JP2004191258A - Method of detecting water leakage path in building - Google Patents

Method of detecting water leakage path in building Download PDF

Info

Publication number
JP2004191258A
JP2004191258A JP2002361228A JP2002361228A JP2004191258A JP 2004191258 A JP2004191258 A JP 2004191258A JP 2002361228 A JP2002361228 A JP 2002361228A JP 2002361228 A JP2002361228 A JP 2002361228A JP 2004191258 A JP2004191258 A JP 2004191258A
Authority
JP
Japan
Prior art keywords
temperature difference
air
temperature
building
water leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002361228A
Other languages
Japanese (ja)
Inventor
Yoshitake Eda
悦健 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002361228A priority Critical patent/JP2004191258A/en
Publication of JP2004191258A publication Critical patent/JP2004191258A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To relatively easily and economically detect a water leakage path, to compactify a device used therein to facilitate carriage therefor, and to surely grasp the leakage path in a structure of a building. <P>SOLUTION: In this leakage detecting method for the building of the present invention, temperature difference air E detectable by an infrared-sensitive camera with respect to a temperature of the structure of the building of an inspection object is forcibly introduced from a crack opening part in a reverse side of the structure. A condition of the temperature difference air E blown out from a surface portion having the possibility of the leakage in the structure, or a condition in a peripheral edge of a blow-out port is photographed by the infrared temperature-sensitive camera to form a temperature distribution condition into an image. The portion having the possibility of the leakage is assigned based on a local temperature difference part displayed in the image G. Then, discrimination gas K is forcibly introduced from the crack opening part in the reverse side of the structure, as in the manner hereinbefore, the gas K is detected by a gas detector while tracing the portion having the possibility of the leakage, and the opening part of the leakage path is specified in the structure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、建築物における屋根、壁、床等の構造体に発生する漏水路を外部から検知するための方法に関する。
【0002】
【従来の技術】
本発明者は、先に、建築物の壁、床、柱等の構造体内部を通る漏水路を発見し、その漏水箇所の診断をする方法と、そのための装置(特許文献1)を提案し、その装置を用いて漏水補修工事を実施している。
この漏水路「水みち」の診断方法は.壁面などの構造体に生じた亀裂箇所に気体注入口を設け、この気体注入口に炭酸ガスを注入し、構造体表面の裂け目から漏れ出る炭酸ガスをガス検知具でキャッチしてそのキャッチ箇所の裂け目が構造体内部漏水路で連結していることを確認するものである。
【0003】
前記気体注入口と炭酸ガスの漏出キャッチ箇所とは、構造体内部で連続しているのが確認できるので、この隙間に防水充填材を充填すれば漏水の水みちを塞ぐ漏水補修工事を行うことができる。
しかし、この検知方法では、炭酸ガスの検知センサーを配置した箇所をスポット的にキャッチするので、例えば、漏水個所が目地や表面仕上げ材の亀裂に沿って帯状に長引く場合や、漏水個所が全体に渡って点在する場合等には、全体的な漏水個所の把握ができない為、漏水個所を見逃す場合がある。これでは、漏水を招いて、再度の診断を余儀なくされる等の難点が存した。
【0004】
一方、従来の公知技術として、壁面に赤外線などの熱線を照射して、対象壁面を中空スポット状に加熱し、生じる壁面温度差を赤外線カメラにより得られた画像で分析して、その温度差からタイルの浮き状況を検知する手法が提案されている(特許文献2)。
この方法では正常部分では上昇したタイルの温度は背後の躯体へ熱エネルギーの伝達があるので温度が低下するが、タイルの浮き部分においては、浮き空間によって上昇した温度の躯体へ熱伝達の遮断が起こり、浮き部分を有するタイル表面の温度が他の正常部分よりも高くなる。これを赤外線カメラで撮影すると得られたタイル面の画像の中空スポットに温度の乱れが生じる。したがって、タイルなどの薄い表面壁面に対して、その表面材の浮き状況を知ることができる。
しかし、この方法では、表面材の浮き状況を知ることができるだけで建築物の構造体の漏水路を探し出すことはできない。
【0005】
また、それとは別に、壁面に40℃〜100℃の高温ガスを吹き付け、対象壁面を加熱し、その壁面から発生する赤外線放射エネルギーを赤外線放射計で計測し、得られた計測データを画像解析して、その構造物の表面又は内部欠陥を検知する手法が提案されている(特許文献3)。
しかし、この方法は、建築物の漏水路を探し出すものではなく、且つ、壁面に40℃〜100℃の高温ガスを吹き付けるのは高い運転経費を要し、経済的に負担の大きいものである。
【0006】
【特許文献1】
特公昭61−004471
【特許文献2】
特開平06−018793
【特許文献3】
特開平06−258153
【0007】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みてなされたもので、漏水路が比較的簡単且つ経済的に検知でき、用いる装置もコンパクトで持ち運びも容易にでき、建築物の漏水路を確実に把握できる検知方法を提供するものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、検査対象建築物の構造体の温度に対し赤外線感知カメラで検出可能な温度差が得られる温度差空気(E)を該構造体の裏側の亀裂開口部から圧入し、該構造体の漏水のおそれのある表面箇所から噴出する該温度差空気(E)の状態及び/又は該温度差空気(E)が噴き出して冷却される噴出口の周縁部の状態を赤外線温度感知カメラで撮影し、温度分布状態を画像化する。該撮影画像化された画像(G)の中で表示された局部的温度差部から漏水のおそれのある箇所を指定し、次いで前記と同様構造体の裏側の亀裂開口部から識別気体(K)を圧入し、前記漏水のおそれのある指定箇所をなぞりながら気体感知機にて該識別気体(K)を検出し、該検出位置から構造体の漏水路の開口部を特定することを特徴とする。
【0009】
請求項2記載の発明は、大気を過熱又は冷却して温度差空気を作成することを特徴とする。
【0010】
請求項3記載の発明、温度差空気(E)の圧入方法が、構造体の表面に対して空気溜(S)を有する密着エアーノズルを押し当てて、その空気溜(S)内に温度差空気(E)を圧送することを特徴とする。
【0011】
請求項4記載の発明は、高温差空気(E)を得る方法が、温度制御部を備えたヒーターにより行われることを特徴とする。
【0012】
請求項5記載の発明は、高温差空気(E)を得る方法が、温度制御部を備えた空気冷却機により行われることを特徴とする。
【0013】
【発明の実施の形態】
その実施の形態を図の実施例に基づいて以下説明する
本発明の建築物の漏水路検知方法は、先ず、検査対象となる建築物の外壁面の温度を
測定する。その検知方法は、例えば、後述する赤外線温度検知カメラによるか、又は直接壁面に触れる温度検知器によっても良い。
その外壁面と赤外線温度検知カメラによって有効に識別され得る空気の温度を設定する。この空気温度の設定は、使用する赤外線温度検知カメラの感度によって異なるが、通常の赤外線温度検知カメラであれば、1℃以上の温度差があれば充分である。
【0014】
さて、この設定された温度の空気(温度差空気)を作成するには、温度制御部10を備えたヒーター9による場合と、温度制御部12を備えた空気冷却機11による場合とがある。
そのいずれを選択するかは、そのときの環境とヒーター又は冷却機との関係による。
例えば、夏の高温時にあって、外壁面が高温に帯熱しているときには、冷却機を用いて外壁面より低い冷気を作成して、これを温度差空気とするのが良い。一方、冬の寒冷時にあって、外壁面が低温となっているときには、ヒーターを用いて外壁面より高温の暖気を作成して、これを温度差空気とするのが望ましい。なぜなら、赤外線温度検知カメラにあって、外壁面が高温のときは赤色となって、そこにより低温の温度差空気が吹き出せば、青色となって識別力が高まるからであり、逆に、外壁面が低温の場合は青色となって、そこにより高温の温度差空気が吹き出せば赤色となって識別力が高まるからである。
【0015】
その加熱又は冷却された温度差空気Eをその構造体1の裏面の亀裂開口部分3から構造体1の内部亀裂5内に圧入する(図1、図2参照)。
【0016】
前記高温の温度差空気Eの圧入方法については各種の手法があるが、例えば、図1に示すように、構造体1の裏面に対して小面積に開いた空気溜Sを有する密着エアーノズル8を押し当てて、その空気溜S内に温度差空気Eを圧送し続ける方法がある。
【0017】
そして、その温度差空気Eの温度が構造体1表面から噴出し、又はその温度が周縁部へ伝達されるのを待ち、赤外線温度感知カメラ7でその表面aを撮影してその温度分布状態を画像化する。
【0018】
圧入された温度差空気は、当初はその熱エネルギーが吹き抜けてくる空隙の材料に吸収されて、噴き出してくる空気に外壁との温度差があまり表れ難い。しかし、それも一定時間を経過すると、空隙物質による吸熱が緩和され、その間を吹き抜けてくる圧入空気の温度が維持されるようになる。そして、その温度差が、赤外線温度感知カメラにとって有効な識別温度差に至ると、そこに温度差を介して明確な画像が表出される(図3参照)。
このとき、画像に表出される対象は、該構造体の漏水のおそれのある表面箇所から噴出する温度差空気(E)の状態の場合と、該温度差空気(E)が噴き出して冷却される噴出口の周縁部の状態の場合とがあるが、そのいずれか一方又はその双方であっても良い。
【0019】
この画像処理装置は、赤外線温度感知CCDカメラ7とコンピュータ15とモニター16とキーボードやマウスなどの入力装置で構成され、赤外線温度感知CCDカメラ7で捉えた映像はコンピュータ15のメモリーに記憶されモニター16かせ画像出力される。そしてカラープリンター17からプリントアウトされて保存される。この画像Gの分析によって、画像(G)の中で表示された局部的温度差部から漏水のおそれのある箇所が指定され得る。
【0020】
このとき、当該画像Gは、外壁面全体を対象として画像化されるから、漏水の原因となる噴き出し箇所が帯状であったり、複数の箇所が散在している場合であっても、その全体を洩れなく把握することが可能となる。
【0021】
さて、上記方法によって外壁面を対象として漏水のおそれのある箇所の全体像が指定されるが、しかし、このなかには一箇所の噴出口から目地に沿って温度差空気が拡散されて帯状の画像として捉えられる場合がある(図4イ、ロ参照)。こうした場合、上記画像に表示された指定の箇所を全て漏水の原因箇所であると捉えてしまうと、漏水の施工箇所が拡大して工事の規模をいたずらに大きくするばかりとなる。
【0022】
そこで、より確実に漏水口を確認する方法として、識別気体による真の漏水原因箇所の特定を行う。
具体的には、温度差空気の場合と同様構造体の裏側の亀裂開口部から、持参した液化ガスボンベ14の炭酸ガス等によって識別気体Kを圧入する(図5参照)。すると、温度差空気の場合とほぼ同様の経路をたどって識別気体が表面箇所から噴出することとなるが、その位置は上記箇所の映像・画像処理によって指定されており、全体像を捉えつつ、指定箇所をなぞりながら識別気体の噴出箇所をもれなく点検することができる。
【0023】
そして、この識別気体による検出を続けると、例えば炭酸ガス検知による場合にはppm単位の濃度でガスの検出が可能であるから、噴き出し箇所のうちより濃度の高い箇所を検出することができ、従って、噴き出し口のうち最高濃度を示すところが真の漏水の箇所として確率の最も高いものとして特定することが可能となる。
斯くして、温度差空気によって捉えた噴出箇所の全体像より、識別気体による探知で真の漏水原因箇所が特定でき、最も効率良く、且つ、もれのない確率で漏水箇所の探知が可能となる。
【0024】
【発明の効果】
本発明は以上のようであり、建築物の構造体に存する亀裂の裏側から温度差空気が注入されると、その亀裂の表側から温度空気が噴出され、又は、噴出する空気差空気によって亀裂部の周縁が亀裂の存在しない部分より温度が上昇又は下降し、温度差が構造体の表面側に現れてくる。
【0025】
その温度差を赤外線カメラで撮影をすると、高温部又は低温部の領域が画像Gの中に表示され、帯状又は複数の箇所が散在している場合であっても漏水の原因となる噴き出し箇所の全体を洩れなく把握することが可能となり、次いで、識別気体による検出を行うと、噴き出し箇所のうちより濃度の高い箇所を検出することができ、この結果、真の漏水の箇所として確率の最も高いところを特定し、最も効率良く、且つ、もれのない確率で漏水箇所の探知が可能となる。
【0026】
このとき、温度差空気は別にボンベに入れたガスを持ち込まなくてもよいので、コストが安価で、且つ、その後に使用する識別気体は、漏水箇所として確率の最も高いところを特定して使用するので使用量が少なくて済み、経済的である。
【図面の簡単な説明】
【図1】構造体の亀裂裏口からヒーターで得た温度差空気を注入する方法を示す壁断面の模式的斜視図。
【図2】構造体の亀裂裏口から空気冷却機で得た温度差空気を注入する方法を示す壁断面の模式的斜視図。
【図3】赤外線温度感知カメラで撮影した温度分布状態を画像化した状態の模式図。
【図4】(ロ)構造体の一箇所の噴出口から目地に沿って温度差空気が拡散される状態の模式的断面図、(イ)それがモニターに帯状画像として映し出された状態を示す模式図。
【図5】構造体の亀裂裏口から識別気体を注入する方法を示す壁断面の模式的斜視図。
【符号の説明】
1 構造体
2 カラープリンター
3 亀裂開口部分
5 内部亀裂
6 浮き隙間
7 赤外線温度感知カメラ
8 密着エアーノズル
9 ヒーター
10 温度制御部
11 空気冷却機
12 温度制御部
13 気体感知機
14 ガスボンベ
15 コンピュータ
16 モニター
a 表面
b 裏面
E 温度差空気
G 画像
X 高温又は低温表示部分
S 空気溜
K 識別気体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for externally detecting a water leakage path generated in a structure such as a roof, a wall, and a floor in a building.
[0002]
[Prior art]
The present inventor has previously proposed a method of finding a water leakage path that passes through the inside of a structure such as a wall, a floor, or a pillar of a building, and diagnosing the water leakage point, and a device therefor (Patent Document 1). And repairing water leakage using the equipment.
How to diagnose this water leakage channel, "Mizumichi"? A gas inlet is provided at a crack in a structure such as a wall surface, carbon dioxide gas is injected into the gas inlet, and carbon dioxide leaking from a breach on the surface of the structure is caught by a gas detector and the gas detector is used. This is to confirm that the ruptures are connected by a water leakage channel inside the structure.
[0003]
Since the gas inlet and the leak catch point of carbon dioxide gas can be confirmed to be continuous inside the structure, if this gap is filled with a waterproof filler, it is necessary to perform a water leakage repair work to close the leak water path. Can be.
However, in this detection method, the location where the carbon dioxide gas detection sensor is located is caught in a spot, so for example, when the leak location is prolonged in a band along the joints or cracks of the surface finishing material, or the leak location is entirely When it is scattered across, etc., it is not possible to grasp the entire leak location, so the leak location may be missed. In this case, there is a problem that a water leak is caused and a diagnosis must be performed again.
[0004]
On the other hand, as a conventional known technique, a wall surface is irradiated with heat rays such as infrared rays to heat a target wall surface into a hollow spot shape, and a generated wall surface temperature difference is analyzed with an image obtained by an infrared camera, and the temperature difference is analyzed. A technique for detecting a floating state of a tile has been proposed (Patent Document 2).
With this method, the temperature of the raised tile in the normal part decreases because the thermal energy is transmitted to the skeleton behind it, but in the floating part of the tile, the heat transfer to the skeleton of the raised temperature is interrupted by the floating space. As a result, the temperature of the surface of the tile having the raised portion becomes higher than other normal portions. When this is taken with an infrared camera, the temperature of the hollow spot in the image of the tile surface obtained is disturbed. Therefore, it is possible to know the floating state of the surface material on a thin wall surface such as a tile.
However, according to this method, it is only possible to know the floating state of the surface material, and it is not possible to find the water leakage channel of the building structure.
[0005]
Separately, a high-temperature gas of 40 ° C. to 100 ° C. is sprayed on the wall surface to heat the target wall surface, infrared radiation energy generated from the wall surface is measured by an infrared radiometer, and the obtained measurement data is image-analyzed. Thus, a method of detecting a surface or internal defect of the structure has been proposed (Patent Document 3).
However, this method does not search for a water leakage channel of a building, and blowing high-temperature gas of 40 ° C. to 100 ° C. on a wall surface requires a high operating cost and is economically burdensome.
[0006]
[Patent Document 1]
Tokiko Sho 61-004471
[Patent Document 2]
JP-A-06-188793
[Patent Document 3]
JP-A-06-258153
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and it is possible to relatively easily and economically detect a water leak channel, to use a compact and easy-to-use device, and to reliably detect a water leak channel in a building. Is provided.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 provides a temperature difference air (E) that can obtain a temperature difference that can be detected by an infrared sensing camera with respect to the temperature of a structure of a building to be inspected. The state of the temperature difference air (E) ejected from the surface of the structure where there is a risk of water leakage from the crack opening on the back side and / or the jet port where the temperature difference air (E) is ejected and cooled. Is photographed with an infrared temperature sensing camera, and the temperature distribution state is imaged. In the captured image (G), a portion having a possibility of water leakage is designated from the local temperature difference portion displayed, and then the identification gas (K) is identified from the crack opening on the back side of the structure as described above. And detecting the identification gas (K) with a gas sensor while tracing the designated place where there is a possibility of the water leakage, and specifying the opening of the water leakage passage of the structure from the detection position. .
[0009]
The invention described in claim 2 is characterized in that the air is heated or cooled to create a temperature difference air.
[0010]
According to the third aspect of the invention, there is provided a method for press-fitting a temperature difference air (E), wherein a close contact air nozzle having an air reservoir (S) is pressed against the surface of the structure, and the temperature difference is introduced into the air reservoir (S). The air (E) is pumped.
[0011]
The invention described in claim 4 is characterized in that the method of obtaining the high temperature difference air (E) is performed by a heater provided with a temperature control unit.
[0012]
The invention according to claim 5 is characterized in that the method for obtaining the high temperature difference air (E) is performed by an air cooler provided with a temperature control unit.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for detecting a water leak of a building according to the present invention, which is described below with reference to an embodiment shown in the drawings, first measures the temperature of the outer wall surface of the building to be inspected. The detection method may be, for example, by an infrared temperature detection camera described later, or by a temperature detector that directly touches a wall surface.
The temperature of the outside wall and the temperature of the air that can be effectively identified by the infrared temperature detection camera are set. The setting of the air temperature varies depending on the sensitivity of the infrared temperature detection camera to be used, but a normal infrared temperature detection camera requires a temperature difference of 1 ° C. or more.
[0014]
The air having the set temperature (temperature difference air) may be generated by the heater 9 having the temperature control unit 10 or by the air cooler 11 having the temperature control unit 12.
Which one to select depends on the relationship between the environment at that time and the heater or the cooler.
For example, when the outer wall surface is heated to a high temperature during a high temperature in summer, it is preferable to use a cooler to generate cold air lower than the outer wall surface and use this as the temperature difference air. On the other hand, when the outer wall surface is at a low temperature in cold winter, it is desirable to use a heater to generate warm air at a higher temperature than the outer wall surface and use this as a temperature difference air. This is because, in the infrared temperature detection camera, when the outer wall surface is hot, the color becomes red, and when the low temperature difference air blows out, the color becomes blue and the discriminating power increases. This is because the wall surface becomes blue when the wall surface is low temperature, and becomes red when the high temperature difference air blows out therefrom, and the discriminating power increases.
[0015]
The heated or cooled temperature difference air E is pressed into the internal crack 5 of the structure 1 from the crack opening 3 on the back surface of the structure 1 (see FIGS. 1 and 2).
[0016]
There are various methods for press-fitting the high temperature differential air E. For example, as shown in FIG. 1, a close contact air nozzle 8 having an air reservoir S opened to a small area with respect to the back surface of the structure 1. , And the temperature difference air E is continuously pumped into the air reservoir S.
[0017]
Then, the temperature of the temperature difference air E is ejected from the surface of the structure 1 or the temperature is transmitted to the peripheral portion. Then, the surface a is photographed by the infrared temperature sensing camera 7, and the temperature distribution state is measured. Create an image.
[0018]
At first, the injected temperature difference air is absorbed by the material of the air gap where the thermal energy is blown out, so that the temperature difference between the blown air and the outer wall hardly appears. However, after a certain period of time, the endothermic effect of the void material is alleviated, and the temperature of the press-fit air flowing through the space is maintained. Then, when the temperature difference reaches an identification temperature difference effective for the infrared temperature sensing camera, a clear image is displayed there through the temperature difference (see FIG. 3).
At this time, the object displayed in the image is in the state of the temperature difference air (E) ejected from the surface portion of the structure where there is a risk of water leakage, and the object is cooled by ejecting the temperature difference air (E). There may be a state of the peripheral portion of the ejection port, but either one or both of them may be used.
[0019]
This image processing apparatus is composed of an infrared temperature sensing CCD camera 7, a computer 15, a monitor 16, and input devices such as a keyboard and a mouse. Images captured by the infrared temperature sensing CCD camera 7 are stored in the memory of the computer 15 and stored in the monitor 16 The image is output. Then, it is printed out from the color printer 17 and stored. Through the analysis of the image G, a location where there is a possibility of water leakage can be designated from the local temperature difference portion displayed in the image (G).
[0020]
At this time, since the image G is imaged with respect to the entire outer wall surface, even if the spouting point that causes water leakage is strip-shaped or a plurality of points are scattered, the entire image G is imaged. It is possible to grasp without leakage.
[0021]
By the above method, the entire image of the area where there is a risk of water leakage is specified for the outer wall surface, but in this, the temperature difference air is diffused along the joint from one of the outlets as a band-like image. It may be caught (see FIGS. 4A and B). In such a case, if all of the designated places displayed in the above image are regarded as the causes of the water leakage, the places where the water leakage is performed are enlarged and the scale of the construction is unnecessarily increased.
[0022]
Therefore, as a method for more surely confirming the water leak port, a true leak cause portion is identified by the identification gas.
Specifically, as in the case of the temperature difference air, the discrimination gas K is injected into the liquefied gas cylinder 14 brought in by the carbon dioxide gas or the like from the crack opening on the back side of the structure (see FIG. 5). Then, the discrimination gas will be ejected from the surface location by following a substantially similar path as in the case of the temperature difference air, but the location is specified by video / image processing of the location, and while capturing the entire image, While tracing the designated location, the location where the identification gas is ejected can be inspected without fail.
[0023]
Then, when the detection by the identification gas is continued, for example, in the case of the carbon dioxide gas detection, the gas can be detected at a concentration of ppm unit, so that a higher concentration portion can be detected from the ejection portion, and therefore, In addition, it is possible to specify a portion having the highest concentration among the outlets as a portion having the highest probability as a true leaking portion.
In this way, from the entire image of the spouting point captured by the temperature difference air, the true leaking point can be identified by the detection with the identification gas, and the leaking point can be detected most efficiently and with a probability of no leakage. Become.
[0024]
【The invention's effect】
The present invention is as described above, when the temperature difference air is injected from the back side of the crack existing in the structure of the building, the temperature air is blown from the front side of the crack, or the cracked portion is blown by the blowing air difference air. The temperature rises or falls from the periphery where no crack exists, and a temperature difference appears on the surface side of the structure.
[0025]
When the temperature difference is photographed with an infrared camera, the area of the high temperature part or the low temperature part is displayed in the image G, and even if a band or a plurality of parts are scattered, the spouting part causing the water leakage is detected. It is possible to grasp the whole without leaking, and then, by performing the detection with the identification gas, it is possible to detect a portion with a higher concentration among the spouting portions, and as a result, the highest probability as a true leaking portion However, it is possible to specify the location, and to detect the leaking point with the highest efficiency and with no probability of leakage.
[0026]
At this time, since the temperature difference air does not need to bring in a gas separately put into a cylinder, the cost is low, and the identification gas to be used thereafter is used by specifying a location having the highest probability as a leaking point. Therefore, the use amount is small and it is economical.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a cross section of a wall showing a method of injecting a temperature difference air obtained by a heater from a crack back door of a structure.
FIG. 2 is a schematic perspective view of a cross section of a wall showing a method of injecting a temperature difference air obtained by an air cooler from a back opening of a structure.
FIG. 3 is a schematic diagram of a state in which a temperature distribution state captured by an infrared temperature sensing camera is imaged.
FIG. 4 (b) is a schematic cross-sectional view showing a state in which the temperature difference air is diffused along one joint from one outlet of the structure, and FIG. 4 (a) shows a state where the air is projected as a band image on a monitor. Pattern diagram.
FIG. 5 is a schematic perspective view of a cross section of a wall showing a method of injecting a discriminating gas from a crack back door of a structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Structure 2 Color printer 3 Crack opening part 5 Internal crack 6 Floating gap 7 Infrared temperature sensing camera 8 Contact air nozzle 9 Heater 10 Temperature controller 11 Air cooler 12 Temperature controller 13 Gas detector 14 Gas cylinder 15 Computer 16 Monitor a Front surface b Back surface E Temperature difference air G Image X High or low temperature display part S Air reservoir K Identification gas

Claims (5)

検査対象建築物の構造体の温度に対し赤外線感知カメラで検出可能な温度差が得られる温度差空気(E)を該構造体の裏側の亀裂開口部から圧入し、
該構造体の漏水のおそれのある表面箇所から噴出する該温度差空気(E)の状態及び/又は該温度差空気(E)が噴き出して冷却される噴出口の周縁部の状態を赤外線温度感知カメラで撮影し、温度分布状態を画像化し、
該撮影画像化された画像(G)の中で表示された局部的温度差部から漏水のおそれのある箇所を指定し、
次いで前記と同様構造体の裏側の亀裂開口部から識別気体(K)を圧入し、前記漏水のおそれのある指定箇所をなぞりながら気体感知機にて該識別気体(K)を検出し、
該検出位置から構造体の漏水路の開口部を特定することを特徴とする建築物の漏水路検知方法。
A temperature difference air (E) that can obtain a temperature difference that can be detected by an infrared sensing camera with respect to the temperature of the structure of the building to be inspected is press-fitted from a crack opening on the back side of the structure,
Infrared temperature sensing of the state of the temperature difference air (E) spouting from the surface of the structure where there is a risk of water leakage and / or the state of the periphery of the spout where the temperature difference air (E) blows out and is cooled. Take a picture with a camera, image the temperature distribution state,
Designating a location where there is a possibility of water leakage from the displayed local temperature difference portion in the captured image (G),
Next, the identification gas (K) is pressed into the crack opening on the back side of the structure in the same manner as described above, and the identification gas (K) is detected by the gas sensor while tracing the designated place where there is a possibility of the water leakage,
A method for detecting a water leak in a building, comprising specifying an opening of the water leak from the structure from the detection position.
大気を過熱又は冷却して温度差空気を作成する請求項1記載の建築物の漏水検知方法。The method for detecting water leakage in a building according to claim 1, wherein the temperature difference air is created by heating or cooling the atmosphere. 温度差空気(E)の圧入方法が、構造体の表面に対して空気溜(S)を有する密着エアーノズルを押し当てて、その空気溜(S)内に温度差空気(E)を圧送する請求項1〜2のうちいずれか1項記載の建築物の漏水路検知方法。The method of press-fitting the temperature difference air (E) is such that a close contact air nozzle having an air reservoir (S) is pressed against the surface of the structure, and the temperature difference air (E) is pumped into the air reservoir (S). The method for detecting a water leak in a building according to claim 1. 高温差空気(E)を得る方法が、温度制御部を備えたヒーターにより行われることを特徴とする請求項1又は2に記載の建築物の漏水路検知方法。The method for detecting a water leakage path in a building according to claim 1 or 2, wherein the method for obtaining the high-temperature difference air (E) is performed by a heater having a temperature control unit. 高温差空気(E)を得る方法が、温度制御部を備えた空気冷却機により行われることを特徴とする請求項1又は2に記載の建築物の漏水路検知方法。The method for detecting a water leak in a building according to claim 1 or 2, wherein the method of obtaining the high temperature difference air (E) is performed by an air cooler provided with a temperature control unit.
JP2002361228A 2002-12-12 2002-12-12 Method of detecting water leakage path in building Pending JP2004191258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361228A JP2004191258A (en) 2002-12-12 2002-12-12 Method of detecting water leakage path in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361228A JP2004191258A (en) 2002-12-12 2002-12-12 Method of detecting water leakage path in building

Publications (1)

Publication Number Publication Date
JP2004191258A true JP2004191258A (en) 2004-07-08

Family

ID=32760061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361228A Pending JP2004191258A (en) 2002-12-12 2002-12-12 Method of detecting water leakage path in building

Country Status (1)

Country Link
JP (1) JP2004191258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017681A (en) * 2009-07-10 2011-01-27 Eda Tokushu Bosui Kogyo Kk Water leakage detecting system, water leakage detecting method, and moving flying vehicle for water leakage detection
CN102998068A (en) * 2012-12-26 2013-03-27 李春福 Detection method of roof leakage
JP2013171002A (en) * 2012-02-22 2013-09-02 Ntt Facilities Inc Broken part detection device and broken part detection method
WO2018122810A1 (en) * 2016-12-30 2018-07-05 同济大学 Method for detecting leakage of underground pipe rack based on dynamic infrared thermogram processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017681A (en) * 2009-07-10 2011-01-27 Eda Tokushu Bosui Kogyo Kk Water leakage detecting system, water leakage detecting method, and moving flying vehicle for water leakage detection
JP2013171002A (en) * 2012-02-22 2013-09-02 Ntt Facilities Inc Broken part detection device and broken part detection method
CN102998068A (en) * 2012-12-26 2013-03-27 李春福 Detection method of roof leakage
WO2018122810A1 (en) * 2016-12-30 2018-07-05 同济大学 Method for detecting leakage of underground pipe rack based on dynamic infrared thermogram processing
CN109743879A (en) * 2016-12-30 2019-05-10 同济大学 A kind of underground pipe gallery leakage detection method based on the processing of Dynamic IR thermography
CN110268190A (en) * 2016-12-30 2019-09-20 同济大学 A kind of underground pipe gallery leakage detection method based on the processing of static Infrared Thermogram
CN110268190B (en) * 2016-12-30 2021-04-30 同济大学 Underground pipe gallery leakage detection method based on static infrared thermography processing

Similar Documents

Publication Publication Date Title
EP2616799B1 (en) Apparatus and method for automatic inspection of through-holes of a component
Garrido et al. Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings
US7607825B2 (en) Method and apparatus for monitoring the formation of deposits in furnaces
US8119986B1 (en) Infrared imaging for evaluating performance characteristics
US6000844A (en) Method and apparatus for the portable identification of material thickness and defects using spatially controlled heat application
RU2505746C2 (en) Method for measurement in power boiler furnace using blower
EP3273230A1 (en) Infrared non-destructive evaluation of cooling holes using evaporative membrane
JPH01239443A (en) Method and device for detecting defect in external surface of tube
US6856662B2 (en) Remote examination of reactor nozzle J-groove welds
JP2004191258A (en) Method of detecting water leakage path in building
US20030230717A1 (en) Method and apparatus for the portable identification of material thickness and defects along uneven surfaces using spatially controlled heat application
JP6900343B2 (en) Water leak inspection system and water leak inspection method
Fan et al. Investigation on nondestructive evaluation of pipelines using infrared thermography
JP2003130752A (en) Gas leakage detector
JP2008089437A (en) Heat fusion system and inspecting method for inspecting fusion state of fused part of water-barrier sheet
Shepard et al. Automated thermographic defect recognition and measurement
JP2005172664A (en) Method and device for determining soundness of concrete structure by infrared method
JPH07104305B2 (en) Defect investigation device and defect investigation method
CN100451593C (en) Method for architecture water leakage path detection
JP5980523B2 (en) Damaged part detection method
JP2005172683A (en) Method of determining kind of defect by infrared method in concrete check system
JP4727087B2 (en) Duct heat insulation deterioration monitoring device
JP2003042886A (en) Leak detecting method and leak measuring apparatus
US20200011822A1 (en) Thermo-chromatic witness features for lightning strike indication in both metallic and composite structures
JP6568691B2 (en) Flaw detection system and flaw detection method for detecting internal defect of flaw detection object

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A521 Written amendment

Effective date: 20061129

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070502

Free format text: JAPANESE INTERMEDIATE CODE: A912