGI光ファイバとで構成された10Gb/sイーサネットワークのローブ長が30〜100mに対し、LED光源、本モードフィールド変換光ファイバ及びSMFが適用された10Gb/sイーサネットワークのローブ長は1〜50kmに伸びる。本モードフィールド変換光ファイバの使用によって、GI光ファイバの帯域性能制限(10Gb/sで100m以下の伝送制限がある。)に対し、SMFが使用できることによって、帯域性能制限はなくなり、伝送損失制限の約50kmまで伝送距離が伸ばせる。
【0028】
なお、光ファイバ10を略テーパ状に形成した後、クラッド12の外周に紫外線硬化樹脂を塗布し、紫外線照射により紫外線硬化樹脂を硬化させて被覆体を形成するのが好ましい。また、本実施の形態では、コアの一方の端部の外径が略50μmであり、他方の端部の外径が略10μmであり、クラッドの一方の端部の外径が略625μmであり、他方の端部の外径が略125μmであるモードフィールド変換光ファイバの場合について説明したが、本発明はこれに限定されるものではない。
【0029】
【発明の効果】
以上要するに本発明によれば、安価で汎用光ファイバとしてのシングルモード光ファイバを用いて伝送帯域が広く、伝送信号速度と伝送距離とを大幅に伸ばしたモードフィールド変換光ファイバ及びその製造方法の提供を実現することができる。
【図面の簡単な説明】
【図1】本発明のモードフィールド変換光ファイバの一実施の形態を示す側面断面図である。
【図2】本発明のモードフィールド変換光ファイバの製造方法の一実施の形態を示す概念図である。
【符号の説明】
1 モードフィールド変換光ファイバ
2 コア
3 クラッド
4 紫外線硬化樹脂
5 LED光源
6 SMF用コネクタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mode field conversion optical fiber and a method for manufacturing the same.
[0002]
[Prior art]
LED (light emitting diode) light source and SMF (single mode optical fiber) can be combined, tail fiber for light source, or GI (graded index) optical fiber with core diameter standard value 50 μm and MFD (mode field diameter) standard value An MFD conversion optical fiber for connecting a 9 μm SMF has been developed (for example, see Patent Document 1).
[0003]
As the LED light source, a GI optical fiber having a large numerical aperture is used to reduce the coupling loss. Therefore, a GI optical fiber is also used for the transmission line.
[0004]
[Patent Document 1]
JP-A-05-222060 (page 3, FIG. 3)
[0005]
[Problems to be solved by the invention]
However, the GI type optical fiber is expensive, and there is a problem that a transmission band or a transmission signal speed and a transmission distance thereof are considerably limited in a multi-mode transmission system as compared with the SMF.
[0006]
Therefore, an object of the present invention is to solve the above-mentioned problems, to use a single-mode optical fiber as an inexpensive general-purpose optical fiber, to have a wide transmission band, and to greatly extend a transmission signal speed and a transmission distance. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a core which is formed in a tapered shape with a small diameter from one end to the other end and through which an optical signal propagates, and a core provided on the outer periphery of the core. A mode field conversion optical fiber comprising a cladding having a lower refractive index.
[0008]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, it is preferable that the outer periphery of the clad is covered with a coating made of an ultraviolet curable resin.
[0009]
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the outer diameter of one end of the core is a standard value of 50 μm, and the outer diameter of the other end is a standard value of 10 μm. preferable.
[0010]
According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, the outer diameter of one end of the clad has a standard value of 625 μm, and the outer diameter of the other end of the clad has a standard value of 125 μm. preferable.
[0011]
According to a fifth aspect of the present invention, in addition to the configuration according to any one of the first to fourth aspects, the relative refractive index difference between the core and the clad is about 1.0%, and the mode at the other end of the core and the clad is provided. Preferably, the field diameter is in the range of 7 μm to 9 μm.
[0012]
According to a sixth aspect of the present invention, an optical fiber in which the outer periphery of a core through which an optical signal propagates is covered with a clad having a lower refractive index than the core is reciprocally heated in a longitudinal direction by a burner and both ends of the optical fiber are pulled in a longitudinal direction. Thus, a mode-field converting optical fiber is formed in which the diameter is reduced from both ends toward the center, and then the optical fiber is cut at the center to have a substantially tapered shape.
[0013]
According to a seventh aspect of the present invention, in addition to the configuration according to the sixth aspect, after forming the optical fiber into a substantially tapered shape, an ultraviolet curable resin is applied to the outer periphery, and the ultraviolet curable resin is cured by irradiating ultraviolet light to form a coating. Preferably, it is formed.
[0014]
According to the present invention, since the core through which the optical signal propagates is formed in a substantially tapered shape, the optical signal from the light source is made incident on the end having the larger outer diameter, and the end is formed on the end having the smaller outer diameter. An inexpensive single mode optical fiber as a general-purpose optical fiber can be connected. As a result, the transmission band is widened, and the transmission signal speed and transmission distance are greatly increased.
[0015]
Also, by pulling both ends of the optical fiber and reciprocating heating with a burner along the longitudinal direction, the diameter is reduced from both ends toward the center, and then the optical fiber is cut at the center by a simple method. Since a mode field conversion optical fiber can be obtained, cost reduction can be achieved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0017]
FIG. 1 is a side sectional view showing an embodiment of a mode field conversion optical fiber according to the present invention.
[0018]
The present mode field conversion optical fiber 1 has a core 2 formed in a tapered shape having a small diameter from one end (the left side in the figure) to the other end (the right side in this case), through which an optical signal propagates, and a core 2. And a UV-curable resin 4 provided on the outer periphery of the clad 3 and having a lower refractive index than the core 2.
[0019]
The outer diameter of one end of the core 2 is preferably a standard value of 50 μm, and the outer diameter of the other end of the core 2 is preferably a standard value of 10 μm. The relative refractive index difference between the core 2 and the clad 3 of the mode field conversion optical fiber 1 is about 1.0%, the outer diameter of one end of the clad 3 is a standard value of 625 μm, and the other end of the clad 3 is The outer diameter of the part is preferably a standard value of 125 μm.
[0020]
A light source, for example, an LED light source 5 is disposed at one end of the mode field conversion optical fiber 1 having a large outer diameter, and an SMF (single mode optical fiber) connector 6 is connected to the other end having a small outer diameter. Is preferred.
[0021]
In this mode field conversion optical fiber 1, the core 2 through which the optical signal propagates is formed in a tapered shape, so that the optical signal from the LED light source (or LD light source) 5 is incident on one end and the other end. An inexpensive single mode optical fiber (SMF) can be connected to the section. As a result, the transmission band is widened, and the transmission signal speed and the transmission distance can be greatly increased.
[0022]
FIG. 2 is a conceptual diagram showing one embodiment of a method for manufacturing a mode field conversion optical fiber according to the present invention. In this embodiment, a case will be described in which a GI optical fiber is used as a mode field conversion optical fiber.
[0023]
First, the GI optical fiber 10 having a core 11 having a standard value of 50 μm and a cladding 12 having a standard value of 625 μm is subjected to MCVD, VAD or OVD so that the relative refractive index difference becomes a standard value of about 1.0%. Manufacture.
[0024]
A chuck 13- which is capable of horizontally moving both ends of a GI optical fiber 10 in which the outer periphery of a core (outside diameter 50 μm) 11 through which an optical signal propagates is covered with a clad (outside diameter 625 μm) 12 having a lower refractive index than the core 11. The optical fiber 10 is held horizontally by 1, 13-2, 14-1, 14-2, and the optical fiber 10 is reciprocally heated in the directions of arrows 16, 17 by the burner 15 along the longitudinal direction, and the chucks 14-1, 14-2. The tape is drawn in the longitudinal direction (directions of arrows 18 and 19) so that the diameter becomes smaller from both ends toward the center, and the center clad diameter of the optical fiber 10 is set to a standard value of 125 μm. After the taper extension of the optical fiber 10 is completed, the optical fiber 10 is cut at the center to obtain the mode field conversion optical fiber 1 as shown in FIG.
[0025]
The end of the mode field conversion optical fiber 1 having the larger outer diameter and the LED light source have the same coupling loss performance as a normal GI type optical fiber, and the end having the smaller outer diameter and the SMF are 0.1 mm. A small connection loss performance of 1 to 0.2 dB was obtained.
[0026]
While the lobe length of the 10 Gb / s Ethernet network composed of the LED light source and the GI optical fiber is 30 to 100 m, the lobe of the 10 Gb / s Ethernet network to which the LED light source, the present mode field conversion optical fiber 1 and the SMF are applied. The length extends from 1 to 50 km.
[0027]
As described above, according to the present invention, the LED light source, the present mode field conversion optical fiber, and the SMF are applied to a 10 Gb / s Ethernet network having a lobe length of 30 to 100 m constituted by the LED light source and the GI optical fiber. The lobe length of a 10 Gb / s Ethernet network extends from 1 to 50 km. The use of this mode field conversion optical fiber limits the band performance of the GI optical fiber (there is a transmission limit of 100 m or less at 10 Gb / s). The transmission distance can be extended up to about 50 km.
[0028]
After the optical fiber 10 is formed in a substantially tapered shape, it is preferable that an ultraviolet curable resin is applied to the outer periphery of the clad 12, and the ultraviolet curable resin is cured by irradiation with ultraviolet light to form a coating. In the present embodiment, the outer diameter of one end of the core is approximately 50 μm, the outer diameter of the other end is approximately 10 μm, and the outer diameter of one end of the clad is approximately 625 μm. The mode field conversion optical fiber in which the other end has an outer diameter of approximately 125 μm has been described, but the present invention is not limited to this.
[0029]
【The invention's effect】
In short, according to the present invention, there is provided a mode field conversion optical fiber which uses a single mode optical fiber as an inexpensive general-purpose optical fiber, has a wide transmission band, greatly increases a transmission signal speed and a transmission distance, and a method for manufacturing the same. Can be realized.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an embodiment of a mode field conversion optical fiber according to the present invention.
FIG. 2 is a conceptual diagram showing one embodiment of a method for manufacturing a mode field conversion optical fiber of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mode field conversion optical fiber 2 Core 3 Cladding 4 Ultraviolet curing resin 5 LED light source 6 SMF connector

Claims (7)

一方の端部から他方の端部へ向かって径が細いテーパ状に形成され光信号が伝搬するコアと、該コアの外周に設けられ該コアより屈折率の低いクラッドとを備えたことを特徴とするモードフィールド変換光ファイバ。It is characterized by comprising a core that is formed in a tapered shape with a small diameter from one end to the other end and through which an optical signal propagates, and a clad provided on the outer periphery of the core and having a lower refractive index than the core. Mode field conversion optical fiber. 上記クラッドの外周が紫外線硬化樹脂からなる被覆体で覆われている請求項1に記載のモードフィールド変換光ファイバ。2. The mode field conversion optical fiber according to claim 1, wherein the outer periphery of the clad is covered with a coating made of an ultraviolet curable resin. 上記コアの一方の端部の外径が標準値50μmであり、他方の端部の外径が標準値10μmである請求項1または2に記載のモードフィールド変換光ファイバ。The mode field conversion optical fiber according to claim 1, wherein an outer diameter of one end of the core is a standard value of 50 μm, and an outer diameter of the other end is a standard value of 10 μm. 上記クラッドの一方の端部の外径が標準値625μmであり、上記クラッドの他方の端部の外径が標準値125μmである請求項3に記載のモードフィールド変換光ファイバ。The mode field conversion optical fiber according to claim 3, wherein the outer diameter of one end of the clad has a standard value of 625 µm, and the outer diameter of the other end of the clad has a standard value of 125 µm. 上記コアと上記クラッドとの比屈折率差が約1.0%であり、上記コア及び上記クラッドの他方の端部のモードフィールド径が7μm〜9μmの範囲内にある請求項1から4のいずれかに記載のモードフィールド変換光ファイバ。5. The method according to claim 1, wherein a relative refractive index difference between the core and the clad is about 1.0%, and a mode field diameter of the other end of the core and the clad is in a range of 7 μm to 9 μm. A mode field conversion optical fiber according to any one of the above. 光信号が伝搬するコアの外周を該コアより屈折率の低いクラッドで覆った光ファイバを長手方向に沿ってバーナで往復加熱すると共に上記光ファイバの両端を長手方向に引っ張ることにより、両端から中央に向かって径が細くなるように形成した後、上記光ファイバを中央部で切断して略テーパ状とすることを特徴とするモードフィールド変換光ファイバの製造方法。An optical fiber in which the outer periphery of a core through which an optical signal propagates is covered with a clad having a lower refractive index than the core is reciprocally heated by a burner along the longitudinal direction, and both ends of the optical fiber are pulled in the longitudinal direction, so that the center from both ends. A method of manufacturing a mode-field conversion optical fiber, comprising: forming the optical fiber so that the diameter becomes smaller toward the center; 上記光ファイバを略テーパ状に形成した後、外周に紫外線硬化樹脂を塗布し、紫外線照射により上記紫外線硬化樹脂を硬化させて被覆体を形成する請求項6に記載のモードフィールド変換光ファイバの製造方法。7. The production of the mode field conversion optical fiber according to claim 6, wherein after forming the optical fiber into a substantially tapered shape, an ultraviolet curable resin is applied to the outer periphery, and the ultraviolet curable resin is cured by irradiation with ultraviolet light to form a coating. Method.
JP2002359480A 2002-12-11 2002-12-11 Mode field conversion optical fiber and its manufacturing method Pending JP2004191632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359480A JP2004191632A (en) 2002-12-11 2002-12-11 Mode field conversion optical fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359480A JP2004191632A (en) 2002-12-11 2002-12-11 Mode field conversion optical fiber and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004191632A true JP2004191632A (en) 2004-07-08

Family

ID=32758866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359480A Pending JP2004191632A (en) 2002-12-11 2002-12-11 Mode field conversion optical fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004191632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049333A1 (en) * 2004-11-04 2006-05-11 Gl Sciences Incorporated Spray needle for esi and process for producing the same
JP2008203496A (en) * 2007-02-20 2008-09-04 Fujikura Ltd Double-core fiber, optical coupling device using the same, signal light excitation optical coupling device, fiber amplifier, and fiber laser
US20210364552A1 (en) * 2020-05-20 2021-11-25 Kabushiki Kaisha Nihon Micronics Optical probe, optical probe array, optical probe card, and method of manufacturing optical probe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049333A1 (en) * 2004-11-04 2006-05-11 Gl Sciences Incorporated Spray needle for esi and process for producing the same
JPWO2006049333A1 (en) * 2004-11-04 2008-05-29 ジーエルサイエンス株式会社 ESI spray needle and method for manufacturing the same
JP4863877B2 (en) * 2004-11-04 2012-01-25 ジーエルサイエンス株式会社 ESI spray needle and method for manufacturing the same
JP2008203496A (en) * 2007-02-20 2008-09-04 Fujikura Ltd Double-core fiber, optical coupling device using the same, signal light excitation optical coupling device, fiber amplifier, and fiber laser
US20210364552A1 (en) * 2020-05-20 2021-11-25 Kabushiki Kaisha Nihon Micronics Optical probe, optical probe array, optical probe card, and method of manufacturing optical probe
CN113720581A (en) * 2020-05-20 2021-11-30 日本麦可罗尼克斯股份有限公司 Optical probe, optical probe array, optical probe card, and method of manufacturing optical probe
US11971431B2 (en) * 2020-05-20 2024-04-30 Kabushiki Kaisha Nihon Micronics Optical probe, optical probe array, optical probe card, and method of manufacturing optical probe

Similar Documents

Publication Publication Date Title
JP5330729B2 (en) Graded index multimode optical fiber
US7539377B2 (en) Method and device for optically coupling optical fibres
EP0918382B1 (en) Cladding-pumped fiber structures
CN104483735B (en) All-fiber mode converter light system
WO2013000291A1 (en) Bending-resistant large core diameter high numerical aperture multimode fiber
CN105633778A (en) High-order-mode filtering optical fiber end surface pumping coupler and manufacture method thereof
JP2013522677A (en) Method and apparatus for low loss, mode field matched coupling to multi-core fiber
JP2003522971A (en) Dispersion compensating module and its mode converter, coupler and dispersion compensating optical waveguide
CN102904641A (en) Communication system based on few-mode optical fiber
CN109937372A (en) Couple less fundamental mode optical fibre and corresponding optical link and optical system
CA2253579A1 (en) Single mode optical fiber having multi-step core structure and method of fabricating the same
RU2002115716A (en) Method for winding optical fiber onto a bobbin
WO2010035397A1 (en) Optical fiber and method for manufacturing the same
DK1397718T3 (en) Optical fiber
WO2013051481A1 (en) Optical fiber
JP2004191632A (en) Mode field conversion optical fiber and its manufacturing method
JP2003021759A (en) Optical fiber
CN112777927B (en) Bending insensitive optical fiber preform and preparation method thereof
CN210572871U (en) Mode field adapter, fiber laser and fiber isolator
JP2006317692A (en) Optical fiber
EP1298464A3 (en) Silica optical fibre with polymer double cladding
CN102122991B (en) Dual-mode optical fiber and communication system thereof
JPH01169410A (en) Optical fiber
JP2006308828A (en) Optical fiber
CN217606137U (en) Optical module