JP2004189655A - Method for fluorinating with microwave - Google Patents

Method for fluorinating with microwave Download PDF

Info

Publication number
JP2004189655A
JP2004189655A JP2002358249A JP2002358249A JP2004189655A JP 2004189655 A JP2004189655 A JP 2004189655A JP 2002358249 A JP2002358249 A JP 2002358249A JP 2002358249 A JP2002358249 A JP 2002358249A JP 2004189655 A JP2004189655 A JP 2004189655A
Authority
JP
Japan
Prior art keywords
group
compound
substrate
ring
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002358249A
Other languages
Japanese (ja)
Inventor
Masaharu Hara
正治 原
Tsutomu Fukuhara
彊 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002358249A priority Critical patent/JP2004189655A/en
Priority to US10/537,437 priority patent/US7351863B2/en
Priority to EP08156219A priority patent/EP2189466A3/en
Priority to EP08156222A priority patent/EP2189467A3/en
Priority to EP03775984A priority patent/EP1568703A4/en
Priority to PCT/JP2003/015336 priority patent/WO2004050676A1/en
Publication of JP2004189655A publication Critical patent/JP2004189655A/en
Priority to US12/068,500 priority patent/US7892518B2/en
Priority to US12/068,481 priority patent/US7968751B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for progressing the fluorination reaction of a substrate safely and efficiently within a short time under gentle conditions. <P>SOLUTION: The substrate and a fluorinating agent such as an HF-base complex are reacted in the presence of, optionally, a reactant under irradiation with microwaves and/or electromagnetic radiations near microwaves. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はフッ素化方法、特にマイクロ波(マイクロ波及び/又はマイクロ波近傍の電磁波で0.3から300GHzの範囲の電磁波を指す)照射下に、HF−塩基からなるフッ素化剤と基質、或いは必要に応じて反応剤の共存下に、基質をフッ素化する方法に関する。
【0002】
【従来の技術】
含フッ素化合物は、フッ素原子に由来する特異な性質が有用な機能発現に繋がる事から医薬、電子材料分野を始めとする様々な分野に於いて注目を集めており、応用例には枚挙の遑が無い。この為、効果的にフッ素原子を基質に導入する方法が種々検討されている。良く知られたフッ素化技術としては、フッ素ガスによる直接フッ素化法(例えば、特許文献1参照)、ハロゲン原子を持つ化合物にHF、或いはKF等のフッ素のアルカリ金属塩を用いてハロゲン−フッ素交換を行う、所謂、ハロゲン交換法(例えば、非特許文献1参照)、フッ化水素とピリジンやトリエチルアミン等の塩基類を用いる方法、超原子価ヨウ素、例えばIF等を用いる方法、SF、DAST、或いはYarovenko試薬の様なフルオロアルキルアミン等の特定のフッ素化剤を用いる方法や電解フッ素化法等が挙げられる(例えば、非特許文献2参照)。
【0003】
従来技術のフッ素ガスやSF、或いはDAST等を用いるフッ素化法は反応の安全性の点で大きな問題がある事から(例えば、非特許文献2参照)、簡便にかつ安全にフッ素原子を導入できる求核フッ素化剤、例えば、HF−塩基類は、塩基に配位するHF分子の数が変わると蒸留可能となり、腐食の恐れが無く、ガラス容器を用い得る事等から、研究開発の初期段階で良く使われており、その応用について詳述された文献もある(例えば、非特許文献3、及び4参照)。例えば、α位のカルボニル基によって活性化されたハロゲン含有化合物に対するハロゲン−フッ素交換、トリクロロピリミジン類のハロゲン−フッ素交換、及び糖トリフレートのハロゲン−フッ素交換による糖のフッ素化、オキシラン化合物の開環フッ素化(フルオロヒドリン化)によるフルオロエタノール類の合成、不飽和化合物のハロフルオロ化、或いはフルオロスルフェニル化、脱ジアゾフッ素化によるフルオロベンゼン合成、1,3−ジチオランやヒドラゾン類のgem−ジフッ素化、或いはシリルエーテル類の脱保護反応等が実施出来る。
【0004】
しかし、HF−塩基類は、HFを容易に放出しない様に安全性を高める事が出来る反面、求核性を持ったフッ素アニオンが放出し難くなり、反応性も低いと言う欠点を併せ持つものであった。従って、反応成績を上げる為には過酷な条件を必要とし、所望の反応を進行させる事が困難である事も多い。その他にも、工業的な観点から、より低温、短時間で反応を完結し、エネルギーコストを改善する余地が残されている。
【0005】
【特許文献1】
特開昭53−1827号公報
【非特許文献1】
有機合成化学、47巻、有機合成化学協会発行、1999年、p.258
【非特許文献2】
Chemistry of Organic Fluorine CompoundsII,Monograph,American Chem.Society,1995,p.187
【非特許文献3】
Journal fur practische Chemie Chemiker−Zeitung, 338(1996) p. 99−113
【非特許文献4】
G. A. Olah, Synthetic Fluorine Chemstry chapter 8, 1992 John Wiley.
【0006】
【発明が解決しようとする課題】
本発明の目的は、例えば、α位,β位,またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、若しくは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基を有する化合物、或いはヘテロ原子を持つ事のある3員環以上の多員環化合物等の種々の基質に対するフッ素化反応、即ちハロゲン化合物類のハロゲン−フッ素交換、オレフィンやアルキン等の不飽和基のハロフルオロ化、或いはフルオロスルフェニル化、ニトロフルオロ化、アルコールや糖類の水酸基のフッ素化、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基の脱ジアゾフッ素化等に代表される該官能基のフッ素への変換、環状化合物類の開環フッ素化、1,3−ジチオランやヒドラゾン等のgem−ジフッ素化、オルソチオエステル類のgem−トリフッ素化、酸化的フッ素化、還元的フッ素化反応やシリルエーテル類の脱保護反応に於いて取り扱いの容易なHF−塩基錯体を用いてフッ素化反応を熱反応に比べてより短時間で効率的に進行させる方法を提供する事にある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決する為に、従来、フッ素化反応への応用が殆ど省みられていなかったマイクロ波によるフッ素化反応の促進を試みた。その結果、トリエチルアミン−3HF等の腐食性の無い、安定で反応性の低い、HF−塩基類を用いても、穏和な条件で、短時間、効率的にフッ素化が可能である事を見出し、本発明に到達した。
【0008】
即ち、本発明は、基質とフッ素化剤、或いは必要に応じて反応剤の共存下に、マイクロ波、及び/又はマイクロ波近傍の電磁波照射下に該基質をフッ素化する方法であり、フッ素化剤がHFと塩基からなる錯化合物である事を特徴とする、α位,β位,またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、若しくは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基を有する化合物、或いはヘテロ原子を持つ事のある3員環以上の多員環化合物等の基質をフッ素化する(1)から(6)に示す方法である。
(1)基質とフッ素化剤、或いは必要に応じて反応剤の共存下に、マイクロ波、及 び/ 又はマイクロ波近傍の電磁波照射下に該基質をフッ素化する方法。
(2)フッ素化剤が、HFと塩基からなる錯化合物である(1)に記載の方法。
(3)基質が、α位,β位,またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、若しくは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基を有する化合物、或いはヘテロ原子を持つ事のある3員環以上の多員環化合物である(1)、及び(2)に記載の方法。
(4)基質が、糖類、シクロプロパン環、オキシラン環、アジリジン環、アジリン環、または1,3−ジチアン環を含有する事のある(1)から(3)に記載の方法。
(5)フッ素化剤がトリアルキルアミン−HF錯体である、(1)から(4)に記載の方法。
(6)フッ素化剤がトリエチルアミン−3HF錯体である、(1)から(4)に記載の方法。
【0009】
【発明の実施の形態】
本発明に用いる基質は、α位,β位,またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、若しくは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基を有する化合物、或いはヘテロ原子を持つ事のある3員環以上の多員環化合物である。
これらの基質は、例えば、ハロゲン化合物類のハロゲン−フッ素交換、オレフィンやアルキン等の不飽和基のハロフルオロ化、或いはフルオロスルフェニル化、ニトロフルオロ化、アルコールや糖類の水酸基のフッ素化、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基の脱ジアゾフッ素化等に代表される該官能基のフッ素への変換、環状化合物類の開環フッ素化、1,3−ジチオランやヒドラゾン等のgem−ジフッ素化、オルソチオエステル類のgem−トリフッ素化、酸化的フッ素化、還元的フッ素化反応やシリルエーテル類の脱保護反応等を起こし得る化合物である。
【0010】
具体的には、シクロプロパン、シクロブタン、シクロペンタン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロドデセン、ブテン、2,3−ジメチルブテン、メチレンシクロヘキセン、5α−コレスト−2−エン、エチレンオキシド、プロピレンオキシド、オキセタン、オキソラン、シクロヘキセンオキシド、シクロオクテンオキシド、シクロデセンオキシド、シクロドデセンオキシド、アルキルオキシラン、スチレンオキシド、ノルボルネンオキシド、アジリジン、アジリン、チイラン、アゼチジン、アゾリジン、チアゾリジン、1,3−ジチアン等のヘテロ原子を有する事のある環状化合物類、また電子吸引性基を持つ為に求核性が高まった芳香族化合物類や芳香族ジアゾニウム塩、複素環化合物類、例えば、インダノン、シクロペンタノン、γ−ブチロラクトン、メバロノラクトン、ブロモアセトン、ベンゼンスルホン酸、ナフタレンスルホン酸、チオ安息香酸、チオ安息香酸メチル、アクリル酸、アクリル酸メチル、メタクリル酸、メタクリル酸メチルやトリクロロピリミジン等が挙げられる。更には、官能基として水酸基を有するアルコールや糖類、グリコシド、単糖無水物、オリゴ糖や多糖類等があり、例えば、アリルアルコール、アリルベラトロール、シトロネラール、α−D−グルコピラノース、β−D−フルクトフラノース、α−D−xylo−ヘキソピラノース−4−ウロース、β−D−グルコピナルロン酸等が挙げられる。その他にも、不飽和結合を有するプロピレン、ブテン、トラン、アセチレン類やフラーレン等の籠状炭化水素類等であるが、これらは他の官能基を複数持つ事があっても良い。
他の官能基とは、例えば、1級、2級、及び3級の単独、または複数の水酸基、チオール基、ホルミル基、カルボニル基、カルボニルオキシ基、アルキルオキシカルボニル基、シアノ基、スルホニル基、アルキルスルホニル基、スルフェニル基、チオカルボニル基、ニトロ基、アミノ基、ジアゾ基等であるが、有機化合物だけに限らず、無機化合物やポリマーの表面に該官能基を導入した材料、或いは同様の有機−無機ハイブリッド材料に対しても適用出来る。当然ながら、本発明はこれらの具体例にのみ限定されるものでは無い。
【0011】
フッ素化剤は、通常、フッ素試薬として利用可能なものであり、熱暴走の恐れの無い含フッ素化合物であれば用いる事が出来るが、好ましいのは、ピリジン−HF錯体、メラミン−HF錯体、アルキルアミン−HF錯体等のHF−塩基類である。中でもトリエチルアミン−nHF錯体(nは通常、整数)のトリエチルアミン−3HFが、蒸留可能であり、腐食性が無く、ガラス容器が使用出来る等の簡便な取り扱いが可能である事から特に好ましい。
フッ素化剤以外にも該反応を促進する目的で反応剤を共存させる事が出来る。例えば、1,3−ジチアン等のgem−ジフッ素化ではNBS、DBHや塩化硫黄等を用い、オレフィンやアルキンのハロフルオロ化、或いはフルオロスルフェニル化ではHF−塩基と共にスルフリル化合物を用いる。
【0012】
反応は、回分式、半回分式、或いは連続方式での実施が可能であり、例えば、通常の回分反応器等にマイクロ波が漏れて障害が起きない様にシールドを施し、マイクロ波を照射するだけで良い。この目的には、マイクロ波オーブンが好適であり、市販の化学合成用オーブンを用いる事も出来る。照射に用いるマイクロ波の振動数は0.3から300GHzの範囲であれば良く、通常は1から30GHzが好ましいが、30から300GHzのミリ波や0.3から1GHz未満の領域の電磁波を使う事も出来る。照射は連続的、或いは断続的に温度を制御しながら行う等の方法を適宜選択する事が出来る。
殆どの場合、照射時間は熱反応の場合に比べて短時間で済み、0.1分から60分で反応を行う事が好ましい。特に好ましい照射時間は1分から30分である。しかし、必要に応じて長時間のマイクロ波照射を行う事も出来る。
反応温度は基質、フッ素化剤、及び反応生成物が安定な範囲で実施可能であり、通常25℃前後の室温から300℃の範囲が好ましいが、必要に応じて室温以下、或いは通常の熱反応と同様に室温から200℃の温度範囲で温度を制御して行う事も出来る。
【0013】
含フッ素化合物の使用量は、基質の対象となる官能基1モルに対して1モル以上を用いる事が好ましいが、過剰、或いは化学量論的に不足のまま反応させても良い。
該フッ素化反応を進行させる上で溶媒を用いる必要は無いが、攪拌を充分行う為や温度上昇を防ぐ為に溶媒を用いても良い。好ましい溶媒としては、基質、フッ素化合物や生成物に対して不活性な脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、芳香族ハロゲン化炭化水素、ニトリル、エーテル類等であり、適宜これらから選択して用いる事が出来る。
マイクロ波照射が終了した後は、通常の熱反応の場合と同様な後処理、抽出、蒸留、濾過等を施して反応生成物を分離すれば良い事は言うまでもない。
【0014】
【実施例】
以下に、本発明を実施例、参考例、及び比較例によって具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
フッ素化反応は、ピラミッド型分配器による連続的な均一照射が可能なマイクロ波オーブン(幅、奥行き55cm、高さ70cm、出力1KW、周波数2.46GHz)内に、還流冷却器を備えた5mlのフッ素樹脂(PFA)製反応器を設置して行った。
【0015】
実施例1
基質としてシクロヘキセンオキサイド(1mmol:0.1g)とフッ素化剤としてトリエチルアミン−3HF(0.6mmol:0.1g)を加え攪拌せずに、マイクロ波を2分間照射した。マイクロ波照射終了後、室温まで冷却し、反応生成液を水15ml中に注いで、ジエチルエーテル15mlで3回抽出を行った。抽出液を炭酸水素ナトリウム水溶液で中和し、適量の無水炭酸カリウムを加えて乾燥した。溶媒を減圧除去した後、カラムクロマトグラフィー(Hexane:EtO=1:1)で精製した。生成物として、trans−2−Fluorocyclohexanolが収率71%(純度98%以上)で得られた。
【0016】
比較例1
実施例1に於いてマイクロ波を照射せず、反応温度115℃、4時間の条件で実施した以外は同様に行った。生成物である、trans−2−Fluorocyclohexanolの収率は61%であった。
【0017】
実施例2
実施例1と同様の装置を用いて、シクロドデセンオキシド(1mmol:0.17g、異性体比=31:69)とEtN−3HF(0.6mmol:0.1g)を入れて、マイクロ波を10分間照射した以外は実施例1と同様にして行った。生成物として2−Fluorocyclododecanolが収率76%で得られた。
【0018】
比較例2
実施例2に於いてマイクロ波を照射せず、反応温度155℃、4時間の条件で実施した以外は同様に行った。生成物である、2−Fluorocyclododecanolの収率は54%であった。
【0019】
実施例3
実施例1と同様の装置を用いて、シクロオクテンオキシド(1mmol)とEtN−3HF(1mmol)を入れて、マイクロ波を10分間照射した以外は実施例1と同様にして行った。生成物としてtrans−2−Fluorocyclooctanolが収率68%で得られた。
【0020】
比較例3
実施例3に於いてマイクロ波を照射せず、反応温度155℃、4時間の条件で実施した以外は同様に行った。生成物である、trans−2−Fluorocyclooctanolの収率は54%であった。
【0021】
実施例4
基質としてシクロドデカン−1,4,8−トリエンモノオキシド(1mmol)とEtN−3HF(1mmol)を入れて、マイクロ波を2分間照射した以外は実施例1と同様にして行った。生成物として2−Fluorocyclododecane−6,10−diene−1−olが収率78%で得られた。
【0022】
比較例4
実施例4に於いてマイクロ波を照射せず、反応温度155℃、4時間の条件で実施した以外は同様に行った。生成物である、2−Fluorocyclododecane−6,10−diene−1−ol の収率は51%であった。
【0023】
実施例5−12、及び比較例5−12
表1に、マイクロ波照射下のフッ素化反応(実施例)と熱反応の比較例を纏めて記載した。
【0024】
【表1】

Figure 2004189655
【0025】
実施例13
実施例1に於いて10mlのPFA製反応容器を用いて、3−フェニルプロピルメチルスルホネート(1mmol)とEtN−3HF(1.2mmol)を入れて、マイクロ波を2分間照射した以外は実同様にして行った。生成物として1−Fluoro−3−phenirupropaneが収率80%で得られた。
【0026】
比較例13
実施例13に於いて、3−フェニルプロピルメチルスルホネート(1mmol)とEtN−3HF(10mmol)を、アセトニトリル溶媒(1ml)中、80℃で100時間反応を行い、生成物の収率を調べた。1−Fluoro−3−phenirupropaneの収率は其々次の通りであった。
10時間後の収率 12% 20時間後の収率 20%
38時間後の収率 44% 54時間後の収率 74%
79時間後の収率 80% 100時間後の収率 80%
【0027】
【発明の効果】
上記の詳細な説明、及び実施例による具体的な例示によって明らかな様に、本発明によればトリエチルアミン−3HFの様に安定で、実用上、腐食性の無いHF−塩基錯体を用いて、種々の基質、若しくは種々のフッ素化反応、例えば、α位、β位、またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、或いは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、またはジアゾニウム基を有する化合物、若しくはヘテロ原子を持つ事のある3員環以上の多員環化合物等の種々の基質に対する開環フッ素化、不飽和化合物のハロフルオロ化、或いはフルオロスルフェニル化、ハロゲン−フッ素交換、脱ジアゾフッ素化、1,3−ジチオランやヒドラゾン類のgem−ジフッ素化、或いはシリルエーテル類の脱保護反応等を、熱反応の場合に比べて穏やかな条件下に短時間で効率的に進行させる事が出来る
。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorination method, in particular, to a fluorinating agent comprising HF-base and a substrate, under irradiation of microwaves (microwaves and / or electromagnetic waves in the vicinity of microwaves, indicating electromagnetic waves in the range of 0.3 to 300 GHz), or The present invention relates to a method for fluorinating a substrate in the presence of a reactant as required.
[0002]
[Prior art]
Fluorine-containing compounds have attracted attention in various fields, including the pharmaceutical and electronic materials fields, because the unique properties derived from fluorine atoms lead to the development of useful functions. There is no. For this reason, various methods for effectively introducing a fluorine atom into a substrate have been studied. Well-known fluorination techniques include a direct fluorination method using fluorine gas (for example, see Patent Document 1), and halogen-fluorine exchange using a compound having a halogen atom with an alkali metal salt of fluorine such as HF or KF. performing, a method using a so-called halogen exchange method (e.g., see non-Patent Document 1), a method using a base such as hydrogen fluoride and pyridine or triethylamine, hypervalent iodine, for example, IF 5, etc., SF 4, DAST Or a method using a specific fluorinating agent such as a fluoroalkylamine such as a Yarovenko reagent, an electrolytic fluorination method, and the like (for example, see Non-Patent Document 2).
[0003]
The conventional fluorination method using fluorine gas, SF 4 , or DAST has a serious problem in terms of reaction safety (for example, see Non-Patent Document 2), so fluorine atoms can be easily and safely introduced. A possible nucleophilic fluorinating agent, for example, HF-bases, can be distilled when the number of HF molecules coordinating to the base is changed, there is no danger of corrosion, and a glass container can be used. Some documents are often used at the stage and their applications are detailed (for example, see Non-Patent Documents 3 and 4). For example, halogen-fluorine exchange on a halogen-containing compound activated by a carbonyl group at the α-position, halogen-fluorine exchange of trichloropyrimidines, fluorination of sugar by halogen-fluorine exchange of sugar triflate, ring opening of oxirane compound Synthesis of fluoroethanols by fluorination (fluorohydrination), halofluorination of unsaturated compounds, or synthesis of fluorobenzene by fluorosulfenylation or dediazofluorination, gem-difluorination of 1,3-dithiolane and hydrazones Or a deprotection reaction of silyl ethers.
[0004]
However, HF-bases can increase the safety so that HF is not easily released, but also have the disadvantages that nucleophilic fluorine anions are hardly released and the reactivity is low. there were. Therefore, severe conditions are required to improve the reaction results, and it is often difficult to advance a desired reaction. In addition, from an industrial viewpoint, there is room for completing the reaction at a lower temperature and in a shorter time and improving energy costs.
[0005]
[Patent Document 1]
JP-A-53-1827 [Non-Patent Document 1]
Synthetic Organic Chemistry, vol. 47, published by the Society of Synthetic Organic Chemistry, 1999, p. 258
[Non-patent document 2]
Chemistry of Organic Fluorine Compounds II, Monograph, American Chem. Society, 1995, p. 187
[Non-Patent Document 3]
Journal fur practische Chemie Chemiker-Zeitung, 338 (1996) p. 99-113
[Non-patent document 4]
G. FIG. A. Olah, Synthetic Fluorine Chemistry chapter 8, 1992 John Wiley.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide, for example, a compound having a hydrogen atom activated by a substituent at the α-position, β-position, or γ-position, a silyl ether compound, or a functional group such as an unsaturated group, a hydroxyl group, a halogeno group, or an amino group. Reaction for various substrates such as a compound having a group, diazo group, triazeno group, or isocyano group, or a compound having three or more membered rings which may have a hetero atom, that is, halogen-fluorine of halogen compounds Exchange, halofluorination of unsaturated groups such as olefins and alkynes, or fluorosulfenylation, nitrofluorination, fluorination of hydroxyl groups of alcohols and saccharides, dediazofluorination of amino groups, diazo groups, triazeno groups, or isocyano groups Conversion of the functional group to fluorine, ring-opening fluorination of cyclic compounds, 1,3-dithiolane and Using an HF-base complex which is easy to handle in gem-difluorination of razone, etc., gem-trifluorination, oxidative fluorination, reductive fluorination of orthothioesters and deprotection of silyl ethers To provide a method for allowing the fluorination reaction to proceed more efficiently and in a shorter time than the thermal reaction.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have attempted to promote a fluorination reaction by microwaves, which has hardly been applied to the fluorination reaction. As a result, it was found that even if HF-bases having no corrosive property, such as triethylamine-3HF, and having a low reactivity were used, fluorination could be efficiently performed under mild conditions in a short time and efficiently. The present invention has been reached.
[0008]
That is, the present invention relates to a method for fluorinating a substrate under irradiation of microwaves and / or electromagnetic waves near microwaves in the presence of a substrate and a fluorinating agent or, if necessary, a reactant. A compound having a hydrogen atom activated by a substituent at the α-position, β-position or γ-position, a silyl ether compound, or a functional group, wherein the agent is a complex compound comprising HF and a base. Fluorinating a substrate such as a compound having a saturated group, a hydroxyl group, a halogeno group, an amino group, a diazo group, a triazeno group, or an isocyano group, or a three- or more-membered ring compound having a hetero atom (1) ) To (6).
(1) A method of fluorinating a substrate under irradiation of microwaves and / or electromagnetic waves near microwaves in the presence of a substrate and a fluorinating agent or, if necessary, a reactant.
(2) The method according to (1), wherein the fluorinating agent is a complex compound comprising HF and a base.
(3) When the substrate is a compound having a hydrogen atom activated by a substituent at the α-position, β-position or γ-position, a silyl ether compound, or a functional group, the substrate may be an unsaturated group, a hydroxyl group, a halogeno group, an amino group, The method according to (1) or (2), which is a compound having a diazo group, a triazeno group, or an isocyano group, or a three- or more-membered multi-membered ring compound having a hetero atom.
(4) The method according to (1) to (3), wherein the substrate may contain a saccharide, a cyclopropane ring, an oxirane ring, an aziridine ring, an azirine ring, or a 1,3-dithiane ring.
(5) The method according to (1) to (4), wherein the fluorinating agent is a trialkylamine-HF complex.
(6) The method according to (1) to (4), wherein the fluorinating agent is a triethylamine-3HF complex.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The substrate used in the present invention may be a compound having a hydrogen atom activated by a substituent at the α-position, β-position or γ-position, a silyl ether compound, or a functional group such as an unsaturated group, a hydroxyl group, a halogeno group, or an amino group. And a compound having a diazo group, a triazeno group, or an isocyano group, or a three- or more-membered ring compound having a hetero atom.
These substrates include, for example, halogen-fluorine exchange of halogen compounds, halofluorination of unsaturated groups such as olefins and alkynes, or fluorosulfenylation, nitrofluorination, fluorination of hydroxyl groups of alcohols and saccharides, amino groups, Conversion of the functional group to fluorine typified by dediazofluorination of a diazo group, triazeno group or isocyano group, ring-opening fluorination of cyclic compounds, gem-difluorine such as 1,3-dithiolane or hydrazone It is a compound capable of causing a gem-trifluorination, oxidative fluorination, reductive fluorination reaction of orthothioesters, a deprotection reaction of silyl ethers, or the like.
[0010]
Specifically, cyclopropane, cyclobutane, cyclopentane, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclododecene, butene, 2,3-dimethylbutene, methylenecyclohexene, 5α-cholest-2-ene, ethylene oxide, Propylene oxide, oxetane, oxolane, cyclohexene oxide, cyclooctene oxide, cyclodecene oxide, cyclododecene oxide, alkyloxirane, styrene oxide, norbornene oxide, aziridine, azirine, thiirane, azetidine, azolidine, thiazolidine, 1,3-dithiane, etc. Cyclic compounds that may have heteroatoms, aromatic compounds and aromatic diazones that have increased nucleophilicity due to having an electron-withdrawing group Salts, heterocyclic compounds, for example, indanone, cyclopentanone, γ-butyrolactone, mevalonolactone, bromoacetone, benzenesulfonic acid, naphthalenesulfonic acid, thiobenzoic acid, methyl thiobenzoate, acrylic acid, methyl acrylate, methacrylic acid Acids, methyl methacrylate and trichloropyrimidine. Further, there are alcohols, saccharides, glycosides, monosaccharide anhydrides, oligosaccharides and polysaccharides having a hydroxyl group as a functional group, such as allyl alcohol, allyl veratrol, citronellal, α-D-glucopyranose, β-D -Fructofuranose, α-D-xylo-hexopyranose-4-ulose, β-D-glucopinaluronic acid and the like. Other examples include propylene, butene, tolan, acetylenes, and cage-like hydrocarbons such as fullerenes having an unsaturated bond. These may have a plurality of other functional groups.
The other functional groups include, for example, primary, secondary, and tertiary single or plural hydroxyl groups, thiol groups, formyl groups, carbonyl groups, carbonyloxy groups, alkyloxycarbonyl groups, cyano groups, sulfonyl groups, Alkyl sulfonyl group, sulfenyl group, thiocarbonyl group, nitro group, amino group, diazo group, etc., but not limited to organic compounds, inorganic compounds or materials having the functional groups introduced on the surface of polymer, or the like. It is also applicable to organic-inorganic hybrid materials. Of course, the invention is not limited only to these specific examples.
[0011]
The fluorinating agent is generally usable as a fluorinating reagent, and any fluorinated compound having no risk of thermal runaway can be used. Preferred is a pyridine-HF complex, a melamine-HF complex, an alkyl HF-bases such as amine-HF complexes. Among them, triethylamine-3HF, which is a triethylamine-nHF complex (n is usually an integer), is particularly preferable because it can be distilled, has no corrosive property, and can be easily handled such that a glass container can be used.
In addition to the fluorinating agent, a reactant can be co-present for the purpose of accelerating the reaction. For example, in gem-difluorination of 1,3-dithiane or the like, NBS, DBH, sulfur chloride or the like is used, and in halofluorination of olefin or alkyne or fluorosulfenylation, a sulfuryl compound is used together with an HF-base.
[0012]
The reaction can be performed in a batch system, a semi-batch system, or a continuous system. For example, a microwave is applied to a normal batch reactor to shield the microwave from leaking and causing trouble. Just good. For this purpose, a microwave oven is suitable, and a commercially available oven for chemical synthesis can also be used. The frequency of the microwave used for irradiation may be in the range of 0.3 to 300 GHz, and usually 1 to 30 GHz is preferable. However, it is preferable to use a millimeter wave of 30 to 300 GHz or an electromagnetic wave in a range of 0.3 to less than 1 GHz. Can also be. Irradiation can be appropriately selected such as a method of continuously or intermittently controlling the temperature.
In most cases, the irradiation time is shorter than that of the thermal reaction, and the reaction is preferably performed in 0.1 to 60 minutes. Particularly preferred irradiation times are from 1 minute to 30 minutes. However, long-time microwave irradiation can be performed if necessary.
The reaction temperature can be carried out within a stable range of the substrate, the fluorinating agent, and the reaction product. Usually, the temperature is preferably in the range of about room temperature of about 25 ° C. to 300 ° C. Similarly, the temperature can be controlled in the temperature range from room temperature to 200 ° C.
[0013]
The amount of the fluorinated compound to be used is preferably 1 mol or more per 1 mol of the functional group to be used as the substrate, but the reaction may be carried out in excess or stoichiometrically insufficient.
It is not necessary to use a solvent for the progress of the fluorination reaction, but a solvent may be used for sufficiently stirring and preventing a rise in temperature. Preferred solvents are aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, aromatic halogenated hydrocarbons, nitriles, ethers, etc., which are inert to the substrate, fluorine compounds and products. Can be selected from
After the microwave irradiation is completed, it goes without saying that the reaction product may be separated by performing post-treatment, extraction, distillation, filtration, and the like in the same manner as in a normal thermal reaction.
[0014]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples, Reference Examples, and Comparative Examples, but the present invention is not limited to these Examples.
The fluorination reaction was carried out in a microwave oven (width, depth 55 cm, height 70 cm, output 1 KW, frequency 2.46 GHz) in a microwave oven capable of continuous and uniform irradiation by a pyramid-type distributor, with 5 ml of reflux condenser equipped. A reactor made of a fluororesin (PFA) was installed.
[0015]
Example 1
Cyclohexene oxide (1 mmol: 0.1 g) as a substrate and triethylamine-3HF (0.6 mmol: 0.1 g) as a fluorinating agent were added, and microwaves were irradiated for 2 minutes without stirring. After the completion of the microwave irradiation, the mixture was cooled to room temperature, the reaction product was poured into 15 ml of water, and extracted three times with 15 ml of diethyl ether. The extract was neutralized with an aqueous solution of sodium bicarbonate, dried by adding an appropriate amount of anhydrous potassium carbonate. After removing the solvent under reduced pressure, the residue was purified by column chromatography (Hexane: Et 2 O = 1: 1). As a product, trans-2-fluorocyclohexanol was obtained in a yield of 71% (purity of 98% or more).
[0016]
Comparative Example 1
Example 1 was carried out in the same manner as in Example 1 except that microwave irradiation was not performed and the reaction temperature was 115 ° C for 4 hours. The yield of the product, trans-2-Fluorocyclohexanol, was 61%.
[0017]
Example 2
Using the same apparatus as in Example 1, cyclododecene oxide (1 mmol: 0.17 g, isomer ratio = 31: 69) and Et 3 N-3HF (0.6 mmol: 0.1 g) were added, and micro The procedure was performed in the same manner as in Example 1 except that the waves were irradiated for 10 minutes. 2-Fluorocyclododecanol was obtained as a product in a yield of 76%.
[0018]
Comparative Example 2
Example 2 was carried out in the same manner as in Example 2, except that the reaction was carried out at 155 ° C for 4 hours without irradiation with microwaves. The yield of the product, 2-Fluorocyclododecanol, was 54%.
[0019]
Example 3
Using the same apparatus as in Example 1, cyclooctene oxide (1 mmol) and Et 3 N-3HF (1 mmol) were added, and irradiation was performed for 10 minutes with microwaves. Trans-2-Fluorocyclotanol was obtained as a product in a yield of 68%.
[0020]
Comparative Example 3
Example 3 was carried out in the same manner as in Example 3, except that the reaction was carried out at 155 ° C for 4 hours without irradiation with microwaves. The yield of the product, trans-2-Fluorocyclotanol, was 54%.
[0021]
Example 4
Put cyclododecane-1,4,8-triene monoxide (1 mmol) and Et 3 N-3HF the (1 mmol) as a substrate, except that microwave irradiation for 2 minutes was performed in the same manner as in Example 1. 2-Fluorocyclodecane-6,10-diene-1-ol was obtained as a product in a yield of 78%.
[0022]
Comparative Example 4
Example 4 was carried out in the same manner as in Example 4 except that the reaction was carried out at 155 ° C for 4 hours without microwave irradiation. The yield of the product, 2-Fluorocyclododecane-6,10-diene-1-ol, was 51%.
[0023]
Example 5-12 and Comparative Example 5-12
Table 1 summarizes and describes comparative examples of a fluorination reaction under microwave irradiation (Example) and a thermal reaction.
[0024]
[Table 1]
Figure 2004189655
[0025]
Example 13
Using PFA-made reaction vessel of 10ml In Example 1, 3-phenylpropyl put methylsulfonate (1 mmol) and Et 3 N-3HF (1.2mmol) , except that microwave irradiation for 2 minutes real The same was done. 1-Fluoro-3-phenirurupropane was obtained as a product in a yield of 80%.
[0026]
Comparative Example 13
In Example 13, 3-phenylpropyl methyl sulfonate and (1mmol) Et 3 N-3HF a (10 mmol), acetonitrile in a solvent (1 ml), subjected to 100 hours at 80 ° C., examine the yield of the product Was. The yields of 1-Fluoro-3-phenipropane were as follows.
Yield after 10 hours 12% Yield after 20 hours 20%
Yield after 38 hours 44% Yield after 54 hours 74%
Yield after 79 hours 80% Yield after 100 hours 80%
[0027]
【The invention's effect】
As is clear from the above detailed description and specific examples by examples, according to the present invention, various kinds of HF-base complexes which are stable and practically non-corrosive like triethylamine-3HF can be used. A substrate, or various fluorination reactions, for example, a compound having a hydrogen atom activated by a substituent at the α-position, β-position, or γ-position, a silyl ether compound, or as a functional group, an unsaturated group, a hydroxyl group, Ring-opening fluorination to various substrates such as compounds having a halogeno group, an amino group, or a diazonium group, or a three-membered or more multi-membered ring compound which may have a heteroatom, halofluorination of an unsaturated compound, or fluoro Sulfenylation, halogen-fluorine exchange, dediazofluorination, gem-difluorination of 1,3-dithiolane and hydrazones, or silyl ethere The deprotection reaction of classes, a short time efficiently proceed is to it can under mild conditions as compared with the case of the thermal reaction.

Claims (6)

基質とフッ素化剤、或いは必要に応じて反応剤の共存下に、マイク ロ波、及び/又はマイクロ波近傍の電磁波照射下に該基質をフッ素化する方法。A method of fluorinating a substrate under irradiation of microwaves and / or electromagnetic waves in the vicinity of microwaves in the presence of a substrate and a fluorinating agent or, if necessary, a reactant. フッ素化剤が、HFと塩基からなる錯化合物である請求項1に記載の方法。The method according to claim 1, wherein the fluorinating agent is a complex compound comprising HF and a base. 基質が、α位,β位,またはγ位の置換基によって活性化された水素原子を有する化合物、シリルエーテル化合物、若しくは官能基として、不飽和基、水酸基、ハロゲノ基、アミノ基、ジアゾ基、トリアゼノ基、またはイソシアノ基を有する化合物、或いはヘテロ原子を持つ事のある3員環以上の多員環化合物である請求項1、及び2に記載の方法。When the substrate is a compound having a hydrogen atom activated by a substituent at the α-position, the β-position or the γ-position, a silyl ether compound, or a functional group, the substrate may be an unsaturated group, a hydroxyl group, a halogeno group, an amino group, a diazo group, 3. The method according to claim 1, wherein the compound is a compound having a triazeno group or an isocyano group, or a multi-membered ring compound having three or more ring members which may have a hetero atom. 基質が、糖類、シクロプロパン環、オキシラン環、アジリジン環、アジリン環、または1,3−ジチアン環を含有する事のある請求項1から3に記載の方法。The method according to any one of claims 1 to 3, wherein the substrate may contain a saccharide, a cyclopropane ring, an oxirane ring, an aziridine ring, an azirine ring, or a 1,3-dithiane ring. フッ素化剤がトリアルキルアミン−HF錯体である、請求項1から4に記載の方法。5. The method according to claim 1, wherein the fluorinating agent is a trialkylamine-HF complex. フッ素化剤がトリエチルアミン−3HF錯体である、請求項1から4に記載の方法。5. The method according to claim 1, wherein the fluorinating agent is a triethylamine-3HF complex.
JP2002358249A 2002-12-04 2002-12-10 Method for fluorinating with microwave Pending JP2004189655A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002358249A JP2004189655A (en) 2002-12-10 2002-12-10 Method for fluorinating with microwave
US10/537,437 US7351863B2 (en) 2002-12-04 2003-12-01 Method of fluorination
EP08156219A EP2189466A3 (en) 2002-12-04 2003-12-01 Method of fluorination by microwaves
EP08156222A EP2189467A3 (en) 2002-12-04 2003-12-01 Method of fluorination by microwaves
EP03775984A EP1568703A4 (en) 2002-12-04 2003-12-01 Method of fluorination
PCT/JP2003/015336 WO2004050676A1 (en) 2002-12-04 2003-12-01 Method of fluorination
US12/068,500 US7892518B2 (en) 2002-12-04 2008-02-07 Method of fluorination
US12/068,481 US7968751B2 (en) 2002-12-04 2008-02-07 Method of fluorination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358249A JP2004189655A (en) 2002-12-10 2002-12-10 Method for fluorinating with microwave

Publications (1)

Publication Number Publication Date
JP2004189655A true JP2004189655A (en) 2004-07-08

Family

ID=32758021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358249A Pending JP2004189655A (en) 2002-12-04 2002-12-10 Method for fluorinating with microwave

Country Status (1)

Country Link
JP (1) JP2004189655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021130650A (en) * 2020-02-19 2021-09-09 東ソー・ファインケム株式会社 HIGH PURITY β-BROMOETHYLBENZENE AND PRODUCTION METHOD THEREOF

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021130650A (en) * 2020-02-19 2021-09-09 東ソー・ファインケム株式会社 HIGH PURITY β-BROMOETHYLBENZENE AND PRODUCTION METHOD THEREOF
JP7087045B2 (en) 2020-02-19 2022-06-20 東ソー・ファインケム株式会社 High-purity β-bromoethylbenzene and its production method

Similar Documents

Publication Publication Date Title
US7892518B2 (en) Method of fluorination
US7015176B2 (en) Process for the synthesis of aryl sulfurpentafluorides
Qiu et al. Reaction of perfluoroalkyl iodides with electron-deficient olefins under UV irradiation
RU2619108C2 (en) Fluorination of acrylate esters and derivatives
KR20070022968A (en) Process for Preparing Fluoro-1,3-Propanesultone
EP0028179B1 (en) Process for the preparation of 3-cyano-3,5,5-trimethyl-cyclohexanone
EP2472321A1 (en) Method of preparing photoacid-generating monomer
US8937204B1 (en) Processes for isolating fluorinated products
JPS6159634B2 (en)
JP2004189655A (en) Method for fluorinating with microwave
Murphy et al. Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically)
KR880001867B1 (en) Preparing process for sugar ketals
FR2470758A1 (en) METHOD FOR FIXING ALKYL GROUPS ON A CARBONIC CHAIN CARRYING A FUNCTIONAL GROUP
Reddy HF Fluorination for the Synthesis of Alkyl Fluorides
JP2004123605A (en) Fluorination method
JPH11171850A (en) Production of butyric ester derivative
Kuroboshi et al. N-Haloimide/HF Dethiofluorination
FR2647783A1 (en) PROCESS FOR THE PREPARATION OF OPTICAL ISOMERS OF 2-CHLORO-PROPIONIC ACID ESTERS
JP4577478B2 (en) Carbohydrate fluorination method
KR920004603B1 (en) Production of 2,2-dimethoxy-2-phenylaceto phenone
JPH04305563A (en) Production of beta-mercaptocarboxylic acids
JP2002529460A (en) Method for producing monohalogenated 2-oxo-1,3-dioxolane
Wang et al. Synthesis of N-substituted imides via solid-liquid phase-transfer catalytic reaction
Andreev et al. [3, 3]-Sigmatropic rearrangements of fluorocarbanions
Oparina et al. Electrophilic and nucleophilic addition of alkanethiols to 2-vinyloxyethylmethacrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091021