JP2004189901A - Hardenable resin composition - Google Patents

Hardenable resin composition Download PDF

Info

Publication number
JP2004189901A
JP2004189901A JP2002359969A JP2002359969A JP2004189901A JP 2004189901 A JP2004189901 A JP 2004189901A JP 2002359969 A JP2002359969 A JP 2002359969A JP 2002359969 A JP2002359969 A JP 2002359969A JP 2004189901 A JP2004189901 A JP 2004189901A
Authority
JP
Japan
Prior art keywords
resin composition
bis
peroxide
vinylbenzyl
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359969A
Other languages
Japanese (ja)
Inventor
Michiyasu Horie
理靖 堀江
Tamotsu Orihara
保 織原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002359969A priority Critical patent/JP2004189901A/en
Publication of JP2004189901A publication Critical patent/JP2004189901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hardenable resin composition having excellent moisture and heat resistance. <P>SOLUTION: The composition contains a peroxide (a) of a decomposition-initiating temperature of 120-140°C and a vinyl benzyl compound of formula (1) (wherein R<SB>1</SB>to R<SB>6</SB>are each one of halogen atoms, 4C or lower alkyl groups and 4-and 3-vinyl benzyl ether groups, with at least two 4-and/or 3-vinyl benzyl ether groups being present on each benzene ring; and R<SB>7</SB>and R<SB>8</SB>are each a hydrogen atom or a 4C or lower alkyl group), in an addition ratio of the peroxide (a) to the compound (1) of 0.01-0.1 mol%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、硬化性樹脂組成物に関するものである。さらに詳しくは、耐湿性及び耐熱性に優れ、積層板、成形材料、半導体封止材料等に好適な硬化性樹脂組成物に関するものである。
【0002】
【従来の技術】
エポキシ樹脂などに代表される熱硬化性樹脂は、その優れた特性から、電気および電子機器部品などに広く使用されている。また、電子機器製品の小型化、高機能化に伴い、集積回路の小型化や、実装密度の向上、信頼性の向上が要求されている。そこで、半導体素子のスポット封止用には、エポキシ樹脂の硬化剤として、プロペニル基含有ビスフェノール誘導体や、低粘度化によるフィラーの高充填化と耐湿性向上のため、アリル基やアルキル基で置換したヒドロキノン、レゾルシンをエポキシ化した樹脂が用いられている(例えば、特許文献1および特許文献2参照。)。しかし、これらの樹脂は、耐湿性の向上が見られるものの、ガラス転移温度は200℃以下であり、耐熱性が十分ではなかった。また、ガラス転移温度を上げると耐湿性が低下してしまう問題があった。すなわち、耐湿性と耐熱性とを両立した樹脂を得ることは困難であった。
【0003】
【特許文献1】
特開平11−140007号公報(第2頁)
【特許文献2】
特開平11−255867号公報(第2頁)
【0004】
【発明が解決しようとする課題】
本発明は、前述の問題点を解決すべく鋭意検討した結果なされたものであり、その目的は、耐湿性および耐熱性に優れる硬化性樹脂組成物を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、特定の特性を有する過酸化物を一定量用いることによって、官能基として1分子内に少なくとも2個のビニル基を含有する化合物を、短時間で立体規則的に3次元架橋させることにより、耐熱性を高めることができ、さらに架橋により極性基の生成をさせずに、水分子との相互作用を低下させて、樹脂の耐湿性を高めることが可能とすることにより、樹脂組成物から得られる硬化物の低吸水率と高ガラス転移温度とを、両立できることを見出し、本発明を完成するに至った。
【0006】
即ち本発明は、分解開始温度が120〜140℃の範囲内にある過酸化物(a)と、式(1)で表されるビニルベンジル化合物とを含んでなる硬化性樹脂組成物であって、式(1)で表されるビニルベンジル化合物に対する前記過酸化物(a)の添加割合が、0.01〜0.1モル%であることを特徴とする硬化性樹脂組成物である。また、前記硬化性樹脂組成物において、前記過酸化物(a)と前記式(1)で表されるビニルベンジル化合物とを、予め、溶融混合することが好ましい。
【0007】
【化2】

Figure 2004189901
(式中、R1〜R6は水素原子、ハロゲン原子、炭素数4以下のアルキル基、4−ビニルベンジルエーテル基又は3−ビニルベンジルエーテル基を示し、それぞれ同じであっても異なってもよく、これらのうち、4−ビニルベンジルエーテル基および/または3−ビニルベンジルエーテル基は、各ベンゼン環上に計2個以上存在し、R7およびR8は、水素原子または炭素数4以下のアルキル基を示す。)
【0008】
【発明の実施の形態】
本発明の硬化性樹脂組成物において、従来の問題点を解決するために、過酸化物の分解開始温度は120〜140℃の範囲内とし、式(1)で表されるビニルベンジル化合物に対する120〜140℃の分解開始温度を有する過酸化物の添加割合を、0.01〜0.1モル%の範囲内にすることで、耐湿性と耐熱性に優れる硬化性樹脂組成物を得ることを技術骨子とするものである。
【0009】
本発明における分解開始温度は、ステンレス製の密封容器に過酸化物を1mg入れて、毎分10℃の昇温速度で加熱する示差走査熱量測定を行い、発熱ピークの開始する温度より得られるものである。
【0010】
本発明に用いる過酸化物の分解開始温度は、120〜140℃である。この温度が、120℃よりも低いと溶融混合する際にビニルベンジル化合物のゲル化が急激に発生し、逆に、140℃よりも高いと樹脂が完全に硬化しない。
前記120〜140℃の分解開始温度を有する過酸化物の具体例としては、パーオキシエステルやパーオキシケタールなどが挙げられるが、更には、例えば、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ヘキシルパーオキシイソプロピルカーボネートなどが例示されるが、特にこれらに限定されるものではない。これらは何種類かを併用することもできる。
【0011】
本発明に用いる式(1)で表されるビニルベンジル化合物としては、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン、ビス[4−(4−ビニルベンジルオキシ)フェニル]メタン、1,4−ビス(4−ビニルベンジルオキシ)ベンゼン、1,2−ビス(4−ビニルベンジルオキシ)ベンゼン、1,4−ビス(4−ビニルベンジルオキシ)ナフタレン、1,5−ビス(4−ビニルベンジルオキシ)ナフタレン、1,6−ビス(4−ビニルベンジルオキシ)ナフタレン、2,2’−ビス(4−ビニルベンジルオキシ)ビフェニル、4,4’−ビス(4−ビニルベンジルオキシ)ビフェニル、9,9−ビス[4−(4−ビニルベンジルオキシ)フェニル]フルオレン、1,1−ビス[4−(4−ビニルベンジルオキシ)フェニル]シクロヘキサンなどが例示されるが、特にこれらに限定されるものではない。これらは何種類かを併用することもできる。
【0012】
本発明において、式(1)で表されるビニルベンジル化合物に対する120〜140℃の分解開始温度を有する過酸化物の添加割合は、0.01〜0.1モル%である。この割合が、0.01モル%よりも小さいと、未反応成分が残るために耐熱性が低くなり、逆に0.1モル%よりも大きいと、式(1)で表されるビニルベンジル化合物に対する過酸化物の溶解性が低下し、さらに、ゲル化が進行し、実用的でなくなる。
【0013】
本発明の硬化性樹脂組成物には、120〜140℃の分解開始温度を有する過酸化物、及び式(1)で表されるビニルベンジル化合物以外の成分として、スチレン、メタクリル酸メチルや、離型剤等の添加剤を用いることができる。
【0014】
本発明の硬化性樹脂組成物は、式(1)で表されるビニルベンジル化合物、120〜140℃の分解開始温度を有する過酸化物、及び必要に応じて、その他の成分を混合することにより得られるが、好ましくは、まず、前記ビニルベンジル化合物に、前記過酸化物を加えて、直接加熱して、溶融混合し、次いで、その他の成分を混合して製造される。得られた硬化性樹脂組成物は、60℃〜200℃程度で、1〜10時間程度、加熱することにより、硬化物を得ることができる。
【0015】
本発明の硬化性樹脂組成物は、その硬化物が、耐湿性及び耐熱性に優れ、特にガラス転移温度が高いことから、積層板、半導体素子の封止をはじめ、電子部品や電気部品の封止、被覆、絶縁などにも好適に使用されるものである。
【0016】
本発明の硬化性樹脂組成物を用いる積層板の製造方法としては、まず、硬化性樹脂組成物を溶剤に溶解させて得られるワニスを、紙、ガラス織布、ガラス不織布、あるいはガラス以外を成分とする布などの基材に、塗布して、含浸させ、乾燥炉中で、80〜200℃で乾燥させることにより、プリプレグを調製する。これを、積層し、加熱、加圧して、積層板あるいはプリント配線板用の金属張り積層板などを製造できる。
【0017】
本発明の硬化性樹脂組成物を用いる半導体封止材料としては、硬化性樹脂組成物に、充填剤として、シリカ粉末、アルミナ、タルク、炭酸カルシウム、チタンホワイト、クレー、マイカなどを配合し、また、必要に応じて、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル類、パラフィン類などの離型剤、カーボンブラック、ベンガラなどの着色剤、種々の硬化促進剤など当業者において、公知の添加剤を用いて、得ることができる。その製造方法としては、本発明の硬化性樹脂組成物と充填剤などを、所定の組成比に選択し、ミキサーなどにより、十分均一になるように混合した後、熱ロールによる混練またはニーダなどによる混合処理を行い、冷却、固化させ、適当な大きさに粉砕することで、半導体封止材料を得ることができる。得られた半導体封止材料は、トランスファー成形、射出成形などによって、半導体素子の封止に好適に用いられる。
【0018】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれによって何ら限定されるものではない。
先ず、式(1)で表されるビニルベンジル化合物の合成例1〜6について述べ、次に、合成例で得たビニルベンジル化合物を用いて、硬化性樹脂組成物を調製する実施例1〜7、及びこれらに対する比較例1〜6について述べる。
【0019】
(合成例1)
ビスフェノールA11.4g(0.05mol)、水酸化ナトリウム4.2g(0.104mol)、メタノール23.3g、アセトン15.0gを、コンデンサー付きの100mlの三つ口フラスコに加え、55℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(東京化成製、m−,p−置換混合体)15.9g(0.104mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した塩を濾過して除いた。濾液を、200mlのメタノールに滴下し、生成した結晶を、濾過して真空乾燥して、12.2gの生成物を得た。1H−NMRの測定から、この生成物は、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパンであることが確認された。
【0020】
(合成例2)
ヒドロキノン5.5g(0.05mol)、水酸化ナトリウム4.2g(0.104mol)、イソプロピルアルコール35.7g、イオン交換水23.8gを、コンデンサー付きの100mlの三つ口フラスコに加え、80℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(東京化成製、m−,p−置換混合体)15.9g(0.104mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した結晶を濾過して、回収し、イソプロピルアルコールで洗浄し、真空乾燥して、3.75gの生成物を得た。1H−NMRの測定から、この生成物は、1,4−ビス(4−ビニルベンジルオキシ)ベンゼンであることが確認された。
【0021】
(合成例3)
2,3−ジヒドロキシナフタレン8.0g(0.05mol)、水酸化ナトリウム4.2g(0.104mol)、ジメチルスルホキシド42.0gを、コンデンサー付きの100mlの三つ口フラスコに加え、80℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(セイミケミカル製 CMS−P、m−,p−置換混合体)15.9g(0.104mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した塩を濾過で除いた。濾液を、90mlのメタノール/60ml水の混合溶媒に滴下し、生成した結晶を、濾過して真空乾燥して、15.1gの生成物を得た。1H−NMRの測定から、この生成物は、1,5−ビス(4−ビニルベンジルオキシ)ナフタレンであることが確認された。
【0022】
(合成例4)
2,2’−ジヒドロキシビフェニル9.3g(0.05mol)、水酸化ナトリウム4.2g(0.104mol)、ジメチルスルホキシド44.0gを、コンデンサー付きの100mlの三つ口フラスコに加え、80℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(セイミケミカル製 CMS−14、p−置換体)15.9g(0.104mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した塩を濾過して除いた。濾液を静置して、生成した結晶を、濾過して、真空乾燥し、9.3gの生成物を得た。1H−NMRの測定から、この生成物は、2,2’−ビス(4−ビニルベンジルオキシ)ビフェニルであることが確認された。
【0023】
(合成例5)
ビスクレゾールフルオレン57.6g(0.15mol)、水酸化ナトリウム12.5g(0.312mol)、メタノール29.2g、アセトン146.0gを、コンデンサー付きの300mlの三つ口フラスコに加え、55℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(セイミケミカル製CMS−P、m−,p−置換混合体)47.6g(0.312mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した塩を濾過で除いた。濾液を、300mlのメタノールに滴下し、生成した沈殿を、デカンテーションによりメタノールで洗浄して真空乾燥し、68.7gの生成物を得た。1H−NMRの測定から、この生成物は、9,9−ビス[4−(4−ビニルベンジルオキシ)フェニル]フルオレンであることが確認された。
【0024】
(合成例6)
4,4’−シクロヘキシリデンビスフェノール13.4g(0.05mol)、水酸化ナトリウム4.2g(0.104mol)、メタノール8.4g、アセトン41.8gを、コンデンサー付きの100mlの三つ口フラスコに加え、55℃に加熱した。これに、滴下ロートを用いて、ビニルベンジルクロライド(セイミケミカル製 CMS−P、m−,p−置換混合体)15.9g(0.104mol)を、1時間かけて滴下した。滴下後、5時間反応を行い、生成した塩を濾過で除いた。濾液を、100mlのメタノールに滴下し、生成した沈殿を、メタノールで洗浄して、真空乾燥し、19.6gの生成物を得た。1H−NMRの測定から、この生成物は、1,1−ビス[4−(4−ビニルベンジルオキシ)フェニル]シクロヘキサンであることが確認された。
【0025】
(実施例1)
合成例1で得た2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)、スチレン2.0g(19.20mmol)、及び離型剤(天然カルナバワックス)0.15gを、80℃に加熱して融解させて、減圧下で脱泡を行い、さらに2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン(分解開始温度129℃)0.004g(0.010mmol)を添加して、樹脂組成物を得た。得られた樹脂組成物を、直径3mmのシリコンチューブをスペーサーにして、2枚の板ガラスを合わせたセルに注ぎ、180℃で1時間加熱して、溶剤に不溶の注型板を作製した。この注型板について、吸水率、ガラス転移温度、弾性率を測定した。吸水率は、得られた注型板を、5cm角としたサンプルに、2時間の煮沸処理を行った時の吸水率を測定した。また、粘弾性法により、tanδのピーク温度をガラス転移温度とし、30℃及び300℃の弾性率を評価した。
【0026】
(実施例2)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン0.004g(0.010mmol)の代わりに、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン(分解開始温度131℃)0.004g(0.013mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0027】
(実施例3)
実施例1において、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)の代わりに、合成例2で得た1,4−ビス(4−ビニルベンジルオキシ)ベンゼン8.0g(23.39mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0028】
(実施例4)
実施例1において、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)の代わりに、合成例3で得た1,5−ビス(4−ビニルベンジルオキシ)ナフタレン8.0g(20.41mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0029】
(実施例5)
実施例1において、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)の代わりに、合成例4で得た2,2’−ビス(4−ビニルベンジルオキシ)ビフェニル8.0g(19.14mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0030】
(実施例6)
実施例1において、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)の代わりに、合成例5で得た9,9−ビス[4−(4−ビニルベンジルオキシ)フェニル]フルオレン8.0g(13.75mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0031】
(実施例7)
実施例1において、2,2−ビス[4−(4−ビニルベンジルオキシ)フェニル]プロパン8.0g(17.39mmol)の代わりに、合成例6で得た1,1−ビス[4−(4−ビニルベンジルオキシ)フェニル]シクロヘキサン8.0g(16.00mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0032】
(比較例1)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサンを一切用いなかった以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0033】
(比較例2)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン0.004g(0.010mmol)の代わりに0.0004g(0.0010mmol)を添加したこと以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0034】
(比較例3)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン0.004g(0.010mmol)の代わりに0.04g(0.10mmol)を添加したところ、試料がゲル化したため、注型板を作製できなかった。
【0035】
(比較例4)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン0.004g(0.010mmol)の代わりに、ジクミルパーオキサイド(分解開始温度151℃)0.004g(0.015mmol)を用いた以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0036】
(比較例5)
ビフェニル型エポキシ樹脂(油化シェルエポキシ製YX−4000H、エポキシ当量195g/eq)6.1gとフェノール樹脂(「ザイロック」、三井化学製XL−225−3L、水酸基当量175g/eq)3.9gを配合して90℃で溶解混合し、減圧下で脱泡した後、トリフェニルホスフィン0.005gを加え、樹脂組成物を得た。得られた樹脂組成物を用いて、実施例1で、注型板を得る操作において、硬化時間を8時間にした以外は、実施例1と同様にして、注型板を作製し、吸水率、ガラス転移温度、弾性率を評価した。
【0037】
(比較例6)
実施例1において、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン0.004g(0.010mmol)の代わりに、t−ブチルパーオキシ−2−エチルヘキサノエート(分解開始温度103℃)を0.004g(0.018mmol)を添加したところ、試料がゲル化したため、注型板を作製できなかった。
【0038】
実施例1〜7及び比較例1〜6の評価結果を、第1表及び第2表にまとめて示した。
【0039】
【表1】
Figure 2004189901
【0040】
【表2】
Figure 2004189901
【0041】
実施例によれば、本発明による硬化性樹脂組成物は、比較例に比べ、硬化時間1時間で、吸水率が小さく、高いガラス転移温度を持ち、ガラス転移温度を超えた300℃でも弾性率の低下が小さいことがわかる。
【0042】
【発明の効果】
本発明によれば、耐湿性及び耐熱性に優れた硬化性樹脂組成物を提供できる。本発明の硬化性樹脂組成物より得られる硬化物は、積層板、成形材料、半導体封止材料などの用途に好適に用いられる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a curable resin composition. More specifically, the present invention relates to a curable resin composition having excellent moisture resistance and heat resistance and suitable for a laminate, a molding material, a semiconductor sealing material, and the like.
[0002]
[Prior art]
Thermosetting resins typified by epoxy resins and the like are widely used in electrical and electronic equipment parts due to their excellent properties. In addition, as electronic equipment products become smaller and more sophisticated, there is a demand for smaller integrated circuits, higher packing density, and higher reliability. Therefore, for spot sealing of semiconductor elements, a propenyl group-containing bisphenol derivative was used as a curing agent for an epoxy resin, or substituted with an allyl group or an alkyl group to increase the filler filling and improve moisture resistance by lowering the viscosity. A resin obtained by epoxidizing hydroquinone and resorcinol is used (for example, see Patent Literature 1 and Patent Literature 2). However, although these resins have improved moisture resistance, they have a glass transition temperature of 200 ° C. or lower and have insufficient heat resistance. In addition, there is a problem that when the glass transition temperature is increased, the moisture resistance is reduced. That is, it was difficult to obtain a resin having both moisture resistance and heat resistance.
[0003]
[Patent Document 1]
JP-A-11-140007 (page 2)
[Patent Document 2]
JP-A-11-255867 (page 2)
[0004]
[Problems to be solved by the invention]
The present invention has been made as a result of intensive studies to solve the above-mentioned problems, and an object of the present invention is to provide a curable resin composition having excellent moisture resistance and heat resistance.
[0005]
[Means for Solving the Problems]
According to the present invention, a compound containing at least two vinyl groups in one molecule as a functional group is three-dimensionally and stereoscopically crosslinked in a short time by using a fixed amount of a peroxide having a specific property. By increasing the heat resistance of the resin composition, it is possible to increase the moisture resistance of the resin by reducing the interaction with water molecules without generating a polar group by crosslinking. It has been found that a low water absorption and a high glass transition temperature of the cured product obtained from the above can be compatible, and the present invention has been completed.
[0006]
That is, the present invention is a curable resin composition comprising a peroxide (a) having a decomposition start temperature in a range of 120 to 140 ° C. and a vinylbenzyl compound represented by the formula (1). A curable resin composition, wherein the ratio of the peroxide (a) to the vinylbenzyl compound represented by the formula (1) is 0.01 to 0.1 mol%. Further, in the curable resin composition, it is preferable that the peroxide (a) and the vinylbenzyl compound represented by the formula (1) are previously melt-mixed.
[0007]
Embedded image
Figure 2004189901
(Wherein, R 1 to R 6 represent a hydrogen atom, a halogen atom, an alkyl group having 4 or less carbon atoms, a 4-vinylbenzyl ether group or a 3-vinylbenzyl ether group, and may be the same or different. Of these, there are a total of two or more 4-vinylbenzyl ether groups and / or 3-vinylbenzyl ether groups on each benzene ring, and R 7 and R 8 are a hydrogen atom or an alkyl having 4 or less carbon atoms. Represents a group.)
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the curable resin composition of the present invention, in order to solve the conventional problems, the decomposition initiation temperature of the peroxide is set in the range of 120 to 140 ° C. A curable resin composition having excellent moisture resistance and heat resistance can be obtained by setting the addition ratio of the peroxide having a decomposition initiation temperature of ~ 140 ° C within the range of 0.01 to 0.1 mol%. It is a technical framework.
[0009]
The decomposition start temperature in the present invention is obtained by performing differential scanning calorimetry in which 1 mg of peroxide is placed in a stainless steel sealed container and heated at a rate of 10 ° C./min, and the temperature at which an exothermic peak starts is obtained. It is.
[0010]
The decomposition initiation temperature of the peroxide used in the present invention is 120 to 140 ° C. If the temperature is lower than 120 ° C., gelling of the vinylbenzyl compound occurs rapidly during melt mixing, and if it is higher than 140 ° C., the resin is not completely cured.
Specific examples of the peroxide having a decomposition start temperature of 120 to 140 ° C. include peroxyester and peroxyketal, and further, for example, 2,5-dimethyl-2,5-bis ( Benzoylperoxy) hexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t- Hexylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxymaleic acid, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexylcarbonate, t-butylperoxybenzoate Butylperoxy-3,5,5-trimethylhexanoate, t-hexylperoxyiso B the like pills carbonate are exemplified, but the invention is not particularly limited thereto. Some of these can be used in combination.
[0011]
Examples of the vinylbenzyl compound represented by the formula (1) used in the present invention include 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane and bis [4- (4-vinylbenzyloxy) phenyl] Methane, 1,4-bis (4-vinylbenzyloxy) benzene, 1,2-bis (4-vinylbenzyloxy) benzene, 1,4-bis (4-vinylbenzyloxy) naphthalene, 1,5-bis ( 4-vinylbenzyloxy) naphthalene, 1,6-bis (4-vinylbenzyloxy) naphthalene, 2,2′-bis (4-vinylbenzyloxy) biphenyl, 4,4′-bis (4-vinylbenzyloxy) Biphenyl, 9,9-bis [4- (4-vinylbenzyloxy) phenyl] fluorene, 1,1-bis [4- (4-vinylbenzyloxy) phenyl ] Although cyclohexane are exemplified, but the invention is not particularly limited thereto. Some of these can be used in combination.
[0012]
In the present invention, the addition ratio of the peroxide having a decomposition initiation temperature of 120 to 140 ° C to the vinylbenzyl compound represented by the formula (1) is 0.01 to 0.1 mol%. If this proportion is less than 0.01 mol%, unreacted components remain, resulting in low heat resistance. Conversely, if this proportion is more than 0.1 mol%, the vinylbenzyl compound represented by the formula (1) The solubility of the peroxide in water decreases, and further, the gelation proceeds, which is not practical.
[0013]
The curable resin composition of the present invention contains, as components other than the peroxide having a decomposition initiation temperature of 120 to 140 ° C. and the vinylbenzyl compound represented by the formula (1), styrene, methyl methacrylate, and the like. Additives such as molding agents can be used.
[0014]
The curable resin composition of the present invention is obtained by mixing a vinylbenzyl compound represented by the formula (1), a peroxide having a decomposition start temperature of 120 to 140 ° C, and other components as necessary. Although it is obtained, it is preferable that, first, the peroxide is added to the vinylbenzyl compound, the mixture is directly heated and melt-mixed, and then the other components are mixed. By heating the obtained curable resin composition at about 60 ° C. to 200 ° C. for about 1 to 10 hours, a cured product can be obtained.
[0015]
The curable resin composition of the present invention has excellent moisture resistance and heat resistance, and particularly has a high glass transition temperature. Therefore, the curable resin composition of the present invention can be used to seal electronic components and electric components, including laminates and semiconductor elements. It is also suitably used for stopping, covering, insulating and the like.
[0016]
As a method for producing a laminate using the curable resin composition of the present invention, first, a varnish obtained by dissolving the curable resin composition in a solvent, paper, glass woven fabric, glass nonwoven fabric, or components other than glass A prepreg is prepared by applying and impregnating a substrate such as a cloth to be dried in a drying furnace at 80 to 200 ° C. These are laminated, heated and pressed to produce a laminate or a metal-clad laminate for a printed wiring board.
[0017]
As a semiconductor sealing material using the curable resin composition of the present invention, the curable resin composition, as a filler, silica powder, alumina, talc, calcium carbonate, titanium white, clay, mica and the like, , As necessary, release agents such as natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, paraffins, coloring agents such as carbon black and red iron, various curing accelerators For example, those skilled in the art can use known additives. As the production method, the curable resin composition of the present invention and a filler are selected at a predetermined composition ratio, and mixed by a mixer or the like so as to be sufficiently uniform, and then kneaded by a hot roll or kneaded. A semiconductor encapsulating material can be obtained by performing a mixing process, cooling, solidifying, and pulverizing to an appropriate size. The obtained semiconductor encapsulating material is suitably used for encapsulating a semiconductor element by transfer molding, injection molding or the like.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
First, Synthesis Examples 1 to 6 of the vinylbenzyl compound represented by the formula (1) will be described. Next, Examples 1 to 7 in which a curable resin composition is prepared using the vinylbenzyl compound obtained in the Synthesis Example. , And Comparative Examples 1 to 6 are described.
[0019]
(Synthesis example 1)
11.4 g (0.05 mol) of bisphenol A, 4.2 g (0.104 mol) of sodium hydroxide, 23.3 g of methanol and 15.0 g of acetone were added to a 100 ml three-necked flask equipped with a condenser, and heated to 55 ° C. . Using a dropping funnel, 15.9 g (0.104 mol) of vinylbenzyl chloride (m-, p-substituted mixture, manufactured by Tokyo Chemical Industry) was added dropwise over 1 hour. After the dropwise addition, the reaction was carried out for 5 hours, and the generated salt was removed by filtration. The filtrate was added dropwise to 200 ml of methanol, and the resulting crystals were filtered and dried in vacuo to give 12.2 g of product. 1 H-NMR measurement confirmed that the product was 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane.
[0020]
(Synthesis example 2)
5.5 g (0.05 mol) of hydroquinone, 4.2 g (0.104 mol) of sodium hydroxide, 35.7 g of isopropyl alcohol, and 23.8 g of ion-exchanged water are added to a 100 ml three-necked flask equipped with a condenser, and the mixture is heated to 80 ° C. Heated. Using a dropping funnel, 15.9 g (0.104 mol) of vinylbenzyl chloride (m-, p-substituted mixture, manufactured by Tokyo Chemical Industry) was added dropwise over 1 hour. After the dropwise addition, the reaction was carried out for 5 hours, and the generated crystals were collected by filtration, washed with isopropyl alcohol, and dried under vacuum to obtain 3.75 g of a product. 1 H-NMR measurement confirmed that the product was 1,4-bis (4-vinylbenzyloxy) benzene.
[0021]
(Synthesis example 3)
8.0 g (0.05 mol) of 2,3-dihydroxynaphthalene, 4.2 g (0.104 mol) of sodium hydroxide, and 42.0 g of dimethyl sulfoxide are added to a 100 ml three-necked flask equipped with a condenser and heated to 80 ° C. did. Using a dropping funnel, 15.9 g (0.104 mol) of vinylbenzyl chloride (CMS-P, m-, p-substituted mixture manufactured by Seimi Chemical Co.) was added dropwise over 1 hour. After the dropwise addition, the reaction was performed for 5 hours, and the generated salt was removed by filtration. The filtrate was added dropwise to a mixed solvent of 90 ml of methanol / 60 ml of water, and the formed crystals were filtered and dried in vacuo to obtain 15.1 g of a product. From the measurement of 1 H-NMR, it was confirmed that this product was 1,5-bis (4-vinylbenzyloxy) naphthalene.
[0022]
(Synthesis example 4)
9.3 g (0.05 mol) of 2,2′-dihydroxybiphenyl, 4.2 g (0.104 mol) of sodium hydroxide, and 44.0 g of dimethyl sulfoxide were added to a 100 ml three-necked flask equipped with a condenser, and heated to 80 ° C. Heated. Using a dropping funnel, 15.9 g (0.104 mol) of vinylbenzyl chloride (CMS-14, p-substituted product manufactured by Seimi Chemical Co.) was added dropwise over 1 hour. After the dropwise addition, the reaction was carried out for 5 hours, and the generated salt was removed by filtration. The filtrate was allowed to settle and the resulting crystals were filtered and dried in vacuo to give 9.3 g of product. 1 H-NMR measurement confirmed that this product was 2,2′-bis (4-vinylbenzyloxy) biphenyl.
[0023]
(Synthesis example 5)
57.6 g (0.15 mol) of biscresol fluorene, 12.5 g (0.312 mol) of sodium hydroxide, 29.2 g of methanol, and 146.0 g of acetone were added to a 300 ml three-necked flask equipped with a condenser, and heated to 55 ° C. Heated. Using a dropping funnel, 47.6 g (0.312 mol) of vinylbenzyl chloride (CMS-P, m-, p-substituted mixture manufactured by Seimi Chemical Co.) was added dropwise over 1 hour. After the dropwise addition, the reaction was performed for 5 hours, and the generated salt was removed by filtration. The filtrate was dropped into 300 ml of methanol, and the resulting precipitate was washed with methanol by decantation and dried under vacuum to obtain 68.7 g of a product. 1 H-NMR measurement confirmed that the product was 9,9-bis [4- (4-vinylbenzyloxy) phenyl] fluorene.
[0024]
(Synthesis example 6)
13.4 g (0.05 mol) of 4,4′-cyclohexylidenebisphenol, 4.2 g (0.104 mol) of sodium hydroxide, 8.4 g of methanol and 41.8 g of acetone were added to a 100 ml three-necked flask equipped with a condenser. And heated to 55 ° C. Using a dropping funnel, 15.9 g (0.104 mol) of vinylbenzyl chloride (CMS-P, m-, p-substituted mixture manufactured by Seimi Chemical Co.) was added dropwise over 1 hour. After the dropwise addition, the reaction was performed for 5 hours, and the generated salt was removed by filtration. The filtrate was added dropwise to 100 ml of methanol, and the resulting precipitate was washed with methanol and dried under vacuum to obtain 19.6 g of a product. 1 H-NMR measurement confirmed that the product was 1,1-bis [4- (4-vinylbenzyloxy) phenyl] cyclohexane.
[0025]
(Example 1)
8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane obtained in Synthesis Example 1, 2.0 g (19.20 mmol) of styrene, and a release agent (natural carnauba) 0.15 g of wax) is heated to 80 ° C. to be melted, defoamed under reduced pressure, and furthermore, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane (decomposition starting temperature 129 ° C.) 0.004 g (0.010 mmol) was added to obtain a resin composition. The obtained resin composition was poured into a cell in which two glass sheets were combined using a silicon tube having a diameter of 3 mm as a spacer, and heated at 180 ° C. for 1 hour to prepare a casting plate insoluble in a solvent. The casting plate was measured for water absorption, glass transition temperature, and elastic modulus. The water absorption was measured by subjecting the obtained casting plate to a sample having a size of 5 cm square and performing a boiling treatment for 2 hours. Further, the elastic modulus at 30 ° C. and 300 ° C. was evaluated by the viscoelasticity method using the tan δ peak temperature as the glass transition temperature.
[0026]
(Example 2)
In Example 1, instead of 0.004 g (0.010 mmol) of 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, 1,1-bis (t-hexylperoxy) cyclohexane (decomposition start A casting plate was prepared in the same manner as in Example 1 except that 0.004 g (0.013 mmol) at a temperature of 131 ° C. was used, and the water absorption, glass transition temperature, and elastic modulus were evaluated.
[0027]
(Example 3)
In Example 1, instead of 8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane, 1,4-bis (4-vinyl) obtained in Synthesis Example 2 was used. A cast plate was prepared in the same manner as in Example 1 except that 8.0 g (23.39 mmol) of benzyloxy) benzene was used, and the water absorption, the glass transition temperature, and the elasticity were evaluated.
[0028]
(Example 4)
In Example 1, instead of 8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane, 1,5-bis (4-vinyl) obtained in Synthesis Example 3 was used. A casting plate was prepared in the same manner as in Example 1 except that 8.0 g (20.41 mmol) of benzyloxy) naphthalene was used, and the water absorption, the glass transition temperature, and the elasticity were evaluated.
[0029]
(Example 5)
In Example 1, instead of 8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane, 2,2′-bis (4- A casting plate was prepared in the same manner as in Example 1 except that 8.0 g (19.14 mmol) of (vinylbenzyloxy) biphenyl was used, and the water absorption, the glass transition temperature, and the elasticity were evaluated.
[0030]
(Example 6)
In Example 1, 9,9-bis [4- () obtained in Synthesis Example 5 was used instead of 8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane. Except for using 8.0 g (13.75 mmol) of 4-vinylbenzyloxy) phenyl] fluorene, a casting plate was prepared in the same manner as in Example 1, and the water absorption, glass transition temperature, and elastic modulus were evaluated. .
[0031]
(Example 7)
In Example 1, instead of 8.0 g (17.39 mmol) of 2,2-bis [4- (4-vinylbenzyloxy) phenyl] propane, 1,1-bis [4- ( Except for using 8.0 g (16.00 mmol) of 4-vinylbenzyloxy) phenyl] cyclohexane, a casting plate was prepared in the same manner as in Example 1, and the water absorption, glass transition temperature, and elastic modulus were evaluated. .
[0032]
(Comparative Example 1)
A casting plate was prepared in the same manner as in Example 1 except that 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane was not used at all. The temperature and elastic modulus were evaluated.
[0033]
(Comparative Example 2)
Example 1 is the same as Example 1 except that 0.0004 g (0.0010 mmol) was added instead of 2,4-dimethyl-2,5-bis (benzoylperoxy) hexane 0.004 g (0.010 mmol). A cast plate was prepared in the same manner as in Example 1, and the water absorption, glass transition temperature, and elastic modulus were evaluated.
[0034]
(Comparative Example 3)
In Example 1, when 0.04 g (0.10 mmol) was added instead of 0.004 g (0.010 mmol) of 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, the sample gelled. Therefore, a casting plate could not be produced.
[0035]
(Comparative Example 4)
In Example 1, instead of 0.004 g (0.010 mmol) of 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, 0.004 g of dicumyl peroxide (decomposition initiation temperature: 151 ° C.) (0.015 mmol), a casting plate was prepared in the same manner as in Example 1, and the water absorption, the glass transition temperature, and the elastic modulus were evaluated.
[0036]
(Comparative Example 5)
6.1 g of a biphenyl type epoxy resin (YX-4000H manufactured by Yuka Shell Epoxy, epoxy equivalent: 195 g / eq) and 3.9 g of a phenol resin (“Xyloc”, XL-225-3L manufactured by Mitsui Chemicals, hydroxyl equivalent: 175 g / eq) After mixing and dissolving and mixing at 90 ° C. and defoaming under reduced pressure, 0.005 g of triphenylphosphine was added to obtain a resin composition. Using the obtained resin composition, in Example 1, a casting plate was prepared in the same manner as in Example 1 except that the curing time was changed to 8 hours in the operation of obtaining a casting plate. , Glass transition temperature and elastic modulus were evaluated.
[0037]
(Comparative Example 6)
In Example 1, instead of 0.004 g (0.010 mmol) of 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxy-2-ethylhexanoate (decomposition starting temperature) (103 ° C.), 0.004 g (0.018 mmol) was added, and the sample gelled, so that a casting plate could not be produced.
[0038]
The evaluation results of Examples 1 to 7 and Comparative Examples 1 to 6 are collectively shown in Tables 1 and 2.
[0039]
[Table 1]
Figure 2004189901
[0040]
[Table 2]
Figure 2004189901
[0041]
According to the examples, the curable resin composition according to the present invention has a low water absorption, a high glass transition temperature, and an elastic modulus even at 300 ° C. exceeding the glass transition temperature in one hour of curing time as compared with the comparative example. Is small.
[0042]
【The invention's effect】
According to the present invention, a curable resin composition excellent in moisture resistance and heat resistance can be provided. The cured product obtained from the curable resin composition of the present invention is suitably used for applications such as a laminate, a molding material, and a semiconductor sealing material.

Claims (2)

120〜140℃の分解開始温度を有する過酸化物と、式(1)で表されるビニルベンジル化合物とを含んでなる硬化性樹脂組成物であって、前記120〜140℃の分解開始温度を有する過酸化物が、前記式(1)で表されるビニルベンジル化合物に対して、0.01〜0.1モル%の割合で含んでなる硬化性樹脂組成物。
Figure 2004189901
(式中、R1〜R6は、水素原子、ハロゲン原子、炭素数4以下のアルキル基、4−ビニルベンジルエーテル基又は3−ビニルベンジルエーテル基を示し、それぞれ同じであっても異なっていてもよく、これらの内、4−ビニルベンジルエーテル基および/または3−ビニルベンジルエーテル基は、各ベンゼン環上に計2個以上存在し、R7およびR8は、水素原子または炭素数4以下のアルキル基を示す。)
A curable resin composition comprising a peroxide having a decomposition onset temperature of 120 to 140 ° C and a vinylbenzyl compound represented by the formula (1), wherein the decomposition onset temperature of 120 to 140 ° C is determined. A curable resin composition comprising a peroxide having a ratio of 0.01 to 0.1 mol% with respect to the vinylbenzyl compound represented by the formula (1).
Figure 2004189901
(In the formula, R 1 to R 6 each represent a hydrogen atom, a halogen atom, an alkyl group having 4 or less carbon atoms, a 4-vinylbenzyl ether group or a 3-vinylbenzyl ether group. Of these, a 4-vinylbenzyl ether group and / or a 3-vinylbenzyl ether group are present in total of two or more on each benzene ring, and R 7 and R 8 are each a hydrogen atom or a carbon atom of 4 or less. Represents an alkyl group.)
120〜140℃の分解開始温度を有する過酸化物と、式(1)で表されるビニルベンジル化合物とを、予め、溶融混合して得られる請求項1記載の硬化性樹脂組成物。The curable resin composition according to claim 1, which is obtained by previously melt-mixing a peroxide having a decomposition initiation temperature of 120 to 140 ° C and a vinylbenzyl compound represented by the formula (1).
JP2002359969A 2002-12-11 2002-12-11 Hardenable resin composition Pending JP2004189901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359969A JP2004189901A (en) 2002-12-11 2002-12-11 Hardenable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359969A JP2004189901A (en) 2002-12-11 2002-12-11 Hardenable resin composition

Publications (1)

Publication Number Publication Date
JP2004189901A true JP2004189901A (en) 2004-07-08

Family

ID=32759208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359969A Pending JP2004189901A (en) 2002-12-11 2002-12-11 Hardenable resin composition

Country Status (1)

Country Link
JP (1) JP2004189901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
WO2013031699A1 (en) 2011-08-26 2013-03-07 株式会社Adeka Curable composition and cured article
EP3569591A1 (en) * 2014-07-22 2019-11-20 SABIC Global Technologies B.V. High heat monomers and methods of use thereof
WO2024122295A1 (en) * 2022-12-09 2024-06-13 住友化学株式会社 Vinyl compound, vinyl composition, vinyl resin cured product, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
WO2013031699A1 (en) 2011-08-26 2013-03-07 株式会社Adeka Curable composition and cured article
US20140187715A1 (en) * 2011-08-26 2014-07-03 Adeka Corporation Curable composition and cured article
JPWO2013031699A1 (en) * 2011-08-26 2015-03-23 株式会社Adeka Curable composition and cured product
US9403925B2 (en) 2011-08-26 2016-08-02 Adeka Corporation Curable composition and cured article
EP3569591A1 (en) * 2014-07-22 2019-11-20 SABIC Global Technologies B.V. High heat monomers and methods of use thereof
WO2024122295A1 (en) * 2022-12-09 2024-06-13 住友化学株式会社 Vinyl compound, vinyl composition, vinyl resin cured product, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board

Similar Documents

Publication Publication Date Title
TWI748935B (en) Epoxy resin, epoxy resin composition, epoxy resin composition containing inorganic filler, resin sheet, cured product and epoxy compound
TWI790200B (en) Epoxy resin composition, half-cured epoxy resin composition, cured epoxy resin composition, molded product, and cured molded product
KR101734598B1 (en) Diepoxy compound, process for producing same, and composition containing the diepoxy compound
TWI307352B (en)
WO2007043684A9 (en) Phenol polymer, production method thereof and use thereof
TW201144347A (en) Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
JP2004010762A (en) Epoxy resin, epoxy resin composition, cured epoxy resin, and their production processes
CN106084184A (en) Compositions, epoxy curing agent, composition epoxy resin, thermoset composition, solidfied material, semiconductor device and interlayer dielectic
TW201037005A (en) Semiconductor-encapsulating resin composition and semiconductor device
TW201125838A (en) Polyhydroxy compound, method for producing the same and epoxy resin composition and cured product thereof
CN108291009A (en) Epoxy resin component, prepreg, epoxy resin component formed body and its hardening thing
TWI548681B (en) A polyvalent hydroxyl resin, an epoxy resin, a manufacturing method thereof, an epoxy resin composition and a hardened product thereof
JP2004189901A (en) Hardenable resin composition
Hu et al. High efficiency synthesis of octavinylsilsesquioxanes and its high performance hybrids based on bismaleimide‐triazine resin
JP2006306837A (en) Phenolic hydroxy group-bearing compound, thermosetting resin composition and semiconductor sealing material
JPH1087793A (en) Coating compound based on dicyclopentadiene derivative
WO2015125674A1 (en) Diepoxy compound and composition containing said compound
JP2012131960A (en) Diepoxy compound and method for producing the same
JP2018203963A (en) Epoxy resin curing accelerator and epoxy resin composition
JP2012111926A (en) Diepoxy compound, composition comprising the compound, and cured product obtained by curing the composition
EP0869148A1 (en) Epoxy resin composition and method for producing the same
JP2007262238A (en) Curing agent composition for epoxy resin, epoxy resin composition produced by using the same and semiconductor device
JP2021113270A (en) Resin composition, method for producing resin composition, and inorganic particles used therefor
JP2003286315A (en) Curable resin composition and laminate
JP2003286307A (en) Electronic part sealing material and electronic part unit