JP2004190191A - Heat-radiating three dimensional knitted fabric - Google Patents

Heat-radiating three dimensional knitted fabric Download PDF

Info

Publication number
JP2004190191A
JP2004190191A JP2002360989A JP2002360989A JP2004190191A JP 2004190191 A JP2004190191 A JP 2004190191A JP 2002360989 A JP2002360989 A JP 2002360989A JP 2002360989 A JP2002360989 A JP 2002360989A JP 2004190191 A JP2004190191 A JP 2004190191A
Authority
JP
Japan
Prior art keywords
knitted fabric
dimensional knitted
dimensional
yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360989A
Other languages
Japanese (ja)
Inventor
Hideo Ikenaga
秀雄 池永
Chie Nakajima
千恵 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2002360989A priority Critical patent/JP2004190191A/en
Publication of JP2004190191A publication Critical patent/JP2004190191A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three dimensional knitted fabric having a good cushioning property and touch feeling to skin, capable of obtaining a cool feeling by a self ventilating action accompanying with compression even under a windless state without having air flow in surroundings, especially exhibiting rapid heat radiation on being used in a state that the three dimensional knitted fabric itself is warmed, and capable of obtaining a cool feeling quickly. <P>SOLUTION: This three dimensional knitted fabric is constituted of 2 layers of knitted fabrics of a surface and reverse surface and a joining yarn for joining the 2 layers of the knitted fabrics, and has 20-150N/mm compression elasticity of the three dimensional knitted fabric, 0.05-0.60g/cm<SP>3</SP>apparent density of at least one knitted fabric in the surface and reverse surface knitted fabrics, ≥50cc/cm<SP>2</SP>/sec degree of ventilation in thickness direction and ≥4.0W/m<SP>2</SP>/°C heat radiation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、放熱性、クッション性、表面の肌触り等に優れた立体編物に関する。特に、自動車、鉄道車両、航空機、チャイルドシート、ベビーカー、車椅子、家具、事務用等の座席シート用クッション材、寝具、ベッドパッド、マットレス、床ずれ防止マット、枕、座布団等のクッション材、衣料用等のスペーサー、保型材、緩衝材、シューズ用のアッパー材、中敷材、サポーター、プロテクター等に好適に用いられる立体編物に関する。
【0002】
【従来の技術】
表裏二層の編地と該二層の編地を連結する連結糸とから構成された立体編物は、クッション性、通気性、保温性、体圧分散性等の機能を活かして、各種クッション材用途に利用されている。
特許文献1には、ハニカム状立体編物の通気度及び圧縮回復率を規定することによって、クッション性が高く、夏季には清涼効果が大きく、冬季には保温効果が大きい寝床用シート状物が提案されている。しかしながら、特許文献1の立体編物は、周囲に空気の流れが生じることによって、高通気性を生かした換気効果により清涼感が得られるものであるが、周囲に空気の流れがない状態では、蒸れ感を防止する効果が乏しく、十分な清涼感は得られ難いものであった。また、この立体編地は、高通気性を付与するために、ハニカム状のメッシュ組織で形成されている。そのため、編地表面の肌触りが良好ではなく、上からカバー材等を掛けないと人体に対する刺激が強いものであった。
【0003】
【特許文献1】
特開平3−242115号公報
【0004】
【発明が解決しようとする課題】
本発明は、前記問題点を解決し、クッション性及び表面の肌触りが良好で、周囲に空気の流れのない無風下でも圧縮に伴う自己換気作用により清涼感が得られ、特に、夏季の、自動車内等で立体編物自身が温まっている状態で使用した場合に、放熱性が高く、素早く清涼感が得られる立体編物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するため、立体編物の圧縮特性、表裏の編地の見掛け密度、通気度及び放熱性について鋭意検討した結果、本発明を完成させるに至った。
すなわち、本発明は、表裏二層の編地と該二層の編地を連結する連結糸から構成された立体編物であって、立体編物の圧縮弾性率が20〜150N/mm、表裏の編地の少なくとも一方の編地の見掛け密度が0.05〜0.60g/cm3、厚み方向の通気度が50cc/cm2/sec以上、放熱量が4.0W/m2・℃以上であることを特徴とする立体編物である。
【0006】
以下、本発明を詳細に説明する。
本発明の立体編物は、圧縮弾性率が20〜150N/mmであることが必要であり、好ましくは25〜100N/mm、より好ましくは25〜80N/mmである。圧縮弾性率は、立体編物を厚み方向に圧縮する際の硬さの指標であり、この値を20〜150N/mmの範囲内に設定することにより、立体編物の上に人が座ったり、寝る際に、良好なクッション性が得られると共に、適度な変形量で立体編物が圧縮されるため、空気の流れを発生させ換気性に有効に作用する。圧縮弾性率が20N/mm未満であると、立体編物の上に人が座ったり、寝る際に、連結糸が完全に押しつぶされ、クッション性と換気のための空間保持性が不十分となる。圧縮弾性率が150N/mmを越えると、立体編物の上に人が座ったり、寝たりしても立体編物が圧縮されず、クッション性と空気の流れを発生させる効果が不十分となる。
【0007】
立体編物が圧縮される際の圧縮−回復時のヒステリシスロスが40%以下であると、より弾力感のあるクッション性が得られるために好ましい。
本発明の立体編物は、厚み方向の通気性が50cc/cm/sec以上であることが必要である。通気性が50cc/cm/sec未満であると、十分な換気効果による放熱性と清涼感が得られない。
立体編物の通気性を高めるだけでは、立体編物にこもった熱を放散し、蒸れ感を防止して清涼性を高めることは困難である。そのため、立体編物を通して熱が放散する特性を示す放熱量を4.0W/m2/℃以上にすることが必要であり、好ましくは5.0W/m2/℃以上、より好ましくは6.0W/m2/℃以上である。放熱量が4.0W/m2/℃未満であると、十分な放熱性及び清涼感は得られない。
【0008】
放熱性を4.0W/m2/℃以上とするには、立体編物を構成する繊維の少なくとも一部に高熱伝導性繊維を用いることが好ましい。
本発明でいう高熱伝導性繊維とは、以下の特性を示す繊維のことをいう。すなわち、120〜170デシテックスの繊度の繊維で28ゲージのシングル編機又は筒編機を用い、2.5〜3.5cNの張力で天竺編地を作製する。得られた生機を水中で10分間煮沸させた後、編地密度が38〜45コース/インチ、38〜42ウエール/インチの範囲内に入るようにピン枠に固定し、170℃×1分の乾熱ヒートセットを行って編地を仕上げる。後で述べる測定方法によりこの編地の放熱性Wを測定する。放熱量Wが9.0以上の値を示す繊維は、本発明の高熱伝導性繊維に該当する。
【0009】
この定義によると、120〜170デシテックスの繊度の範囲のいずれかの繊度において、放熱量Wが9.0以上の値を示す繊維は、本発明の高熱伝導性繊維に該当する。したがって、例えば、120デシテックスの繊維の放熱量Wが9.0未満であっても、120〜170デシテックス範囲のいずれかの繊度に変更した場合に放熱量Wが9.0以上である場合、この120デシテックスの繊維は、本発明の高熱伝導性繊維である。なお、170デシテックスを越える繊維の場合は、同一組成の120〜170デシテックスの繊維の放熱量Wにより判断する。編地の作成に際しては、上記のそれぞれの条件について、設定範囲内における、いずれかの設定値で作成した編地の放熱量Wが9.0以上の値を示せば、その編地に用いた繊維は、本発明の高熱伝導性繊維である
【0010】
このような高熱伝導性繊維としては、高吸湿性により熱伝導性が高まる繊維、スパッタリング、メッキ、真空蒸着等により繊維表面に金属層が形成されている繊維等が好ましく用いられる。繊維表面に金属層を形成する場合は、例えば、特開昭61−89370号公報に記載された無電解メッキ法(前処理、粗面化処理、増感処理、活性化処理、化学メッキ、後処理等)等が用いられる。金属層を繊維表面に形成する場合は、糸及び編地のいずれの状態で処理してもよい。
熱伝導性の高い繊維が、35℃、100%RHの状態において、繊維中の水分率が20%以上となる高温多湿環境下で高吸湿性を示すキュプラレーヨン等の繊維を用いると、より蒸れ感防止性が高まるので好ましい。
【0011】
さらに、本発明の立体編物は、前記の通気性及び放熱性を適正範囲とし、かつ、編地表面の肌触りを良好にする上で、表裏の編地の少なくとも一方の編地の見掛け密度を0.05以上0.60以下とすることが必要であり、好ましくは0.1以上0.5以下、より好ましくは0.15以上0.35以下にする。表裏の編地の少なくとも一方の編地の見掛け密度が0.05未満であると、立体編物の肌触りが悪く、形態安定性が不十分なものとなり、0.60を越えると、十分な通気及び放熱効果が得られなくなる。
【0012】
本発明の立体編物の連結糸に用いる繊維としては、モノフィラメント及びマルチフィラメントを使用できるが、立体編物の圧縮弾性率を適度な値にし、圧縮回復性を良好にするにはモノフィラメントを用いることが好ましい。連結糸に用いる繊維素材としては、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンテレフタレート繊維、ポリアミド繊維、ポリプロピレン繊維、ポリ塩化ビニル繊維、ポリエステル系エラストマー繊維等、任意の素材の繊維を用いることができる。このうち、ポリトリメチレンテレフタレート繊維を連結糸の少なくとも50重量%以上用いると、弾力感のあるクッション性を有し、繰り返し又は長時間圧縮後のクッション性の耐久性が良好となるので好ましい。
【0013】
立体編物が圧縮される際に、連結糸どうしが擦れ合って発生する耳障りな音を防止するには、連結糸にモノフィラメントとマルチフィラメントを、交編、糸複合等により併用し、マルチフィラメントを緩衝材として利用することが好ましい。
本発明の立体編物は、置き敷きの状態やハンモック状の張設状態で使用されるが、ハンモック状の座席シートとして使用する場合、圧縮撓み量が20mm以上70mm以下であることが、自己換気作用を向上させ、人体とのフィット感を付与し、底付き感なく快適な座り心地を得る上で好ましく、より好ましくは25mm以上50mm以下である。ハンモック式の座席シートとは、立体編物の周囲又は少なくとも2辺を、シートフレーム又は椅子の枠組みに、緊張状態又は弛ませた状態で張ることにより、立体編物が帆のような状態で、座席シート等の座部や背もたれ部を形成するものである。
【0014】
圧縮撓み量とは、四角にカットした立体編物の周囲を枠に固定し、立体編物の表面に対して直角方向に荷重を加えた時の立体編物の撓み量のことをいい、立体編物の表裏の編地の伸長特性によって大きく左右されるものである。圧縮撓み量が20mm未満であると、人が座った際の沈み込みが少なく、そのため、立体編物によるシート面が人体にフィットせず、硬く座り心地の悪いものとなる場合がある。圧縮撓み量が70mmを越えると、フィット感は良好なものの、座った後に元の形状に復元しにくくなる場合がある。
【0015】
立体編物の表裏の編組織は同一である必要は無く、異なる編組織、異なる伸長特性のものであってもよいが、裏側の編地の伸長率が表側の編地の伸長率より小さい方が、ハンモック式の座席シートとして使用する場合に、人が座った際にモノフィラメントによる弾力感がより多く加わり、人体へのフィット性も良好となる。この際、立体編物の裏側の編地に、挿入糸をタテ方向又はヨコ方向に直線状に挿入すると、裏側の編地の伸長回復性を向上させることができるので好ましい。
【0016】
本発明の立体編物において、表裏編地の少なくとも一方の編地の見掛け密度が0.05〜0.60g/cm3の範囲にある限りは、メッシュ等の比較的粗な組織、クインズコードやバックハーフ等の比較的緻密で平坦な組織等、任意の編組織で構成することができるが、色糸柄、穴開き柄、凹凸柄、ジャガード柄等を付与すると意匠性が向上するので好ましい。
立体編物の表裏の編地に用いる繊維は、ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維等のポリエステル系繊維、ポリアミド系繊維、ポリアクリル系繊維、ポリプロピレン系繊維等の合成繊維、綿、麻、ウール等の天然繊維、キュプラレーヨン、ビスコースレーヨン、リヨセル等の再生繊維等の任意の繊維を用いることができるが、少なくとも一方の編地に高熱伝導繊維を用いることが好ましい。ポリトリメチレンテレフタレート繊維を用いると、立体編物をハンモック式シートに使用する場合に圧縮回復性を向上できるので好ましい。
【0017】
繊維の断面形状は、丸型、三角、L型、T型、Y型、W型、八葉型、偏平、ドッグボーン型等の多角形型、多葉型、中空型や不定形なものでもよい。繊維の形態は、原糸、紡績糸、撚糸、仮撚加工糸、流体噴射加工糸等の嵩高加工糸のいずれのものを採用してもよく、マルチフィラメントでもモノフィラメントでもよい。連結糸のモノフィラメントが編地表面へ露出しないように被覆率を上げるには、立体編物の少なくとも片側面にマルチフィラメントの仮撚加工糸、紡績糸等の嵩高糸を用いることが好ましい。
【0018】
立体編物にパワーのあるストレッチ性又はハンモック状態での圧縮回復性を付与するためには、表裏編地の少なくとも片側の編地にモノフィラメントを用いることが好ましい。モノフィラメントがサイドバイサイド等の複合紡糸された潜在捲縮発現性を有する場合、よりストレッチ性と回復性が向上するので好ましい。モノフィラメントの断面形状は、丸型、三角、L型、T型、Y型、W型、八葉型、偏平、ドッグボーン型等の多角形型、多葉型、中空型、不定形なものでもよいが、丸型断面が立体編物のクッション性の耐久性を向上させる上で好ましい。
【0019】
本発明の表裏の編地又は連結糸に用いられるモノフィラメントは着色されていることが好ましい。着色方法は、未着色の糸をかせやチーズ状で糸染めする方法(先染め)、紡糸前の原液に顔料、染料等を混ぜて着色する方法(原液着色)、立体編物状で染色したりプリントする方法等が用いられる。立体編物状で染色すると立体形状を維持するのが困難であったり、加工性が悪い場合があるため、先染め及び原液着色が好ましい。
【0020】
連結糸に用いるモノフィラメントの繊度は、通常、20〜1500デシテックスである。立体編物に弾力感のあるより優れたクッション性を付与する上からは、モノフィラメントの太さは100〜1000デシテックスが好ましく、より好ましくは200〜900デシテックスである。表裏の編地に用いるマルチフィラメントの繊度は、通常、50〜2000デシテックスの太さのものを用いることができ、フィラメント数は任意に設定できる。
この際、編機の針1本にかかるモノフィラメントの繊度T(デシテックス)と全マルチフィラメントの繊度d(デシテックス)の間に、T/d≦0.9の関係を満たす場合、モノフィラメントをマルチフィラメントで被覆し、立体編物表面へのモノフィラメントの露出を防止し、モノフィラメント固有の光沢により立体編物表面がギラギラと光るギラツキを抑え、表面の風合いを良好にできるので好ましい。
【0021】
本発明の立体編物は、相対する2列の針床を有する経編機、丸編機、横編機等により編成することができる。編機のゲージは9〜28ゲージが好ましく用いられる。
連結糸は、表裏の編地中にループ状の編目を形成してもよく、表裏編地に挿入状態やタック状態で引っかけた構造でもよいが、少なくとも2本の連結糸が表裏の編地を互いに逆方向に斜めに傾斜してクロス状(X状)又はトラス状に連結することが、立体編物の形態安定性を向上させる上で好ましい。この際、クロス状、トラス状共に連結糸が2本の連結糸で構成されていてもよく、1本の同一の連結糸が表又は裏面で折り返し、見かけ上2本となっている場合であってもよい。
【0022】
立体編物の厚み及び目付は、目的に応じて任意に設定できるが、厚みは3〜30mmが好ましく用いられる。厚みが3mm未満の場合、クッション性が低下することがあり、30mmを越えると立体編物の仕上げ加工が難しくなることがある。目付は、好ましくは150〜3000g/m2、より好ましくは200〜2000g/m2である。
立体編物の仕上げ加工方法は、先染め糸や原液着色糸を使用した立体編物の場合、生機を精練、ヒートセット等の工程を通して仕上げることができる。連結糸又は表裏を構成する編地に用いる糸のいずれかが未着色である立体編物の場合、生機を精練、染色、ヒートセット等の工程を通して仕上げることができる。
仕上げ加工後の立体編物は、融着、縫製、樹脂加工等の手段で端部を処理したり、熱成形等により所望の形状にして、ハンモック式座席シートやベッドパッド等の各種用途に用いることができる。
【0023】
【発明の実施の形態】
以下、本発明を実施例で具体的に説明するが、本発明は実施例のみに限定されるものではない。
立体編物の各種物性の測定方法は以下の通りである。
(1)圧縮弾性率E(N/mm)及び圧縮−回復時のヒステリシスロスL(%)
島津オートグラフAG−B型((株)島津製作所製)を用い、直径100mmの円盤状圧縮治具により、剛体面上に置いた15cm角、厚みT0(mm)の立体編物を、10mm/minの速度で250Nの荷重になるまで圧縮し、直ぐに10mm/minの速度で開放する。この際に得られる図1に示す荷重−変位曲線のうち、行き(圧縮)の曲線の立ち上がり部分の略直線領域の傾きを{荷重P(N)}/{変位ε(mm)}の式により算出し、圧縮弾性率E(N/mm)とする。また、荷重−変位曲線から、行き(圧縮)の曲線と変位軸(x軸)で形成される面積A0(cm2)と、帰り(回復)の曲線と変位軸(x軸)で形成される面積A1(cm2)を求め、次式によりヒステリシスロスH(%)を算出する。
H(%)=(A0−A1)/A0×100
【0024】
(2)放熱量W(W/m2/℃)
カトーテック(株)製サーモラボIIを使用し、20℃、65%RH環境下で、30℃の熱板(熱板全体が12cm角、その内、計測用熱板が10cm角、周囲に幅1cmのガード熱板あり)に試料15cm角の裏面を接触させるように置き、さらに上から発泡スチロール枠(15cm角、中央に10cm角の穴)を乗せる。発泡スチロール枠の周囲をドラフティングテープ(ニチバン(株)製)で固定し、風速0.3m/secにおいて熱板を30℃に保つ際に必要な熱量W(W/m2/℃)を測定する。
【0025】
(3)通気度 V(cc/cm2/sec)
JIS−L−1096、1018通気性試験方法(A法空気量)に準じてフラジール型試験機にて行う。
【0026】
(4)表又は裏側の編地の見掛け密度D(g/cm3
10cm角の立体編物の表又は裏側の編地の連結糸の根元部分を、連結糸の飛び出し端がほぼ無くなるようにはさみでカットして表又は裏側の編地を分離する。分離された表又は裏側の編地の重量W(g)と490Paの荷重下での厚みS(cm)を測定し、下記式により表又は裏側の編地の見掛け密度を算出する。
見掛け密度D(g/cm3)=W/S/100
【0027】
(5)放熱温度 L(℃)
立体編物を10cm各に裁断し、60℃の乾燥機に10分放置した後、20℃の環境(ほぼ無風)に取り出す。取り出した立体編物をテーブル上に置き、上からφ100mm、250Nの金属製の荷重を静かに乗せる。この動作を3回繰り返した後、立体編物の連結糸部(10cm角の中央部)に温度センサー(足立計器(株)製、タイプ529E/K)を指し込み、乾燥機から取り出して30秒後の立体編物の連結糸部の温度K(℃)を測定し、下記式により放熱温度を算出する。
放熱温度L(℃)=60−K
【0028】
(6)圧縮撓み量B(mm)
4隅に高さ15cmの足を取付けた、内径が1辺30cm、外径が1辺41cmの四角形の板状の金属枠(上面に40番のサンドペーパーを貼りつけて滑り止め性を付与)と、内径が1辺30cm、外径が1辺41cmの四角形の板状の金属枠(下面に40番のサンドペーパーを貼りつけて滑り止め性を付与)の間に立体編物を弛まないように挟み、周囲を万力で固定する。
島津オートグラフAG−B型((株)島津製作所製)を用い、直径100mmの円形平面状の圧縮端子により、張設した立体編物の中央部を100mm/分の速度で圧縮し、245Nの荷重時の変位を圧縮撓み量B(mm)とする。
【0029】
(7)清涼感
25℃、65%RHの環境で、ウレタンマットレスの上に立体編物を1枚敷き、身長173cm、62Kgの男性(上半身は肌着1枚着用)がその上に仰向けに寝て、上から綿のタオルケットを掛ける。10分後にゆっくりと体を左右に5回揺すり、背中の清涼感を官能評価により評価する。
◎:非常に清涼感がある
○:清涼感がややある
×:清涼感がない
【0030】
(8)クッション感
(7)の評価において、クッション性を官能評価により評価する。
◎:クッション性に優れている
○:クッション性にやや優れている
×:クッションに劣る
【0031】
(9)肌触り
立体編物の表面上に手のひらと指先全体を軽く滑らせ、肌触りを官能評価により評価する。
◎:非常に肌触りが良好
○:肌触りがやや良好
×:肌触りが悪い
【0032】
【参考例1】
実施例に使用するポリトリメチレンテレフタレートモノフィラメントを、以下の方法により製造した。
固有粘度[η]=0.9のポリトリメチレンテレフタレートを紡糸温度265℃で紡口から吐出した。これを40℃の冷却浴中に導いて、冷却しつつ16.0m/分の速度の第1ロール群によって引張り、細化した未延伸モノフィラメントとした。次いで、温度55℃の延伸浴中で5倍に延伸しながら80.0m/分の第2ロール群によって引張り、その後、120℃のスチーム浴中で弛緩熱処理を施しながら、72.0m/分の第3ロール群を経た後、第3ロール群と同速の巻取り機で巻取り、390デシテックスの延伸モノフィラメントを製造した。同様にして、200デシテックス、440デシテックス、及び770デシテックスの延伸モノフィラメントを製造した。
【0033】
固有粘度[η](dl/g)は、次式の定義に基づいて求められる値である。

Figure 2004190191
定義中のηrは、純度98%以上のo−クロロフェノール溶媒で溶解したポリトリメチレンテレフタレート糸又はポリエチレンテレフタレート糸の稀釈溶液の35℃での粘度を、同一温度で測定した上記溶媒の粘度で除した値であり、相対粘度と定義されているものである。Cは、g/100mlで表されるポリマー濃度である。
【0034】
【実施例1】
6枚筬を装備した14ゲージ、釜間13mmのダブルラッセル編機を用い、表側の編地を形成する2枚の筬(L1、L2)から、35℃、100%RHの状態において、繊維中の水分率が29%のキュプラレーヨン(スパン糸)20番単糸をL1ガイドに2イン2アウトの配列で、L2ガイドに2アウト2インの配列で供給した。裏側の編地を形成する2枚の筬(L5、L6)から334デシテックス96フィラメントのポリエチレンテレフタレート繊維仮撚加工糸(旭化成(株)製、167デシテックス48フィラメントの2本引き揃え)を、L5ガイドに2イン2アウトの配列で、L6ガイドに2アウト2インの配列で供給した。さらに、連結糸を形成するL4の筬から、参考例1で製造した390デシテックスのポリトリメチレンテレフタレートモノフィラメントを、L3ガイドに2イン2アウトの配列で、L4ガイドに2アウト2インの配列で供給した。
【0035】
以下に示す編組織で、打ち込み15コース/2.54cmの密度で立体編物の生機を編成した。得られた生機を30%幅出しして170℃×2分で乾熱ヒートセットした。得られた立体編物は、表裏の編地がメッシュ組織で、連結糸が表側の編地の編目と相対する裏側の編目から2ウエール離れた編目を斜めに傾斜して連結し、クロス構造を形成しているものであった。この立体編物の諸物性を表1に示す。
(編組織)
L1:4544/2322/1011/3222/
L2:1011/3222/4544/2322/
L3:4545/2323/1010/3232/
L4:1010/3232/4545/2323/
L5:3345/4423/2210/1132/
L6:2210/1132/3345/4423/
【0036】
【実施例2】
6枚筬を装備した14ゲージ、釜間13mmのダブルラッセル編機を用い、表側の編地を形成する2枚の筬(L1、L2)から、35℃、100%RHの状態において、繊維中の水分率が29%のキュプラレーヨン(スパン糸)20番単糸をオールインの配列で供給した。裏側の編地を形成する2枚の筬(L5、L6)から334デシテックス96フィラメントのポリエチレンテレフタレート繊維仮撚加工糸(旭化成(株)製、167デシテックス48フィラメントの2本引き揃え)をオールインの配列で供給した。さらに連結糸を形成するL3の筬から参考例1で製造した390デシテックスのポリエチレンテレフタレートモノフィラメントをオールインの配列で供給した。
【0037】
以下に示す編組織で、打ち込み15コース/2.54cmの密度で立体編物の生機を編成した。得られた生機を5%幅出しして170℃×2分で乾熱ヒートセットし、全連結糸が表側の編地の編目と相対する裏側の編目から3ウエール離れた編目を斜めに傾斜して連結し、トラス構造を形成している立体編物を得た。得られた立体編物の諸物性を表1に示す。
(編組織)
L1:1011/2322/
L2:2322/1011/
L3:4367/3410/
L5:0001/1110/
L6:2234/2210/
【0038】
【実施例3】
連結糸に、参考例1で製造した440デシテックスのポリトリメチレンテレフタレートモノフィラメントを用いた以外は、実施例2と同様にして立体編物を製編した。得られた立体編物の諸物性を表1に示す。
【0039】
【実施例4】
無電界メッキして得られたナイロン140デシテックス68フィラメント銀メッキ糸(金属のメッキ量は23重量%)を、200回/mの撚数で合撚した糸を表側の編地を形成する2枚の筬(L1、L2)に供給した以外は、実施例2と同様にして立体編物を製編した。得られた立体編物の諸物性を表1に示す。
【0040】
【比較例1】
668デシテックス192フィラメントのポリエチレンテレフタレート仮撚加工糸(旭化成(株)製、167デシテックス48フィラメントの4本引き揃え)を用い、機上コースを12コース/インチとした以外は、実施例2と同様にして得られた立体編物の諸物性を表1に示す。
【0041】
【比較例2】
連結糸に参考例1で製造した770デシテックスのポリトリメチレンテレフタレートモノフィラメントを用いた以外は、実施例2と同様にして立体編物を製編した。得られた立体編物の諸物性を表1に示す。
【0042】
【比較例3】
表側の編地を形成する2枚の筬(L1、L2)から、35℃、100%RHの状態において、繊維中の水分率が29%のキュプラレーヨン(スパン糸)40番単糸(旭化成(株)製)をL1ガイドから1イン1アウトの配列で、L2ガイドから1アウト1インの配列で供給した。裏側の編地を形成する2枚の筬(L5、L6)から334デシテックス96フィラメントのポリエチレンテレフタレート繊維仮撚加工糸(旭化成(株)製、167デシテックス48フィラメントの2本引き揃え)を、L5ガイドから1イン1アウトの配列で、L6ガイドから1アウト1インの配列で供給した。さらに、連結糸を形成するL3、L4の筬から、参考例1で製造した200デシテックスのポリトリメチレンテレフタレートモノフィラメントをL5ガイドから1イン1アウトの配列で、L6ガイドから1アウト1インの配列で供給した。
【0043】
以下に示す編組織で、打ち込み15コース/2.54cmの密度で立体編物の生機を編成した。得られた生機を38%幅だしして170℃×2分で乾熱ヒートセットし、連結糸が部分的にクロス構造を形成している立体編物を得た。得られた立体編物は編地表面の肌触りが悪く、編組織の形態安定性の悪いものであった。
Figure 2004190191
【0044】
【表1】
Figure 2004190191
【0045】
【発明の効果】
本発明の立体編物は、クッション性及び表面の肌触りが良好で、周囲に空気の流れのない無風下でも圧縮に伴う自己換気作用により清涼感が得られ、特に、立体編物自身が温まっている状態で使用する際の放熱性が高く、素早く清涼感が得られるものである。
【図面の簡単な説明】
【図1】立体編物の圧縮−回復曲線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional knitted fabric excellent in heat dissipation properties, cushioning properties, surface feel, and the like. In particular, cushioning materials for seats such as automobiles, railcars, aircraft, child seats, strollers, wheelchairs, furniture, and offices, bedding, bed pads, mattresses, mats to prevent bedsores, pillows, cushions such as cushions, clothing, etc. The present invention relates to a three-dimensional knitted fabric suitably used for a spacer, a mold retaining material, a cushioning material, an upper material for shoes, an insole material, a supporter, a protector, and the like.
[0002]
[Prior art]
A three-dimensional knitted fabric composed of a front and back two-layer knitted fabric and a connecting yarn for connecting the two-layer knitted fabric is made of various cushion materials by utilizing functions such as cushioning, air permeability, heat retention, and body pressure dispersibility. Used for applications.
Patent Literature 1 proposes a bedding sheet having a high cushioning property, a large cooling effect in summer, and a large heat retaining effect in winter by defining the air permeability and the compression recovery rate of the honeycomb-shaped three-dimensional knitted fabric. Have been. However, the three-dimensional knitted fabric disclosed in Patent Document 1 is capable of providing a sense of coolness due to a ventilation effect utilizing high air permeability due to the flow of air around, but is humid when there is no flow of air around. The effect of preventing the feeling was poor, and it was difficult to obtain a sufficient refreshing feeling. Further, this three-dimensional knitted fabric is formed of a honeycomb-shaped mesh structure in order to impart high air permeability. For this reason, the surface of the knitted fabric did not feel good, and the stimulus to the human body was strong unless a cover material was applied from above.
[0003]
[Patent Document 1]
JP-A-3-242115
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, has good cushioning properties and surface feel, and provides a refreshing feeling by self-ventilation accompanying compression even under no wind with no surrounding air flow. It is an object of the present invention to provide a three-dimensional knit that has a high heat dissipation property and can quickly obtain a refreshing feeling when used in a state where the three-dimensional knit itself is warm inside or the like.
[0005]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies on the compression characteristics of a three-dimensional knitted fabric, the apparent density of front and back knitted fabrics, air permeability, and heat dissipation in order to achieve the above object, and as a result, have completed the present invention.
That is, the present invention relates to a three-dimensional knitted fabric composed of a two-layered knitted fabric and a connecting yarn for connecting the two-layered knitted fabric, wherein the three-dimensional knitted fabric has a compression elastic modulus of 20 to 150 N / mm, The apparent density of at least one knitted fabric is 0.05 to 0.60 g / cm. Three , Air permeability in the thickness direction is 50 cc / cm Two / Sec or more, heat dissipation 4.0 W / m Two -A three-dimensional knitted fabric characterized by a temperature of not less than ° C.
[0006]
Hereinafter, the present invention will be described in detail.
The three-dimensional knitted fabric of the present invention needs to have a compression modulus of 20 to 150 N / mm, preferably 25 to 100 N / mm, and more preferably 25 to 80 N / mm. The compression elastic modulus is an index of hardness when the three-dimensional knitted fabric is compressed in the thickness direction, and by setting this value in a range of 20 to 150 N / mm, a person sits or sleeps on the three-dimensional knitted fabric. At this time, a good cushioning property is obtained, and the three-dimensional knitted fabric is compressed with an appropriate amount of deformation, so that a flow of air is generated, which effectively acts on ventilation. When the compression elastic modulus is less than 20 N / mm, when a person sits on or sleeps on the three-dimensional knitted fabric, the connecting yarn is completely crushed, and the cushioning property and the space retention for ventilation are insufficient. If the compression elastic modulus exceeds 150 N / mm, the three-dimensional knitted fabric is not compressed even when a person sits or sleeps on the three-dimensional knitted fabric, and the cushioning property and the effect of generating air flow become insufficient.
[0007]
It is preferable that the hysteresis loss at the time of compression-recovery when the three-dimensional knitted fabric is compressed be 40% or less, because a more elastic cushioning property can be obtained.
The three-dimensional knitted fabric of the present invention needs to have air permeability in the thickness direction of 50 cc / cm / sec or more. If the air permeability is less than 50 cc / cm / sec, the heat radiation and the refreshing feeling due to a sufficient ventilation effect cannot be obtained.
It is difficult to dissipate the heat trapped in the three-dimensional knitted fabric, prevent the stuffy feeling, and enhance the refreshing performance only by increasing the air permeability of the three-dimensional knitted fabric. Therefore, the amount of heat radiation showing the characteristic of heat dissipation through the three-dimensional knitted fabric is 4.0 W / m. Two / ° C or higher, preferably 5.0 W / m Two / ° C or more, more preferably 6.0 W / m Two / ° C or higher. Heat dissipation 4.0W / m Two If it is less than / ° C, sufficient heat dissipation and refreshing feeling cannot be obtained.
[0008]
Heat dissipation of 4.0 W / m Two / ° C or more, it is preferable to use a high heat conductive fiber for at least a part of the fiber constituting the three-dimensional knitted fabric.
The high thermal conductivity fiber referred to in the present invention refers to a fiber having the following characteristics. That is, using a 28-gauge single knitting machine or a tubular knitting machine with fibers having a fineness of 120 to 170 decitex, a knitted fabric is produced with a tension of 2.5 to 3.5 cN. After the obtained greige is boiled in water for 10 minutes, it is fixed on a pin frame so that the knitted fabric density falls within the range of 38 to 45 courses / inch and 38 to 42 wale / inch, and 170 ° C. × 1 minute. Finish the knitted fabric by dry heat setting. The heat radiation W of the knitted fabric is measured by a measuring method described later. Fibers having a heat release amount W of 9.0 or more correspond to the high heat conductive fibers of the present invention.
[0009]
According to this definition, in any of the finenesses in the range of 120 to 170 decitex, a fiber having a heat release amount W of 9.0 or more corresponds to the high heat conductive fiber of the present invention. Therefore, for example, even if the heat radiation amount W of the fiber of 120 decitex is less than 9.0, when the heat radiation amount W is 9.0 or more when the fineness is changed to any of the fineness in the range of 120 to 170 decitex, The 120 decitex fiber is the high thermal conductivity fiber of the present invention. In the case of fibers exceeding 170 decitex, the determination is made based on the heat radiation amount W of the fibers having the same composition of 120 to 170 decitex. When the knitted fabric was created, if the heat radiation amount W of the knitted fabric created with any of the set values within the set range showed a value of 9.0 or more for each of the above conditions, the knitted fabric was used. The fiber is the high heat conductive fiber of the present invention
[0010]
As such a high heat conductive fiber, a fiber having a high heat conductivity due to high moisture absorption, a fiber having a metal layer formed on a fiber surface by sputtering, plating, vacuum deposition, or the like is preferably used. When a metal layer is formed on the fiber surface, for example, the electroless plating method described in JP-A-61-89370 (pre-treatment, surface roughening treatment, sensitization treatment, activation treatment, chemical plating, Processing, etc.). When the metal layer is formed on the surface of the fiber, the treatment may be performed in any state of a yarn and a knitted fabric.
When the fiber having high thermal conductivity is 35 ° C. and 100% RH, and a fiber such as cupra rayon having high moisture absorption under a high-temperature and high-humidity environment in which the water content in the fiber is 20% or more is used, the stuffiness is further increased. This is preferable because the anti-sense property is enhanced.
[0011]
Furthermore, the three-dimensional knitted fabric of the present invention has the above-mentioned air permeability and heat radiation property within an appropriate range, and in order to improve the feel of the surface of the knitted fabric, the apparent density of at least one of the front and back knitted fabrics is reduced to 0. It is necessary to be 0.05 to 0.60, preferably 0.1 to 0.5, more preferably 0.15 to 0.35. When the apparent density of at least one of the front and back knitted fabrics is less than 0.05, the texture of the three-dimensional knitted fabric is poor, and the shape stability is insufficient. The heat radiation effect cannot be obtained.
[0012]
As the fiber used for the connecting yarn of the three-dimensional knitted fabric of the present invention, a monofilament or a multifilament can be used, but it is preferable to use a monofilament to make the compression elastic modulus of the three-dimensional knitted fabric an appropriate value and to improve the compression recovery property. . As a fiber material used for the connecting yarn, it is possible to use fibers of any material such as polytrimethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene terephthalate fiber, polyamide fiber, polypropylene fiber, polyvinyl chloride fiber, polyester elastomer fiber, and the like. it can. Among them, it is preferable to use the polytrimethylene terephthalate fiber at least 50% by weight or more of the connecting yarn, because it has elastic cushioning properties and the cushioning durability after repeated or long-time compression becomes good.
[0013]
To prevent the harsh sound that occurs when the connecting yarns rub against each other when the three-dimensional knitted fabric is compressed, monofilaments and multifilaments are used for the connecting yarns in combination by knitting, yarn composite, etc., and the multifilaments are buffered. It is preferable to use it as a material.
The three-dimensional knitted fabric of the present invention is used in a laid state or in a hammock-like stretched state, but when used as a hammock-like seat, it is necessary that the compression bending amount is 20 mm or more and 70 mm or less, and the self-ventilation effect is obtained. It is preferable in order to improve the stiffness, to provide a feeling of fitting to the human body, and to obtain a comfortable sitting feeling without a feeling of bottoming, and more preferably 25 mm or more and 50 mm or less. A hammock-type seat is a seat in which the three-dimensional knitted fabric is like a sail by stretching the periphery or at least two sides of the three-dimensional knitted fabric on a seat frame or a chair frame in a tensioned or loosened state. And the like to form a seat portion and a backrest portion.
[0014]
The amount of compressive deflection is the amount of deflection of a three-dimensional knit when a load is applied in a direction perpendicular to the surface of the three-dimensional knit, with the periphery of the three-dimensional knit being fixed to a frame and applying a load in a direction perpendicular to the surface of the three-dimensional knit. Greatly depends on the elongation characteristics of the knitted fabric. If the amount of compressive deflection is less than 20 mm, there is little sinking when a person sits down, so that the three-dimensional knitted fabric does not fit the human body, and may be hard and uncomfortable to sit. If the amount of compressive deflection exceeds 70 mm, the fit may be good, but it may be difficult to restore the original shape after sitting.
[0015]
The three-dimensional knitted fabric does not need to have the same knitting structure on the front and back sides, and may have different knitting structures and different elongation characteristics.However, it is preferable that the elongation rate of the back side knitted fabric is smaller than that of the front side knitted fabric. When used as a hammock-type seat, when a person sits down, more elasticity is added by the monofilament, and the fit to the human body is improved. At this time, it is preferable to insert the insertion yarn linearly in the warp direction or the weft direction into the knitted fabric on the back side of the three-dimensional knitted fabric, because the elongation recoverability of the knitted fabric on the back side can be improved.
[0016]
In the three-dimensional knitted fabric of the present invention, the apparent density of at least one of the front and back knitted fabrics is 0.05 to 0.60 g / cm. Three As long as it is within the range, it can be composed of any knitting structure such as a relatively coarse structure such as a mesh, a relatively dense and flat structure such as a Queen's cord or a back half, etc. It is preferable to provide a pattern, a concave-convex pattern, a jacquard pattern, or the like, since the design property is improved.
The fibers used for the front and back knitted fabrics of the three-dimensional knitted fabric are synthetic fibers such as polyester fibers such as polyethylene terephthalate fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber, polyamide fibers, polyacrylic fibers, and polypropylene fibers, and cotton. Any fiber such as natural fiber such as hemp, wool and the like, and regenerated fiber such as cupra rayon, viscose rayon and lyocell can be used, but it is preferable to use a high heat conductive fiber for at least one knitted fabric. It is preferable to use polytrimethylene terephthalate fiber because compression recovery can be improved when a three-dimensional knitted fabric is used for a hammock type sheet.
[0017]
The cross-sectional shape of the fiber may be polygonal such as round, triangular, L-shaped, T-shaped, Y-shaped, W-shaped, eight-leafed, flat, dogbone-shaped, multilobal, hollow, or irregular. Good. The form of the fiber may be any of bulky yarn such as raw yarn, spun yarn, twisted yarn, false twisted yarn, and fluid jet yarn, and may be multifilament or monofilament. In order to increase the coverage so that the monofilament of the connecting yarn is not exposed on the surface of the knitted fabric, it is preferable to use a bulky yarn such as a multifilament false twisted yarn or a spun yarn on at least one side of the three-dimensional knitted fabric.
[0018]
In order to give the three-dimensional knitted fabric a powerful stretch property or a compression recovery property in a hammock state, it is preferable to use a monofilament for at least one side of the front and back knitted fabrics. It is preferable that the monofilament has a composite crimped latent crimping property such as side-by-side, because the stretch property and the recovery property are further improved. The cross-sectional shape of the monofilament may be a polygonal shape such as a round shape, a triangular shape, an L shape, a T shape, a Y shape, a W shape, an eight leaf shape, a flat shape, a dog bone shape, a multi-leaf shape, a hollow shape, or an irregular shape. Although good, a round cross section is preferable in improving the durability of the cushioning property of the three-dimensional knitted fabric.
[0019]
The monofilament used for the front and back knitted fabric or the connecting yarn of the present invention is preferably colored. The coloring method is a method of dyeing uncolored yarn with a skein or cheese (yarn dyeing), a method of mixing a stock solution before spinning with a pigment or dye, etc. (coloring of the stock solution), dyeing a three-dimensional knitted fabric, or the like. A printing method or the like is used. When dyeing in the form of a three-dimensional knit, it is difficult to maintain the three-dimensional shape or the workability may be poor.
[0020]
The fineness of the monofilament used for the connecting yarn is usually 20 to 1500 dtex. In order to give the three-dimensional knitted fabric a more elastic and more excellent cushioning property, the thickness of the monofilament is preferably from 100 to 1000 dtex, more preferably from 200 to 900 dtex. The fineness of the multifilament used for the front and back knitted fabrics can be usually 50 to 2000 dtex, and the number of filaments can be set arbitrarily.
At this time, when the relationship of T / d ≦ 0.9 is satisfied between the fineness T (decitex) of the monofilament applied to one needle of the knitting machine and the fineness d (decitex) of all the multifilaments, the monofilament is converted to the multifilament. Coating is preferable because monofilaments can be prevented from being exposed to the surface of the three-dimensional knitted fabric, and the surface of the three-dimensional knitted fabric can be reduced in glare due to the inherent luster of the monofilament, and the texture of the surface can be improved.
[0021]
The three-dimensional knitted fabric of the present invention can be knitted by a warp knitting machine, a circular knitting machine, a flat knitting machine or the like having two rows of opposing needle beds. The gauge of the knitting machine is preferably 9 to 28 gauge.
The connecting yarn may form a loop-shaped stitch in the front and back knitted fabric, and may have a structure in which it is hooked on the front and back knitted fabric in an inserted state or a tack state, but at least two connecting yarns form the front and back knitted fabric. It is preferable to connect them in a cross shape (X shape) or a truss shape by inclining obliquely in opposite directions in order to improve the shape stability of the three-dimensional knitted fabric. At this time, the connecting yarn may be composed of two connecting yarns in both the cross shape and the truss shape, and one identical connecting yarn may be folded back and forth on the front surface or the back surface, and the apparently two connecting yarns may be formed. You may.
[0022]
The thickness and basis weight of the three-dimensional knitted fabric can be arbitrarily set according to the purpose, but the thickness is preferably 3 to 30 mm. If the thickness is less than 3 mm, the cushioning property may be reduced, and if it exceeds 30 mm, finishing of the three-dimensional knit may be difficult. The basis weight is preferably 150 to 3000 g / m. Two , More preferably 200 to 2000 g / m Two It is.
Regarding the finishing method of the three-dimensional knitted fabric, in the case of a three-dimensional knitted fabric using yarn-dyed yarn or undiluted colored yarn, the greige machine can be finished through processes such as scouring and heat setting. In the case of a three-dimensional knitted fabric in which either the connecting yarn or the yarn used for the front and back knitted fabric is uncolored, the greige machine can be finished through processes such as scouring, dyeing, and heat setting.
After finishing, the three-dimensional knitted fabric is processed at the end by means of fusion, sewing, resin processing, etc., or formed into a desired shape by thermoforming, etc., and used for various applications such as hammock seats and bed pads Can be.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to Examples.
The methods for measuring various physical properties of the three-dimensional knitted fabric are as follows.
(1) Compression elastic modulus E (N / mm) and hysteresis loss L during compression-recovery L (%)
Using a Shimadzu Autograph AG-B type (manufactured by Shimadzu Corporation), a 15 cm square, thickness T placed on a rigid body surface with a disk-shaped compression jig having a diameter of 100 mm. 0 The three-dimensional knitted fabric of (mm) is compressed at a speed of 10 mm / min to a load of 250 N, and is immediately opened at a speed of 10 mm / min. Of the load-displacement curves shown in FIG. 1 obtained at this time, the slope of the substantially linear region at the rising portion of the going (compression) curve is calculated by the formula {load P (N)} / {displacement ε (mm)}. It is calculated and set as the compression modulus E (N / mm). Also, from the load-displacement curve, the area A formed by the going (compression) curve and the displacement axis (x-axis) 0 (Cm Two ), The area A formed by the return (recovery) curve and the displacement axis (x-axis) 1 (Cm Two ) Is calculated, and the hysteresis loss H (%) is calculated by the following equation.
H (%) = (A 0 -A 1 ) / A 0 × 100
[0024]
(2) Heat dissipation W (W / m Two / ℃)
Using a thermolab II manufactured by Kato Tech Co., Ltd., under a 20 ° C., 65% RH environment, a hot plate at 30 ° C. (the entire hot plate is 12 cm square, of which a measuring hot plate is 10 cm square, and the periphery is 1 cm wide) The sample is placed so that the back surface of a 15 cm square is in contact with the guard hot plate, and a styrofoam frame (15 cm square, 10 cm square hole in the center) is placed from above. The periphery of the styrofoam frame is fixed with drafting tape (manufactured by Nichiban Co., Ltd.), and the amount of heat W (W / m) required to maintain the hot plate at 30 ° C. at a wind speed of 0.3 m / sec. Two / ° C).
[0025]
(3) Air permeability V (cc / cm Two / Sec)
The test is performed with a Frazier-type tester according to JIS-L-1096, 1018 air permeability test method (Method A air volume).
[0026]
(4) Apparent density D (g / cm) of the front or back knitted fabric Three )
The root portion of the connecting yarn of the front or back knitted fabric of the 10 cm square three-dimensional knitted fabric is cut with scissors so that the projecting end of the connecting yarn is almost eliminated, and the front or back knitted fabric is separated. The weight W (g) of the separated front or back side knitted fabric and the thickness S (cm) under a load of 490 Pa are measured, and the apparent density of the front or back side knitted fabric is calculated by the following equation.
Apparent density D (g / cm Three ) = W / S / 100
[0027]
(5) Heat radiation temperature L (° C)
The three-dimensional knitted fabric is cut into 10 cm pieces, left in a dryer at 60 ° C. for 10 minutes, and then taken out in a 20 ° C. environment (almost no wind). The removed three-dimensional knitted fabric is placed on a table, and a metal load of φ100 mm and 250 N is gently applied from above. After repeating this operation three times, a temperature sensor (manufactured by Adachi Keiki Co., Ltd., type 529E / K) is inserted into the connecting yarn portion (center portion of 10 cm square) of the three-dimensional knitted fabric, and 30 seconds after taking out from the dryer. The temperature K (° C.) of the connecting yarn portion of the three-dimensional knitted fabric is measured, and the heat radiation temperature is calculated by the following equation.
Heat radiation temperature L (° C) = 60-K
[0028]
(6) Compression deflection B (mm)
A square plate-shaped metal frame with an inner diameter of 30 cm on one side and an outer diameter of 41 cm on one side attached to the four corners with feet 15 cm high (sticks No. 40 sandpaper on the top surface to provide non-slip properties) To prevent the three-dimensional knitted fabric from loosening between a square plate-shaped metal frame with an inner diameter of 30 cm on a side and an outer diameter of 41 cm on a side (sticking sandpaper No. 40 on the underside to provide anti-slip properties). Pinch and fix around with a vise.
Using a Shimadzu Autograph AG-B type (manufactured by Shimadzu Corporation), the central portion of the stretched three-dimensional knitted fabric is compressed at a speed of 100 mm / min by a circular flat compression terminal having a diameter of 100 mm, and a load of 245 N is applied. The displacement at this time is defined as the amount of compression deflection B (mm).
[0029]
(7) Refreshing feeling
In a 25 ° C, 65% RH environment, a three-dimensional knitted fabric is laid on a urethane mattress, and a 173 cm tall, 62 kg male (upper body wears one underwear) lies on her back on her back, and a cotton towel blanket from above Multiply. After 10 minutes, the body is slowly rocked right and left five times, and the refreshing feeling on the back is evaluated by sensory evaluation.
◎: Very cool
○: Somewhat cool
×: No refreshing feeling
[0030]
(8) Cushion feeling
In the evaluation of (7), the cushioning property is evaluated by sensory evaluation.
◎ : Excellent cushioning
○: Slightly superior in cushioning properties
×: Inferior to cushion
[0031]
(9) Touch
The palm and the entire fingertip are gently slid on the surface of the three-dimensional knitted fabric, and the feel is evaluated by sensory evaluation.
◎: Very good touch
:: slightly soft to the touch
×: Bad touch
[0032]
[Reference Example 1]
The polytrimethylene terephthalate monofilament used in the examples was produced by the following method.
Polytrimethylene terephthalate having an intrinsic viscosity [η] of 0.9 was discharged from the spinneret at a spinning temperature of 265 ° C. This was introduced into a cooling bath at 40 ° C., and while being cooled, pulled by a first roll group at a speed of 16.0 m / min to obtain a thin undrawn monofilament. Then, the film is stretched 5 times in a stretching bath at a temperature of 55 ° C. and pulled by a second roll group at 80.0 m / min, and then subjected to a relaxation heat treatment in a steam bath at 120 ° C. while being 72.0 m / min. After passing through the third roll group, it was wound by a winder at the same speed as the third roll group to produce a stretched monofilament of 390 dtex. Similarly, drawn monofilaments of 200 dtex, 440 dtex, and 770 dtex were produced.
[0033]
The intrinsic viscosity [η] (dl / g) is a value obtained based on the definition of the following equation.
Figure 2004190191
In the definition, ηr is obtained by dividing the viscosity at 35 ° C. of a diluted solution of a polytrimethylene terephthalate yarn or a polyethylene terephthalate yarn dissolved in an o-chlorophenol solvent having a purity of 98% or more by the viscosity of the solvent measured at the same temperature. And is defined as the relative viscosity. C is the polymer concentration in g / 100 ml.
[0034]
Embodiment 1
Using a 14 gauge double raschel knitting machine equipped with 6 reeds and 13 mm between the pots, the two reeds (L1, L2) forming the front side knitted fabric were used at 35 ° C and 100% RH in the fiber. Was supplied to the L1 guide in a 2 in 2 out arrangement and the L2 guide in a 2 out 2 in arrangement. From two reeds (L5, L6) forming the back side knitted fabric, a 334 decitex 96-filament polyethylene terephthalate fiber false twisted yarn (manufactured by Asahi Kasei Corporation, 167 decitex 48 filaments, two filaments are aligned) from an L5 guide. And the L6 guide was supplied in a 2 out 2 in sequence. Further, the 390 decitex polytrimethylene terephthalate monofilament manufactured in Reference Example 1 is supplied from the L4 reed forming the connecting yarn in the L3 guide in a 2 in 2 out arrangement and the L4 guide in a 2 out 2 in arrangement. did.
[0035]
With the following knitting structure, a three-dimensional knitted green fabric was knitted at a density of 15 courses / 2.54 cm. The obtained greige was set 30% wide and heat-set at 170 ° C. for 2 minutes. In the obtained three-dimensional knitted fabric, the knitted fabric on the front and back sides has a mesh structure, and the connecting yarn is diagonally inclined and connected to the stitches two wales away from the stitches on the back side opposite to the stitches on the knitted fabric on the front side to form a cross structure. It was what I was doing. Table 1 shows various physical properties of the three-dimensional knitted fabric.
(Editing organization)
L1: 4544/2322/1011/3222 /
L2: 1011/3222/4544/2322 /
L3: 4545/2323/1010/3232 /
L4: 1010/3232/4545/2323 /
L5: 3345/4423/2210/1132 /
L6: 2210/1132/3345/4423 /
[0036]
Embodiment 2
Using a 14-gauge, 13-mm double raschel knitting machine equipped with 6 reeds, the two reeds (L1, L2) forming the knitted fabric on the front side at 35 ° C. and 100% RH in the fiber. No. 20 single yarn having a water content of 29% was supplied in an all-in arrangement. A 334 decitex 96 filament polyethylene terephthalate fiber false twisted yarn (manufactured by Asahi Kasei Corporation, 167 decitex 48 filament two filaments) was all in from two reeds (L5, L6) forming the back side knitted fabric. Supplied in an array. Further, a 390 dtex polyethylene terephthalate monofilament produced in Reference Example 1 was supplied in an all-in arrangement from an L3 reed forming a connecting yarn.
[0037]
With the following knitting structure, a three-dimensional knitted green fabric was knitted at a density of 15 courses / 2.54 cm. The obtained greige fabric was set to 5% width, and dry heat set at 170 ° C. for 2 minutes, and the stitches in which all the connecting yarns were 3 wales away from the stitches on the back side opposite to the stitches on the knitted fabric on the front side were inclined obliquely. To obtain a three-dimensional knitted fabric forming a truss structure. Table 1 shows various physical properties of the obtained three-dimensional knitted fabric.
(Editing organization)
L1: 1011/2322 /
L2: 2322/1011 /
L3: 4367/3410 /
L5: 0001/1110 /
L6: 2234/2210 /
[0038]
Embodiment 3
A three-dimensional knit was formed in the same manner as in Example 2 except that the polytrimethylene terephthalate monofilament of 440 dtex manufactured in Reference Example 1 was used as the connecting yarn. Table 1 shows various physical properties of the obtained three-dimensional knitted fabric.
[0039]
Embodiment 4
Two pieces of yarn formed by twisting nylon 140 decitex 68 filament silver-plated yarn obtained by electroless plating (metal plating amount: 23% by weight) at a twist number of 200 times / m to form a front side knitted fabric A three-dimensional knitted fabric was knitted in the same manner as in Example 2 except that the knitted material was supplied to the reeds (L1, L2). Table 1 shows various physical properties of the obtained three-dimensional knitted fabric.
[0040]
[Comparative Example 1]
The same procedure as in Example 2 was carried out except that 668 decitex 192 filament polyethylene terephthalate false twisted yarn (manufactured by Asahi Kasei Corp., 167 decitex 48 filaments, 4 filaments) was used and the on-machine course was 12 courses / inch. Table 1 shows various physical properties of the three-dimensional knitted fabric obtained as described above.
[0041]
[Comparative Example 2]
A three-dimensional knit was knitted in the same manner as in Example 2 except that the polytrimethylene terephthalate monofilament of 770 decitex produced in Reference Example 1 was used as the connecting yarn. Table 1 shows various physical properties of the obtained three-dimensional knitted fabric.
[0042]
[Comparative Example 3]
From the two reeds (L1, L2) forming the front side knitted fabric, at a temperature of 35 ° C. and 100% RH, a single yarn of cupra rayon (spun yarn) No. 40 having a moisture content of 29% in the fiber (Asahi Kasei ( Was supplied in a 1-in-1-out sequence from the L1 guide and a 1-out-1-in sequence from the L2 guide. From two reeds (L5, L6) forming the back side knitted fabric, a 334 decitex 96-filament polyethylene terephthalate fiber false twisted yarn (manufactured by Asahi Kasei Corporation, 167 decitex 48 filaments, two filaments are aligned) from an L5 guide. And a 1-in-1-out sequence from the L6 guide. Further, from the reeds of L3 and L4 forming the connecting yarn, the polytrimethylene terephthalate monofilament of 200 decitex manufactured in Reference Example 1 was arranged in an arrangement of 1 in 1 out from the L5 guide and in an arrangement of 1 out 1 in from the L6 guide. Supplied.
[0043]
With the following knitting structure, a three-dimensional knitted green fabric was knitted at a density of 15 courses / 2.54 cm. The obtained greige was set to a width of 38% and subjected to dry heat setting at 170 ° C. for 2 minutes to obtain a three-dimensional knitted fabric in which connecting yarns partially formed a cross structure. The obtained three-dimensional knitted fabric had poor knitted fabric surface feel and poor knitted structure morphological stability.
Figure 2004190191
[0044]
[Table 1]
Figure 2004190191
[0045]
【The invention's effect】
The three-dimensional knitted fabric of the present invention has good cushioning properties and surface feel, and provides a refreshing feeling due to the self-ventilation effect associated with compression even under no wind with no airflow around, especially when the three-dimensional knitted fabric itself is warm It has a high heat radiation property when used, and can quickly give a cool feeling.
[Brief description of the drawings]
FIG. 1 is a compression-recovery curve of a three-dimensional knitted fabric.

Claims (4)

表裏二層の編地と該二層の編地を連結する連結糸から構成された立体編物であって、立体編物の圧縮弾性率が20〜150N/mm、表裏の編地の少なくとも一方の編地の見掛け密度が0.05〜0.60g/cm3、厚み方向の通気度が50cc/cm2/sec以上、放熱量が4.0W/m2/℃以上であることを特徴とする立体編物。A three-dimensional knitted fabric comprising a two-layered knitted fabric and a connecting yarn for connecting the two-layered knitted fabric, wherein the three-dimensional knitted fabric has a compression elastic modulus of 20 to 150 N / mm and at least one of the front and back knitted fabrics. A solid having an apparent density of 0.05 to 0.60 g / cm 3 , an air permeability in a thickness direction of 50 cc / cm 2 / sec or more, and a heat radiation amount of 4.0 W / m 2 / ° C. or more. knitting. 立体編物の表裏の少なくとも一方の編地及び/又は連結糸の少なくとも一部が、高熱伝導性繊維で構成されていることを特徴とする請求項1記載の立体編物。The three-dimensional knitted fabric according to claim 1, wherein at least one of the front and back knitted fabrics and / or at least a part of the connecting yarn of the three-dimensional knitted fabric is made of a high heat conductive fiber. 請求項1又は2記載の立体編物からなる座席シート用クッション材。A cushion material for a seat, comprising the three-dimensional knitted fabric according to claim 1. 請求項1又は2記載の立体編物からなる寝具用クッション材。A cushion material for bedding comprising the three-dimensional knitted fabric according to claim 1 or 2.
JP2002360989A 2002-12-12 2002-12-12 Heat-radiating three dimensional knitted fabric Pending JP2004190191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360989A JP2004190191A (en) 2002-12-12 2002-12-12 Heat-radiating three dimensional knitted fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360989A JP2004190191A (en) 2002-12-12 2002-12-12 Heat-radiating three dimensional knitted fabric

Publications (1)

Publication Number Publication Date
JP2004190191A true JP2004190191A (en) 2004-07-08

Family

ID=32759893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360989A Pending JP2004190191A (en) 2002-12-12 2002-12-12 Heat-radiating three dimensional knitted fabric

Country Status (1)

Country Link
JP (1) JP2004190191A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102316A (en) * 2004-10-07 2006-04-20 Asahi Kasei Fibers Corp Mat for bed
JP2006296706A (en) * 2005-04-20 2006-11-02 Kawashima Selkon Textiles Co Ltd Seat module and wheelchair
JP2008144288A (en) * 2006-12-07 2008-06-26 Teijin Fibers Ltd Polyester warp knitted fabric, method for producing the same, and fiber product
JP2009174067A (en) * 2008-01-22 2009-08-06 Kuraray Co Ltd Comfortable knit
JP2013050279A (en) * 2011-08-31 2013-03-14 Asahi Kasei Trading Co Ltd Three-dimensional knitted fabric for humidifying filter
KR20160063802A (en) * 2014-11-27 2016-06-07 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
JP2020165020A (en) * 2019-03-29 2020-10-08 ユニチカ株式会社 Material for rucksack and rucksack using the material
WO2022202811A1 (en) 2021-03-24 2022-09-29 旭化成株式会社 Seat skin material and seat including same
WO2023223980A1 (en) * 2022-05-17 2023-11-23 旭化成株式会社 Knitted fabric

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102316A (en) * 2004-10-07 2006-04-20 Asahi Kasei Fibers Corp Mat for bed
JP2006296706A (en) * 2005-04-20 2006-11-02 Kawashima Selkon Textiles Co Ltd Seat module and wheelchair
JP2008144288A (en) * 2006-12-07 2008-06-26 Teijin Fibers Ltd Polyester warp knitted fabric, method for producing the same, and fiber product
JP2009174067A (en) * 2008-01-22 2009-08-06 Kuraray Co Ltd Comfortable knit
JP2013050279A (en) * 2011-08-31 2013-03-14 Asahi Kasei Trading Co Ltd Three-dimensional knitted fabric for humidifying filter
KR20160063802A (en) * 2014-11-27 2016-06-07 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
KR102134173B1 (en) * 2014-11-27 2020-07-15 코오롱글로텍주식회사 Fabrics for ventilating seat applied materials with cooling effect
JP2020165020A (en) * 2019-03-29 2020-10-08 ユニチカ株式会社 Material for rucksack and rucksack using the material
JP7398076B2 (en) 2019-03-29 2023-12-14 ユニチカ株式会社 rucksack
WO2022202811A1 (en) 2021-03-24 2022-09-29 旭化成株式会社 Seat skin material and seat including same
KR20230101905A (en) 2021-03-24 2023-07-06 아사히 가세이 가부시키가이샤 Seat skin material and seat including the same
WO2023223980A1 (en) * 2022-05-17 2023-11-23 旭化成株式会社 Knitted fabric

Similar Documents

Publication Publication Date Title
JP4056885B2 (en) Three-dimensional knitted fabric for seats
JP2004190191A (en) Heat-radiating three dimensional knitted fabric
JP4785459B2 (en) Cushion material
JPH04222260A (en) Three-dimensional structure web
JP2004107800A (en) Three-dimensional flat knit fabric
JP3995631B2 (en) Solid knitted laminate
JP2010004965A (en) Network structure
JP4251926B2 (en) Three-dimensional knitting
JP2006296616A (en) Mat for bed
JP2007195777A (en) Cushion material
JP4381797B2 (en) Three-dimensional knitted fabric for cushion material
JP2007230086A (en) Laminate and cushioning material
JP4323164B2 (en) 3D solid knitting
JP4340447B2 (en) Seat and vehicle
JPH0615599Y2 (en) Seat Cover
JP2006000207A (en) Seat having three-dimensional knit fabric
JPH05148736A (en) Cloth having three-dimensional structure
EP4248803A1 (en) Surface covering material
JP2004218114A (en) Three-dimensional knitwork
JP2006102316A (en) Mat for bed
JP4646821B2 (en) Quilted sewing products and cushioning materials
JP2004244765A (en) Three-dimensionally knitted fabric
JP2002348762A (en) Three-dimensional knitted fabric
JP2022108014A (en) Three-dimensional knitted fabric and mattress cover
KR20230101905A (en) Seat skin material and seat including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050527

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918