JP2004188887A - Manufacturing process for rubber-based composite material - Google Patents

Manufacturing process for rubber-based composite material Download PDF

Info

Publication number
JP2004188887A
JP2004188887A JP2002361760A JP2002361760A JP2004188887A JP 2004188887 A JP2004188887 A JP 2004188887A JP 2002361760 A JP2002361760 A JP 2002361760A JP 2002361760 A JP2002361760 A JP 2002361760A JP 2004188887 A JP2004188887 A JP 2004188887A
Authority
JP
Japan
Prior art keywords
rubber
thin film
composite material
based composite
copper compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002361760A
Other languages
Japanese (ja)
Inventor
Shinichiro Sugi
信一郎 杉
Kenji Sato
研二 佐藤
Masahito Yoshikawa
雅人 吉川
Nobuko Kato
信子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002361760A priority Critical patent/JP2004188887A/en
Publication of JP2004188887A publication Critical patent/JP2004188887A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process for a rubber-based composite material consisting of a bond of a resin substrate in which a thin film of a copper compound is formed on the surface of the resin substrate and a rubber composition is heated, vulcanized and bonded onto the copper compound thin film. <P>SOLUTION: In the manufacturing process for the rubber-based composite formed by bonding a resin substrate and a rubber, a thin film of a copper compound is formed on the surface of the resin substrate and a rubber composition is bonded with pressure onto the copper compound thin film by heating and vulcanization. The use of the copper compound thin film ensures a strong adhesion between the resin substrate and the rubber. Notably, it is made possible to ensure a strong adhesion between a high sulfur rubber composition and a resin substrate, which has not hitherto been achieved with vulcanization bonding and brings about the rubber-based composite material having excellent properties. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂基材とゴムとが接合されてなるゴム系複合材料の製造方法に関し、特に、樹脂基材上にゴム組成物を加硫圧着することにより樹脂基材とゴムとを接合するゴム系複合材料の製造方法に関する。
【0002】
【従来の技術】
タイヤ、ベルト等の補強材などに用いられる樹脂基材とゴムとが接合された複合材料としては、樹脂基材にゴム組成物を加硫圧着することにより樹脂基材とゴムを接合したものがあるが、このような材料の場合、基材やゴムの特性と共に、基材とゴムとの接着性が材料としての特性を大きく左右し、また、優れたゴム系複合材料であるためには、機能性、信頼性、耐久性等の材料特性の面に加え、コスト面でも単体材料より優れていなければならないため、これまで種々の手法を駆使して製造方法の開発がなされてきた。
【0003】
このような複合材料の製造方法のひとつとして、例えば、ゴム−プラスチック積層型複合材料において、プラスチック基材の表面に湿式メッキや乾式メッキにより黄銅やコバルト等の金属薄膜を形成し、ゴム組成物を加硫接着する方法が用いられているが、用いられる金属が高価であるため複合材料のコストアップとなるという問題がある。
【0004】
また、金属銅には、他の金属と比較して価格が安いという魅力があり、上記金属薄膜として使用するための検討が種々なされてきたが、金属銅は硫黄との反応性が非常に高く、硫黄を含むゴム組成物を用いた場合の接着性に劣るだけでなく、空気中でも酸化されやすいとの理由から、十分な接着性を得ることができず、実質的にはゴム系複合材料の製造には使用されていなかった。特に、高硫黄配合ゴム組成物を用いて複合材料を製造するような場合、金属銅は硫黄との反応性が高すぎるため、接着性には特に問題があった。なお、この発明に関連する先行技術文献情報としては以下のものがある。
【0005】
【特許文献1】
特開昭57−197159号公報
【特許文献2】
特開2002−172721号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたものであり、樹脂基材とゴムとを接合したゴム系複合材料において、樹脂基材とゴムとが高い接着性を有すると共に、ゴム系複合材料を低コストで製造することができる方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、樹脂基材表面に気相成長法等の乾式メッキなどにより銅化合物薄膜を形成し、この上にゴム組成物を加熱加硫して圧着することにより、硫黄を含有するゴム組成物と薄膜との反応性をコントロールして高い接着性を有するゴム系複合材料を得ることができ、更にゴム組成物として高硫黄配合ゴム組成物を用いた場合においても、接着性が良好であることを知見し、本発明をなすに至った。
【0008】
即ち、本発明は、樹脂基材とゴムとが接合されてなるゴム系複合材料の製造方法であって、該樹脂基材表面上に銅化合物薄膜を形成し、次いで該銅化合物薄膜上にゴム組成物を加熱加硫して圧着することを特徴とするゴム系複合材料の製造方法を提供する。
【0009】
以下、本発明につき更に詳述する。
本発明において、ゴム系複合材料は、樹脂基材表面上に銅化合物薄膜を形成し、次いでこの銅化合物薄膜上にゴム組成物を加熱加硫して圧着することにより製造する。
【0010】
樹脂基材としては、プレート状、シート状、フィルム状、粒状、繊維状等の種々の形状が適用可能であるが、特に、プレート状、シート状、フィルム状のものが好適である。また、樹脂材質は、特に制限されず、種々のものが適用可能であるが、特に、ポリエチレン、ポリプロピレン、ポリスチレン等の炭化水素系樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリカーボネート樹脂などを挙げることができる。
【0011】
また、上記樹脂基材上に形成される銅化合物薄膜は、特に制限されるものではないが、酸素、窒素、炭素及び硫黄から選ばれる少なくとも1種を含有する銅化合物であることが好ましく、銅酸化物、銅窒化物、銅炭化物、銅硫化物等やこれらの2種以上を含有するものを好ましく挙げられるが、なかでも銅化合物薄膜が、Cux1-x(0<x<1、特に0.5≦x<1)で表される銅酸化物、Cuy1-y(0<y<1、特に0.5≦y<1)で表される銅窒化物、Cuz1-z(0<z<1、特に0.5≦z<1)で表される銅炭化物、又はCuw1-w(0<w<1、特に0.5≦w<1)で表される銅硫化物であることが好ましい。
【0012】
上記銅化合物薄膜は、特に制限されるものではないが、銅化合物を物理的気相成長法(PVD)又は化学的気相成長法(CVD)等の乾式メッキにより形成することができる。PVD又はCVDにより上記薄膜を形成することは、無溶媒であるため環境への負荷が少ないという利点がある。
【0013】
本発明に適用しうるPVD法としては、抵抗加熱蒸着、電子ビーム加熱蒸着等の真空蒸着法、分子線エピタキシー法、レーザーアブレーション法、直流スパッタ、高周波スパッタ、マグネトロンスパッタ、ECRスパッタ等のスパッタ法、高周波イオンプレーティング等のイオンプレーティング法、又はイオン化クラスタービーム等のイオンビーム法などが挙げられる。また、CVD法としては、常圧CVD、有機金属CVD、光波CVD等の熱CVD法、又は直流プラズマCVD、高周波プラズマCVD、マイクロ波プラズマCVD、ECRプラズマCVD等のプラズマCVD法が挙げられる。これらのうち、スパッタ法が好適に用いられ、特に好適にはマグネトロンスパッタ法が用いられる。
【0014】
本発明の銅化合物薄膜の形成には、特に、銅ターゲットを反応性ガス中でスパッタする反応性スパッタ法を用いることが好ましい。スパッタ条件としては、例えば、雰囲気ガスとしてAr,He,Ne,Kr等の不活性ガス、特にArを必要に応じて使用し、反応性ガスとして、例えば、銅酸化物薄膜を成膜する場合はO2,H2O等、銅窒化物薄膜を成膜する場合はN2,NH3等、銅炭化物薄膜を成膜する場合はCH4,C22等、銅硫化物薄膜を成膜する場合はH2S等を混合したものを用いて成膜することが好ましい。上記不活性ガスと反応性ガスとの混合比(供給ガスの体積比)は99/1〜0/100(不活性ガス/反応性ガス)、特に99/1〜20/80であることが好ましい。
【0015】
また、スパッタ時のガス圧はスパッタできる圧力であれば特に制限されないが、好ましくは1×10-2〜5×102Pa、より好ましくは5×10-2〜1×10-1Paである。また、電源(ターゲットへの供給電源)は直流、交流のいずれでもよく、交流の場合の周波数も公知の範囲のものを用いることができる。特に、直流電源、高周波(rf)電源等が好適に用いられるが、パルス電源を用いてもよい。
【0016】
また、必要に応じて基材にバイアス電圧を印加してもよい。その場合、交流、直流いずれのバイアスも可能である。交流の場合はパルス又は高周波(rf)が好ましく、直流の場合の印加電圧は−1〜+1kVの範囲が好ましい。
【0017】
スパッタ法が好ましい理由としては、第1に基材表面の温度が低温で成膜可能であること、第2に通常は成膜時の圧力が1×10-2〜5×102Paと比較的高く、基材からのアウターガスによる影響が少ないこと、第3にターゲットからスパッタした粒子は、直進して基材表面に到達する前にアルゴン(Ar)等の雰囲気ガスにより散乱される可能性が高く、いわゆる「回り込み」が起きやすいことが挙げられる。即ち、スパッタ法では、この「回り込み」により基材の形状がプレート状、シート状、フィルム状のものだけでなく、複雑な形状をしているものにも成膜することが可能である。
【0018】
なお、スパッタ法としてはターゲットと基材との間に誘導性プラズマを発生させてスパッタ中の粒子を活性化する、いわゆるイオン化マグネトロンスパッタ法も可能である。
【0019】
このような方法により形成される銅化合物薄膜の平均膜厚は、通常1×10-10〜1×10-5m、好ましくは1×10-9〜1×10-6m、より好ましくは5×10-9〜5×10-7mであることが望ましい。ここで、平均膜厚とは、基材表面に形成された膜の平均厚さである。この膜厚が薄すぎると接着性が不十分となる場合があり、一方、厚すぎると膜の内部応力により基材から剥離しやすくなる傾向にある。
【0020】
このような銅化合物薄膜は、基材の表面にゴム組成物との硫化反応によって接着性を保つことができる程度の膜厚に形成されていればよく、必ずしも基材表面全体に均一膜厚で形成されていなくてもよい。なお、成膜中又は成膜後に大気中に曝された際に、銅化合物薄膜と大気中の酸素や水蒸気とが反応し、膜中に酸素や水素などの微量の不純物が混入することがあるが、本発明の銅化合物薄膜には、このような微量の不純物を含有するものも含まれる。
【0021】
更に、必要に応じて、銅化合物薄膜の成膜前に、樹脂基材の膜を形成する表面をクリーニングして清浄化することができる。クリーニング方法としては、溶剤洗浄や低圧プラズマ法等の放電処理による洗浄などを好適に用いることができ、いくつかのクリーニング方法を組み合わせて洗浄効果を上げることもできる。また、必要に応じて、銅化合物薄膜の成膜後にプラズマ処理、イオンインプランテーション、イオン照射、熱処理等を施して、膜の表面状態、反応性、内部応力を向上させることも可能である。
【0022】
本発明において、使用するゴム組成物は、特に制限されるものではなく、タイヤやベルトにおいて慣用されるゴム組成物、例えば、基材ゴム成分として天然ゴム、合成ゴム又はその両方を用い、加硫剤、加硫促進剤、補強材、老化防止剤、軟化剤等を適宜配合したものを用いることができるが、特に、硫黄又は有機硫黄化合物を硫黄成分として含有するものであることが好ましい。特に、本発明は、これら硫黄成分の含有量が、硫黄の場合は基材ゴム100重量部に対して0.2〜8重量部、特に0.5〜8重量部、とりわけ1〜6重量部、有機硫黄化合物の場合は基材ゴム100重量部に対して0.2〜8重量部、特に0.5〜8重量部、とりわけ1〜5重量部配合された、高硫黄配合ゴム組成物を用いた場合においても、高い接着性を得ることが可能である。
【0023】
また、本発明において、樹脂基材とゴムとの複合材料は、樹脂基材がプレート状、シート状、フィルム状のものの場合、シート状に成形した未加硫の上記ゴム組成物を、上記銅化合物薄膜をその片面又は両面に形成した樹脂基材の片面又は両面に重ね合わせ、これらをプレス又はロール等により、ゴム組成物を加熱加硫しながら圧着することにより製造することができる。なお、加硫条件(温度、時間)等は公知の条件を採用することができる。
【0024】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
【0025】
[実施例1〜4]
ポリエステルシート(ポリエチレンテレフタレートシート、厚さ188μm)の表面を表1に示す条件にて低圧プラズマ法でクリーニングした後、同じく表1に示す条件にて、銅をターゲットとして用い、マグネトロンスパッタリング法にてスパッタして銅酸化物薄膜を成膜した。
【0026】
次に、表2に示す配合のゴム組成物をシート状(厚さ1mm)に成形し、これを上記銅酸化物薄膜を成膜したポリエステルシートに貼り合わせて、電熱プレスにより加熱加硫(160℃×7分)、圧着することによりゴム−ポリエステル複合材料を得た。
【0027】
得られたゴム−ポリエステル複合材料の接着性を、ゴム−ポリエステル間で剥離させる方法で評価した結果を表3に示す。
【0028】
[比較例1]
成膜時に反応性ガス(O2)を使用せずに、表1に示す条件で銅薄膜を成膜した以外は実施例と同様の方法でゴム−ポリエステル複合材料を得、実施例と同様の方法で接着性を評価した。結果を表3に併記する。
【0029】
【表1】

Figure 2004188887
【0030】
【表2】
Figure 2004188887
【0031】
【表3】
Figure 2004188887
【0032】
【発明の効果】
以上のように、本発明によれば、銅化合物薄膜を用いることにより、樹脂基材とゴムとの高い接着性を得ることができる。特に、これまで加硫接着により樹脂基材との接着性を得ることができなかった高硫黄配合ゴム組成物と樹脂基材との高い接着性を得ることが可能となり、これにより、優れた特性を有するゴム系複合材料を与えることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rubber-based composite material in which a resin substrate and rubber are joined, and in particular, joins a resin substrate and rubber by vulcanizing and pressing a rubber composition on the resin substrate. The present invention relates to a method for producing a rubber-based composite material.
[0002]
[Prior art]
As a composite material in which a resin base and rubber used for reinforcing materials such as tires and belts are joined, a resin base and rubber are joined by vulcanizing and pressing a rubber composition to the resin base. However, in the case of such a material, together with the properties of the base material and the rubber, the adhesiveness between the base material and the rubber greatly affects the properties of the material, and in order to be an excellent rubber-based composite material, In addition to the material properties such as functionality, reliability, and durability, the cost must also be superior to the single material, so that various methods have been used to develop manufacturing methods.
[0003]
As one method of producing such a composite material, for example, in a rubber-plastic laminated composite material, a metal thin film such as brass or cobalt is formed on a surface of a plastic substrate by wet plating or dry plating, and a rubber composition is formed. Although a vulcanization bonding method is used, there is a problem that the cost of the composite material increases because the metal used is expensive.
[0004]
In addition, metallic copper has the attraction that it is inexpensive compared to other metals, and various studies have been made for use as the above-mentioned metal thin film, but metallic copper has a very high reactivity with sulfur. In addition to the poor adhesiveness when using a rubber composition containing sulfur, it is difficult to obtain sufficient adhesiveness because it is easily oxidized even in the air. It was not used for production. In particular, when a composite material is produced using a high-sulfur compounded rubber composition, metallic copper has an excessively high reactivity with sulfur, and thus has a particular problem in adhesiveness. Prior art document information related to the present invention includes the following.
[0005]
[Patent Document 1]
JP-A-57-197159 [Patent Document 2]
JP 2002-172721 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and in a rubber-based composite material in which a resin substrate and rubber are joined, the resin substrate and rubber have high adhesiveness, and the rubber-based composite material has a low cost. It is an object of the present invention to provide a method which can be manufactured by using
[0007]
Means for Solving the Problems and Embodiments of the Invention
The present inventors have conducted intensive studies to achieve the above object, and as a result, formed a copper compound thin film on the surface of a resin substrate by dry plating such as a vapor phase growth method, and then heat-vulcanized the rubber composition thereon. And pressure bonding to control the reactivity between the sulfur-containing rubber composition and the thin film to obtain a rubber-based composite material having high adhesiveness, and further, as a rubber composition, a high sulfur-containing rubber composition It was also found that the adhesiveness was good even in the case of using, and the present invention was achieved.
[0008]
That is, the present invention is a method for producing a rubber-based composite material in which a resin substrate and rubber are joined, forming a copper compound thin film on the surface of the resin substrate, and then forming a rubber compound on the copper compound thin film. Provided is a method for producing a rubber-based composite material, wherein the composition is heated and vulcanized and pressure-bonded.
[0009]
Hereinafter, the present invention will be described in more detail.
In the present invention, the rubber-based composite material is produced by forming a copper compound thin film on the surface of a resin base material, and then heating and vulcanizing the rubber composition onto the copper compound thin film and pressing the same.
[0010]
As the resin substrate, various shapes such as a plate, a sheet, a film, a granule, and a fiber can be applied, and a plate, a sheet, and a film are particularly preferable. In addition, the resin material is not particularly limited, and various materials can be applied. In particular, hydrocarbon resins such as polyethylene, polypropylene, and polystyrene, polyester resins such as polyethylene terephthalate, and polycarbonate resins can be given. .
[0011]
The copper compound thin film formed on the resin substrate is not particularly limited, but is preferably a copper compound containing at least one selected from oxygen, nitrogen, carbon and sulfur, and Preferable examples include oxides, copper nitrides, copper carbides, copper sulfides, and those containing two or more of these. Among them, the copper compound thin film is formed of Cu x O 1-x (0 <x <1, Particularly, a copper oxide represented by 0.5 ≦ x <1), a Cu nitride represented by Cu y N 1-y (0 <y <1, especially 0.5 ≦ y <1), Cu z C 1-z (0 <z <1, especially 0.5 ≦ z <1), or Cu w S 1-w (0 <w <1, especially 0.5 ≦ w <1) It is preferably the copper sulfide represented.
[0012]
Although the copper compound thin film is not particularly limited, the copper compound can be formed by dry plating such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Forming the above thin film by PVD or CVD has the advantage that there is little burden on the environment because it is solventless.
[0013]
As the PVD method applicable to the present invention, resistance heating evaporation, vacuum evaporation method such as electron beam heating evaporation, molecular beam epitaxy method, laser ablation method, DC sputtering, high frequency sputtering, magnetron sputtering, sputtering method such as ECR sputtering, Examples include an ion plating method such as high-frequency ion plating, and an ion beam method such as an ionized cluster beam. Examples of the CVD method include a thermal CVD method such as a normal pressure CVD, an organic metal CVD, and a light wave CVD, and a plasma CVD method such as a DC plasma CVD, a high-frequency plasma CVD, a microwave plasma CVD, and an ECR plasma CVD. Of these, the sputtering method is preferably used, and particularly preferably the magnetron sputtering method is used.
[0014]
In the formation of the copper compound thin film of the present invention, it is particularly preferable to use a reactive sputtering method in which a copper target is sputtered in a reactive gas. As sputtering conditions, for example, when an inert gas such as Ar, He, Ne, or Kr, particularly Ar is used as an atmosphere gas as needed, and a reactive gas is used to form a copper oxide thin film, for example. When a copper nitride thin film such as O 2 or H 2 O is formed, a thin film of copper sulfide such as N 2 or NH 3 is formed. When a thin film of copper carbide is formed, a thin film of copper sulfide such as CH 4 or C 2 H 2 is formed. In this case, it is preferable to form a film using a mixture of H 2 S and the like. The mixing ratio of the inert gas and the reactive gas (volume ratio of the supplied gas) is preferably from 99/1 to 0/100 (inert gas / reactive gas), particularly preferably from 99/1 to 20/80. .
[0015]
The gas pressure during sputtering is not particularly limited as long as it is a pressure at which sputtering can be performed, but is preferably 1 × 10 −2 to 5 × 10 2 Pa, more preferably 5 × 10 −2 to 1 × 10 −1 Pa. . Further, the power supply (supply power supply to the target) may be either DC or AC, and the frequency of the AC may be in a known range. In particular, a DC power supply and a high-frequency (rf) power supply are preferably used, but a pulse power supply may be used.
[0016]
Further, a bias voltage may be applied to the substrate as needed. In this case, either AC or DC bias is possible. In the case of AC, a pulse or a high frequency (rf) is preferable, and in the case of DC, the applied voltage is preferably in the range of -1 to +1 kV.
[0017]
The reason why the sputtering method is preferable is that, first, the film can be formed at a low temperature on the surface of the substrate, and second, the pressure during the film formation is usually compared with 1 × 10 −2 to 5 × 10 2 Pa. Third, the effect of the outer gas from the substrate is small, and thirdly, particles sputtered from the target may be scattered by an atmospheric gas such as argon (Ar) before going straight and reaching the surface of the substrate. And so-called "wraparound" is likely to occur. That is, in the sputtering method, it is possible to form a film not only on a substrate, a plate, a sheet, and a film, but also on a complex substrate by this “wraparound”.
[0018]
Note that as the sputtering method, a so-called ionized magnetron sputtering method in which inductive plasma is generated between a target and a base material to activate particles during sputtering is also possible.
[0019]
The average thickness of the copper compound thin film formed by such a method is usually 1 × 10 −10 to 1 × 10 −5 m, preferably 1 × 10 −9 to 1 × 10 −6 m, more preferably 5 × 10 −6 m. Desirably, the size is from 10 -9 to 5 10 -7 m. Here, the average film thickness is the average thickness of the film formed on the surface of the base material. If the film thickness is too small, the adhesiveness may be insufficient. On the other hand, if the film thickness is too large, the film tends to be easily peeled off from the substrate due to internal stress of the film.
[0020]
Such a copper compound thin film may be formed on the surface of the base material to a thickness that can maintain the adhesiveness by a sulfuration reaction with the rubber composition, and is not necessarily a uniform film thickness over the entire base material surface. It may not be formed. Note that when exposed to the air during or after film formation, the copper compound thin film reacts with oxygen or water vapor in the air, and a small amount of impurities such as oxygen or hydrogen may be mixed into the film. However, the copper compound thin film of the present invention includes those containing such a small amount of impurities.
[0021]
Further, if necessary, before forming the copper compound thin film, the surface of the resin substrate on which the film is formed can be cleaned and cleaned. As a cleaning method, a solvent cleaning, a cleaning by a discharge treatment such as a low-pressure plasma method, or the like can be preferably used, and a cleaning effect can be enhanced by combining several cleaning methods. If necessary, plasma treatment, ion implantation, ion irradiation, heat treatment or the like may be performed after the formation of the copper compound thin film to improve the surface state, reactivity, and internal stress of the film.
[0022]
In the present invention, the rubber composition used is not particularly limited, and a rubber composition commonly used in tires and belts, for example, using natural rubber, synthetic rubber or both as a base rubber component, and vulcanizing An agent, a vulcanization accelerator, a reinforcing material, an antioxidant, a softener, and the like can be appropriately blended, and particularly, a compound containing sulfur or an organic sulfur compound as a sulfur component is preferable. In particular, according to the present invention, when the content of the sulfur component is sulfur, 0.2 to 8 parts by weight, particularly 0.5 to 8 parts by weight, particularly 1 to 6 parts by weight, based on 100 parts by weight of the base rubber. In the case of an organic sulfur compound, 0.2 to 8 parts by weight, especially 0.5 to 8 parts by weight, especially 1 to 5 parts by weight, based on 100 parts by weight of the base rubber, a high sulfur compounded rubber composition is compounded. Even when used, high adhesiveness can be obtained.
[0023]
Further, in the present invention, when the resin base material is a plate-shaped, sheet-shaped or film-shaped composite material of the resin base material and the rubber, the unvulcanized rubber composition formed into a sheet shape is formed of the copper material. The compound thin film can be manufactured by superimposing on one or both sides of a resin base material formed on one or both sides thereof and pressing them with a press or a roll while heating and vulcanizing the rubber composition. Known vulcanization conditions (temperature, time) and the like can be adopted.
[0024]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0025]
[Examples 1 to 4]
After cleaning the surface of a polyester sheet (polyethylene terephthalate sheet, thickness 188 μm) by a low-pressure plasma method under the conditions shown in Table 1, sputtering was also performed by magnetron sputtering using copper as a target under the conditions shown in Table 1. Thus, a copper oxide thin film was formed.
[0026]
Next, a rubber composition having the composition shown in Table 2 was formed into a sheet (thickness: 1 mm), which was bonded to the polyester sheet on which the copper oxide thin film had been formed, and heated and vulcanized (160 (° C. × 7 minutes) and pressure bonding to obtain a rubber-polyester composite material.
[0027]
Table 3 shows the results of evaluating the adhesiveness of the obtained rubber-polyester composite material by a method of peeling between the rubber and the polyester.
[0028]
[Comparative Example 1]
A rubber-polyester composite material was obtained in the same manner as in Example except that a copper thin film was formed under the conditions shown in Table 1 without using a reactive gas (O 2 ) during film formation. The adhesion was evaluated by the method. The results are also shown in Table 3.
[0029]
[Table 1]
Figure 2004188887
[0030]
[Table 2]
Figure 2004188887
[0031]
[Table 3]
Figure 2004188887
[0032]
【The invention's effect】
As described above, according to the present invention, by using a copper compound thin film, high adhesiveness between a resin substrate and rubber can be obtained. In particular, it has become possible to obtain high adhesion between the high-sulfur compounded rubber composition and the resin substrate, which had not been able to obtain adhesion to the resin substrate by vulcanization bonding, and this has resulted in excellent properties. Can be provided.

Claims (10)

樹脂基材とゴムとが接合されてなるゴム系複合材料の製造方法であって、該樹脂基材表面上に銅化合物薄膜を形成し、次いで該銅化合物薄膜上にゴム組成物を加熱加硫して圧着することを特徴とするゴム系複合材料の製造方法。A method for producing a rubber-based composite material in which a resin substrate and rubber are joined, comprising forming a copper compound thin film on the surface of the resin substrate, and then heating and vulcanizing the rubber composition on the copper compound thin film. A method for producing a rubber-based composite material, comprising: 銅化合物薄膜が、酸素、窒素、炭素及び硫黄から選ばれる少なくとも1種を含有することを特徴とする請求項1記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to claim 1, wherein the copper compound thin film contains at least one selected from oxygen, nitrogen, carbon, and sulfur. 銅化合物薄膜が、Cux1-x(0<x<1)で表される銅酸化物であることを特徴とする請求項2記載のゴム系複合材料の製造方法。3. The method for producing a rubber-based composite material according to claim 2, wherein the copper compound thin film is a copper oxide represented by Cu x O 1-x (0 <x <1). 銅化合物薄膜が、Cuy1-y(0<y<1)で表される銅窒化物であることを特徴とする請求項2記載のゴム系複合材料の製造方法。3. The method according to claim 2, wherein the copper compound thin film is a copper nitride represented by Cu y N 1-y (0 <y <1). 銅化合物薄膜が、Cuz1-z(0<z<1)で表される銅炭化物であることを特徴とする請求項2記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to claim 2, wherein the copper compound thin film is a copper carbide represented by Cu z C 1-z (0 <z <1). 銅化合物薄膜が、Cuw1-W(0<w<1)で表される銅硫化物であることを特徴とする請求項2記載のゴム系複合材料の製造方法。3. The method for producing a rubber-based composite material according to claim 2, wherein the copper compound thin film is a copper sulfide represented by Cu w S 1-W (0 <w <1). 銅化合物薄膜を乾式メッキ法にて形成することを特徴とする請求項1乃至6のいずれか1項記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to any one of claims 1 to 6, wherein the copper compound thin film is formed by a dry plating method. 乾式メッキ法が、反応性スパッタ法であることを特徴とする請求項7記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to claim 7, wherein the dry plating method is a reactive sputtering method. ゴム組成物が、硫黄又は有機硫黄化合物を含有するものであることを特徴とする請求項1乃至8のいずれか1項記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to any one of claims 1 to 8, wherein the rubber composition contains sulfur or an organic sulfur compound. ゴム組成物が、高硫黄配合ゴム組成物であることを特徴とする請求項9記載のゴム系複合材料の製造方法。The method for producing a rubber-based composite material according to claim 9, wherein the rubber composition is a high-sulfur compounded rubber composition.
JP2002361760A 2002-12-13 2002-12-13 Manufacturing process for rubber-based composite material Pending JP2004188887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361760A JP2004188887A (en) 2002-12-13 2002-12-13 Manufacturing process for rubber-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361760A JP2004188887A (en) 2002-12-13 2002-12-13 Manufacturing process for rubber-based composite material

Publications (1)

Publication Number Publication Date
JP2004188887A true JP2004188887A (en) 2004-07-08

Family

ID=32760384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361760A Pending JP2004188887A (en) 2002-12-13 2002-12-13 Manufacturing process for rubber-based composite material

Country Status (1)

Country Link
JP (1) JP2004188887A (en)

Similar Documents

Publication Publication Date Title
TWI462827B (en) Liquid crystal polymer film base copper clad laminate and manufacturing method thereof
JPH0959763A (en) Formation of metallic film on surface of organic substrate
JP2004188887A (en) Manufacturing process for rubber-based composite material
JPS6287310A (en) Manufacture of rubber-based composite material
JP2512912B2 (en) Rubber-based composite material manufacturing method
JP3431914B2 (en) Method for manufacturing carbon or carbon-based film
US5672383A (en) Barrier films having carbon-coated high energy surfaces
JP2884699B2 (en) Rubber joining method
JP2004351685A (en) Method for manufacturing rubbery composite material
JP3192109B2 (en) Electrical components
JP2990220B2 (en) Carbon or carbon-based coating
JP2005297317A (en) Method for producing rubber composite material
JP2007332419A (en) Method for forming electroconductive film
TW202246053A (en) Stacked body for printed circuit board and joined body for multilayer printed circuit board
JPH04103777A (en) Base material having hard carbon film
JPH03220242A (en) Method for bonding rubber
JP3236602B2 (en) Method of forming carbon or carbon-based coating
JPH07118853A (en) Production of organic polymer having diamond film
JP3236855B2 (en) Complex
JPH08340162A (en) Metallic compound polymer film
JPS6287311A (en) Manufacture of rubber-based composite material
JP2004237550A (en) Method for manufacturing rubbery composite material
JP3256189B2 (en) Protective film
JPH09176831A (en) Formation of metallic film on surface of organic substrate
JP3321139B2 (en) Element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090723

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091002