JP2004188398A - Flowing water type highly electrolyzed water producing apparatus - Google Patents

Flowing water type highly electrolyzed water producing apparatus Download PDF

Info

Publication number
JP2004188398A
JP2004188398A JP2002383040A JP2002383040A JP2004188398A JP 2004188398 A JP2004188398 A JP 2004188398A JP 2002383040 A JP2002383040 A JP 2002383040A JP 2002383040 A JP2002383040 A JP 2002383040A JP 2004188398 A JP2004188398 A JP 2004188398A
Authority
JP
Japan
Prior art keywords
electrolysis
water
plate
electrolytic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383040A
Other languages
Japanese (ja)
Inventor
Tadahiro Honma
唯廣 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemicoat and Co Ltd
Original Assignee
Chemicoat and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicoat and Co Ltd filed Critical Chemicoat and Co Ltd
Priority to JP2002383040A priority Critical patent/JP2004188398A/en
Publication of JP2004188398A publication Critical patent/JP2004188398A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyzer capable of allowing a large current to flow while suppressing the influence of heat generation by lessening the volume of an electrolysis chamber of an electrolyzer in order to protect constituent materials of a flowing water type highly electrolyzed water producing apparatus from corrosion due to the produced water and the produced chlorine gas and capable of efficient electrolysis. <P>SOLUTION: The electrolysis chamber used for the electrolyzer of polar plate opposition type is formed by hollowing out a shell part to prepare a hollow and cramping the hollow part with plastic plates on the left and the right. The volume of the electrolysis chamber is lessened by charging the plastic plates into the hollow of the electrolysis chamber, and the high efficient electrolysis is performed by increasing the concentration of electrolyte. When the apparatus operation is to be stopped, an electrolysis power source is turned off at first, thereafter, the internal cleaning is performed, and then, the whole apparatus is stopped by a timer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は食塩などの電解質を含む水を電気分解して、殺菌水を生成させる装置の構成に関する。
そのなかでも、とりわけ流水式の電解水生成器の構成に関するものである。
【0002】
【従来の技術】
流水式電解水生成装置は、図7に示すようなチタンやチタンに白金メッキ、酸化イリジウムコーティングを施した薄板を円柱ドラム状にして、陰極と陽極が存する電解室を設け、その電解室に電解質を添加した原水を連続供給しながら直流電気分解するものである。
電解室を形成するには図5〜6に示すように、胴部をくり抜いたプラスチック板を中間に使用し、両端を閉塞用の平板を用いてボルトナットで止め、適宜パッキンにより電極を挟み込む極板平面対向式のものがある。
これら図5〜7に示した電解槽は隔膜により陰極と陽極を仕切ったものもある。
【0003】
【発明が解決しようとする課題】
強電解水生成装置または次亜塩素酸(塩)生成装置と呼ばれるこれら従来の生成器は、水道水などの原水に0.1%程度の塩化ナトリウムや塩酸、またはこれらの混合された水溶液、塩化ナトリウムの代わりに塩化カリウムを用いたもの、また、塩化カリウムと塩酸を混合した水溶液など、更に塩酸の代わりに硫酸など他の無機酸を用いたものなどを直流で電気分解し、次亜塩素酸または次亜塩素酸(塩)の希薄水溶液を生成させるものである。
生成する次亜塩素酸(塩)は水道水などの殺菌剤として用いられている塩素剤と実質的に同質のものである。
有効塩素量が水道水では0.1ppm以上と規定されているのに対し、上記、次亜塩素酸(塩)生成器では1〜150ppm程度の濃度で生成される。(概略10〜70ppmが多い)
この濃度の有効塩素を含む水は殺菌力が強いため、食品の殺菌料やプール水の殺菌剤などとして用いられる。
ところが、この次亜塩素酸(塩)は腐食性が強く、特に電気分解で生じた塩素ガスは酸素ガス、水分と混合された条件では金属をはじめプラスチック、ゴム、シリコンチューブなどを激しく腐食し、劣化させる性質を有する。
このため生成装置の配管系は激しく腐食され、度々交換しなければならないという不具合が生じる。
本発明の第一の目的は上記不具合を解消することにある。
また、食塩などの電解質を含む水は電解質濃度が高いほうが電気が流れやすく、電気分解により生成する有効塩素濃度も高くなる。
従って電気分解は電解質の濃度を高くして行い、高濃度の有効塩素水を生成させた後、原水で希釈するのがよいが、電解槽内での電解液の対流時間が長くなると発熱し、電解槽が腐食したり変形する不具合が生じる。
電解質の濃度が高ければ生成する有効塩素濃度も高くなるが、十分な電気分解が起こるには電解質のモル数に応じた電流と通電時間の関係法則(ファラデーの法則)がある。
たとえば0.1%のNaclを1リットル完全に電解するには、(1/58.5×96,500クーロン=1,650アンペア・秒)の電気量が必要である。
これは16.5アンペアの電流を100秒間流すことと言いかえられる。
10ミリリットル当たり1秒でも同じである。
上記法則によれば、電解質は電解される時の電流と時間により電解される率がきまる。また、電解は発熱を伴い、電解室の容量が大きくなると電解槽内に滞留する時間が長くかかり、昇温することになって前記した不具合が生じる。
電解質の濃度はあまり低いと電流が流れにくいが、濃くすると濃度が高くなるほど電流が流れやすくなる。しかし、あまり濃度が高すぎると長時間を必要とし、流水式では昇温による不具合が生じるので、濃くし過ぎることもできない。
そこで電解槽の電解室はできるだけ容量を小さくして、適当な濃度に調整された少量の電解液を大きい電流で十分に電解し、発熱した電解液は速やかに電解室から排出するのがよい。
ところが、電解槽への流体の導入、導出部を取り付けるため、プラスチック板の板厚がある程度ないと溶接したり、ネジ込み加工などができないため、しかたなくある程度の厚みのある板のくり抜かれた容積が電解室容積となっていた。
電流を流し易くするもう一つの方法は、電極面積を大きくして出来るだけ近づけることであるが、電極面積を大きくするにはプラスチック板のくり抜き開口部も大きくなり、従って電解室容積も大きくなるという関係があり、この点の改善が望まれていた。
本発明の目的の第二は、この問題点を解消することにある。
【0004】
【課題を解決するための手段】
上記第一の目的を達成するため本発明では、どのような条件の下でチューブなどの部材が腐食されて劣化脆化されるのか、つぶさに調査したところ下記の現象を発見した。
0.1%の食塩水を電解液として隔膜を用いずに、図5〜6に示す構成の電解槽で陽極板としてチタン板に酸化イリジウムをコーティングしたもの、陰極板にチタン板を用いて9Vの直流電気分解をおこなった。
電解液は毎分240mlを電解槽に送りながら排出した。この時排出する電解水の有効塩素濃度は80ppmであった。
この条件で排出チューブにシリコンチューブを使用して、チューブの劣化がどのように起こるかを観察したところ、実験中は目視で確認できる様なチューブの劣化は起こらないが、数日経った頃にチューブの内部が白く変色し、脆化している現象がみられた。
そこで、電解を止めずに連続的に10日間昼夜電解を行ったものと、昼間だけ8時間運転し残りの16時間を停止する、1日のサイクルを10日間繰り返して電解する場合のシリコンチューブの白色脆化現象を比較したところ、なんと10日間連続して電解を行ったチューブの方には全く以上が見られず、運転と停止を繰り返して10日間経った方は1日毎に白化が増し、シリコンチューブが劣化していくことがわかった。
そこでこのシリコンチューブが白化劣化する最大の原因は、電解の休止中にあると考え、その要因は電解で発生する湿った塩素ガスであろうと推察した。
シリコンチューブが劣化する原因が、休止中にチューブ内部に溜まったガスであろうことは、特にチューブのエアー溜まり部や上部にあたる箇所の白化が激しいことで確信された。
それならば、停止または休止する時に、電解用の電源を先に停止し、電解室内およびチューブ内を原水で洗浄してから止めれば良いと考え、先ほどの運転、停止のサイクルで停止時に数分間洗浄する回路を入れて、第一の発明を完成した。
【実施例1】
0.1%の食塩水を電解液として隔膜を用いずに、図5〜6に示す構成の電解槽で陽極板としてチタン板に酸化イリジウムをコーティングしたもの、陰極板にチタン板を用いて9Vの直流電気分解をおこなった。
電解液は毎分240mlを電解槽に送りながら排出した。この時排出する電解水の有効塩素濃度は80ppmであった。
運転は8時間運転した後に3分間原水で内部を洗浄し、停止する。その後16時間休止する。これを1サイクルとして10〜90日聞運転した。
この試験中、試験後の電解水排出チューブ(シリコンチューブ)の外観および劣化状況を肉眼で観察した。
【結果】
10日間の運転を実施したところ、全く白化した現象は見られなかった。
その後、連続90日間のサイクル試験を行ったが、劣化白化は殆どみられないことがわかった。
また、シリコンチューブのかたさを見たが、新しいチューブと変わらない柔軟性を有していた。
【比較例1】
上記実施例1の停止時に3分間原水による送液洗浄を行わない以外は、実施例1と同じ条件で10〜90日間のサイクルテストをおこなった。
【結果】
シリコンチューブの白化は1日毎に増加し、90日の終了後の状態は、かたくなって柔軟さは全くなくなっており、無理に曲げると折れて破裂してしまった。
次いで本発明の第二の目的とするところは、いかに効率良く電解を行い、しかもコンパクトで余計な付帯部品を用いずに発生する熱を逃がしつつ、有効塩素濃度の十分含んだ殺菌水を、多量に連続生成させるかという点にあり、その目的の達成のためには、ある程度の濃い電解質を電解するのと、薄い濃度の電解質を電解するのとでは、電解質の総量は同一であっても、格段に濃い濃度のものを電解した時の方が効率が良いのは、水溶液に同一の電圧を印可した時に流れる電流値の差を見れば明らかであり、いかに濃い電解質をほぼ完全に電解する電解槽を用いるかにかかってくる。
濃い電解質といっても、実用上の有効塩素濃度として10〜60ppm程度の水を生成させるために、電解を行うことのできる電解質濃度ということになる。
その濃度はどの程度かを調べた結果、生成有効塩素濃度がだいたい600ppm上限程度であれば、原水で希釈して10〜60ppmに調整する方法がとれることがわかった。
また、加える電圧にもよるが、300〜600ppmの有効塩素水を生成させると発熱も激しく、電解槽内に長く滞留させると沸騰状態となり100℃を越えることも起きる。
この対策として、電解槽内に電解水が滞留する時間をできるだけ短くするため、電解槽内の電解室の容積を極力少なくするのが有効であるが、その構造が従来の厚板をくり抜いただけの電解槽では限界があった。
上記300〜600ppm程度の有効塩素を生成させるのは、約4g/リットル濃度程度のNaclを9〜12ボルトの直流で18アンペア程度でに電解することで達成されるが、120ml/分を生成させるのに電解槽を約15秒で通過すれば異常な昇温を防ぐことが可能である。
単純に計算すると120ml×15秒/60秒=30mlの電解室より小さければ良いことになる。
つまり、電極板と電極板の間をいかに狭くして電解液を通過するさせ得るかがポイントにとなる。
本発明では、86mm×112mm×12mm厚のくり抜き容積(116ml)の電解室に対して、84mm×110mm×10mm厚の体積のプラスチック板を端板に溶接したものを電解室に挿入し、流体の出入り口を図4のように削って加工することで、従来の電解槽の電解室容積を約1/4にしてこの条件をつくり、本発明の第二の目的を達成させることに成功した。
【実施例2】
2%の食塩水を電解液として隔膜を用いずに、図3〜4に示す構成の電解槽で陽極板としてチタン板に酸化イリジウムをコーティングしたもの、陰極板にチタン板を用いて9Vの直流電気分解をおこなった。
電極板の平面部面積は44平方センチメートル、電解室容積は8.8ccであった。
電解液は毎分110mlを電解槽に送りながら排出した。一方、電解槽を通さない原水のバイパス送液回路を組み1,400mlを送液し、電解されて排出してくる電解水を希釈するようにした。この時排出する電解水と希釈水の混合水の有効塩素濃度は60ppmであった。
この構成で暫く運転し、電解水の生成状況を観察した。
【結果】
排出水はほぼ60ppmの有効塩素を含み、試験終了まで安定した排出であった。
【比較例2】
2%の食塩水を電解液として隔膜を用いずに、図5〜6に示す構成の電解槽で陽極板としてチタン板に酸化イリジウムをコーティングしたもの、陰極板にチタン板を用いて9Vの直流電気分解をおこなった。
電極板の平面部面積は44平方センチメートル、電解室容積は53ccであった。電解液は毎分110mlを電解槽に送りながら排出した。一方、電解槽を通さない原水のバイパス送液回路を組み1,400mlを送液し、電解されて排出してくる電解水を希釈するようにした。この時排出する電解水と希釈水の混合水の有効塩素濃度は60ppmであった。
この構成で暫く運転し、電解水の生成状況を観察した。
【結果】
生成してくる電解水は次第に昇温し、ついには電解槽内で沸騰しはじめたため、電解が継続出来なくなってしまった。
【0005】
【発明の形態】
次に本発明の具体的構成例を図により説明する。
図1は本発明の第一の目的とする塩素ガスによる構成材料の腐食劣化の対策を説明するための図であり、主要な電気系回路と構成部品の動きをフロー図にしたもので、従来のフロー図を図2として示し比較できるようにした。
図1において装置の操作スイッチをONにすることで、全ての電気部品に通電され、電解槽内に水道水などの原水と食塩水などが送液されると共に、電解槽内の電極板へ直流の電圧が印可される。
また、装置には運転表示灯が点灯し、運転中であることが目視できる。
操作スイッチをOFFにした時タイマーが働き、電解用の電源、電解質の供給ポンプは直ちに停止し、表示灯や、原水供給用の電磁弁はタイマーの設定時間後に停止する。
このタイマー設定時間に原水が電解槽内を洗浄し、ガスや電解液を排出する。
電解質である電解助剤や電解電源の供給が先にストップしているので、電解槽内からの排出水は原水で洗われながら次第に有効塩素量の低い水となってくる。
タイマーの設定時間は排出水の有効塩素濃度をみて、調整する。
これに対して図2に示したように、従来は操作スイッチの入り切りで、全ての電気回路が同時に運転および停止されていたので、装置の停止時に配管内や装置内に溜まったガス、電解液がそのまま留まり、装置材料の腐食劣化を招いていた。
次に本発明の第二の目的である、電解槽を構成するプラスチック板材の具体的構造例を図3〜4に示す。
図において電解槽は1〜6の材料で構成され、1は突起部を接着したプラスチック板で、例えば板厚は10mmの塩化ビニール板(PVC板)である。
2のPVC板は12mm厚で胴部がくり抜かれた形状をしている。
7は流体の出入り口でプラスチックの管材を溶接により接合したり、ネジを切ってネジ止めする。
6は1の突起部がないものと同一のPVC板である。
3と5は電極板で3は小穴9のたくさん開いたチタン板で、2のくり抜き部よりやや大きめのサイズをしている。
5はチタン板に酸化イリジウムを焼結によりコーティングした板で、サイズは3と同一である。
1〜6の間には例えば1mm厚のゴムパッキンが適宜はさまれ(図示せず)、3板と5板の間は特に数枚のパッキンを重ねたパッキン層4で、電極間の極間距離を調整する。
8はボルトを通す穴である。
このような構造の1〜6をボルトナットで串刺しにして止めると電解槽が形成され、2のくり抜き部に対して1の突起部が挿入され、電解質の内容量は極めて小さくすることができる。
電解室内への電解液の滞留時間はこの1の突起部分の大きさで調整できる。
このような構造をしているため、流体の出入り口部を取り付けるための板厚は従来と同様なものを採用できるし、目的とする電解により昇温した電解水を、電解槽から速やかに排出させる容積に調整するのが極めて用意になる。
また、電気分解を行うための電源回路の供給を停止して原水の供給を続けると、原水の通過で電解水やガスが排出され、原水のみに置き換わる。
タイマーで一定時間後に原水の供給電磁弁を閉じると、配管内は原水で満たされた状態で停止する。
これに対し、図5〜6では1板に相当する6板突起部がないので7板のくり抜き部がそのまま電解室の容積となり、濃度の高い電解質水溶液を電解すると、発熱して昇温する。
そのため、低濃度の電解質水溶液で効率の悪い電解をしいられる。
次に本発明の流体の流れを図8に示す。
電気回路上の動きは図1〜図2に示したので、ここでは流体の流れを示す構成をフロー図で示す。
図8において、原水は操作スイッチがONになると電磁弁が開き、水道水などの原水は流量計Aと流量計Bに送られる。
流量計Aの流量は電解助剤(食塩水など)の添加量により、電解が100%行われる状態に近づけるため、最も高い電流値が得られ、発熱による昇温が押さえられる最も少ない量の開度にして流量を調整する。
流量計Bは流量計Aで生成される濃度の有効塩素水を希釈するためにあり、通常は有効塩素が30〜60ppm程度になるように開度を調整してながす。
【作用】
【0006】
食塩水などの電解質を連続的に電気分解して殺菌水を生成すると、生成水は塩素ガスを伴って排出してくるが、装置を停止または休止すると配管内にこれら腐食性のガスや水が溜まったままになり、配管内や構成部材が腐食されて、著しく劣化がおこる。
装置を停止または休止したとき、この生成水の通過する配管内に水道などの原水だけを、一定時間送水してからとめるようにすると、生成水の通路内は洗浄されて、腐食性物質を排出するので腐食性がのこらなくなる。
また、胴部をくり抜いたプラスチック板を真ん中にして、左右からくり抜き部のない平板で押さえて形成される空洞内に、任意の体積のプラスチック板を充填すると、空洞内の容積は少なくなる。形成された空洞を電解室として電極を挿入してパッキンで止めて電解槽を作成し、そこに電解液を流出入させると空洞内にプラスチック板が充填されている場合は、充填されていない時よりも滞留時間が短くなる。
そのため電解で発熱した電解液は速やかに電解槽から排出し電解室内では昇温がおさえられる。
【0007】
【発明の効果】
電解質として塩素イオンを含む食塩水などを電気分解すると、腐食性の塩素ガスや塩酸が発生する。
このガスが水に溶けて次亜塩素酸(塩)が生成するが装置を停止する際、このガスや水溶液を排出してから装置のすべてが停止するようにすれば、配管や構成部材に対する腐食性が残らず、耐久性が飛躍的に向上する。
また、電解を行う時、できるだけ電解質の濃度を高くして行うのが効率が良いが、PVC板やポリエチレン板(PE板)などのくり抜き板を、くり抜いていない板でサンドイッチ状にすれば、簡単に電解槽が形成され、くり抜き板の中に適当な体積の板を充填すれば、電解槽内の容積が自由に変えられ、長く電解槽内に電解液が滞留することがないようにできるので、温度上昇が抑えられ構成材料の腐食や電解反応速度の変化が少なくなり、安定した電解水が生成できる。
このように流体の出入り口を取り付けるためにある程度板厚のあるプラスチック板を使用し、電解室にあたるくり抜き容積を充填物で埋めて容積を小さくすることで、電解反応を効率化し、生成する有効塩素濃度の高い水を実用的な使用濃度に希釈して排出させる。
発明の第一の目的は、単独でも電解装置の耐久性向上になるが、第二の目的と合わせることでさらなる性能の向上につながる。
もちろん、第二の目的だけでも効率の向上は十分である。なお、上記説明では無隔膜の例で説明したが、有隔膜の場合にも当然適用され、隔膜の耐久性向上にも寄与することができる。
【図面の簡単な説明】
【図1】本発明の電解水生成器の主要な電気制御図
【図2】従来の電解水生成器の主要な電気制御図
【図3】本発明の極板平面対向式電解槽断面図例
【図4】本発明の極板平面対向式電解槽斜視図例
【図5】従来の極板平面対向式の電解槽断面図
【図6】従来の極板平面対向式の電解槽斜視図
【図7】従来の円柱ドラム状の電解槽構造例
【図8】本発明の流体の流れを示すフロー図
【符号の説明】
1‥‥‥突起部を設けたプラスチック板
2‥‥‥胴部をくり抜き、流体の出入り口を取り付けたプラスチック板
3‥‥‥孔の有る電極板
4‥‥‥電極絶縁のためのゴムパッキン
5‥‥‥電極板
6‥‥‥突起部のないプラスチック板
7‥‥‥流体の出入り口
8‥‥‥ボルトを通す穴
9‥‥‥電極板の多孔
10‥‥電極板のターミナル取り付け穴
11‥‥ドラム状の陰極板
12‥‥ドラム状の陽極板
13‥‥絶縁モールド
14‥‥流体入口
15‥‥流体出口
[0001]
[Industrial applications]
The present invention relates to a configuration of an apparatus for generating sterilized water by electrolyzing water containing an electrolyte such as salt.
Among them, the present invention particularly relates to a configuration of a flowing water type electrolyzed water generator.
[0002]
[Prior art]
The flow-through type electrolyzed water generator has a cylindrical drum shape made of titanium or a thin plate coated with platinum and iridium oxide coated on titanium as shown in FIG. 7, and an electrolytic chamber having a cathode and an anode is provided. DC electrolysis while continuously supplying raw water to which is added.
To form the electrolysis chamber, as shown in FIGS. 5 and 6, a plastic plate with a hollow body is used in the middle, and both ends are fixed with bolts and nuts using a flat plate for closing, and a pole for sandwiching the electrode with packing as appropriate. There is a flat plate facing type.
Some of the electrolytic cells shown in FIGS. 5 to 7 have a cathode and an anode separated by a diaphragm.
[0003]
[Problems to be solved by the invention]
These conventional generators, which are called strong electrolyzed water generators or hypochlorous acid (salt) generators, are prepared by adding about 0.1% of sodium chloride or hydrochloric acid to raw water such as tap water, or a mixed aqueous solution thereof, Electrolysis of a solution using potassium chloride instead of sodium, an aqueous solution of potassium chloride and hydrochloric acid, and another solution using other inorganic acids such as sulfuric acid instead of hydrochloric acid with a direct current. Alternatively, a dilute aqueous solution of hypochlorous acid (salt) is generated.
The generated hypochlorous acid (salt) is substantially the same as the chlorine agent used as a disinfectant for tap water or the like.
The amount of available chlorine is specified to be 0.1 ppm or more in tap water, whereas the above-mentioned hypochlorous acid (salt) generator produces a concentration of about 1 to 150 ppm. (Approximately 10 to 70 ppm often)
Water containing this concentration of available chlorine has a strong bactericidal activity, and is therefore used as a germicide for food or a bactericide for pool water.
However, this hypochlorous acid (salt) is highly corrosive, and especially chlorine gas generated by electrolysis violently corrodes metals, plastics, rubber, silicon tubes, etc. when mixed with oxygen gas and moisture. It has the property of deteriorating.
For this reason, the piping system of the generator is severely corroded, and there is a problem that it must be replaced frequently.
A first object of the present invention is to eliminate the above disadvantages.
In addition, water containing an electrolyte such as salt has a higher electrolyte concentration, so that electricity flows easily, and an effective chlorine concentration generated by electrolysis is also higher.
Therefore, the electrolysis is carried out by increasing the concentration of the electrolyte, and after producing high-concentration effective chlorine water, it is better to dilute with raw water, but it generates heat when the convection time of the electrolyte in the electrolytic cell becomes longer, There is a problem that the electrolytic cell is corroded or deformed.
The higher the concentration of the electrolyte is, the higher the available chlorine concentration is. However, in order for sufficient electrolysis to occur, there is a relation law (Faraday's law) between the current and the conduction time according to the number of moles of the electrolyte.
For example, in order to completely electrolyze 1 liter of 0.1% NaCl, an amount of electricity of (1 / 58.5 × 96,500 coulomb = 1,650 amps / sec) is required.
This translates to passing a current of 16.5 amps for 100 seconds.
The same applies to 1 second per 10 milliliters.
According to the above rule, the rate of electrolysis depends on the current and time when the electrolyte is electrolyzed. In addition, electrolysis involves heat generation, and when the capacity of the electrolysis chamber is increased, it takes a longer time to stay in the electrolyzer, and the temperature rises, thus causing the above-described problem.
When the concentration of the electrolyte is too low, the current does not easily flow, but when the concentration is high, the current easily flows as the concentration increases. However, if the concentration is too high, it takes a long time, and in a flowing water system, a problem occurs due to a rise in temperature, so that the concentration cannot be too high.
Therefore, the capacity of the electrolytic chamber of the electrolytic cell should be as small as possible, and a small amount of the electrolytic solution adjusted to an appropriate concentration should be sufficiently electrolyzed with a large current, and the heated electrolytic solution should be quickly discharged from the electrolytic chamber.
However, since the fluid is introduced into the electrolytic cell and the outlet is attached, welding or screwing cannot be performed unless the plastic plate has a certain thickness, so the hollowed-out volume of the plate with a certain thickness is unavoidable. Was the volume of the electrolysis chamber.
Another method to make the current flow easier is to increase the electrode area and make it as close as possible.However, to increase the electrode area, the hollowed-out opening of the plastic plate also increases, and therefore the volume of the electrolytic chamber increases. There is a relationship, and improvement of this point has been desired.
A second object of the present invention is to eliminate this problem.
[0004]
[Means for Solving the Problems]
In order to achieve the first object, according to the present invention, the following phenomena were found when a member such as a tube was corroded and deteriorated and embrittled under what conditions.
5% to 6% using a titanium plate as a cathode plate coated with iridium oxide as an anode plate in an electrolytic cell having a structure shown in FIGS. Was subjected to direct current electrolysis.
The electrolyte was discharged while sending 240 ml per minute to the electrolytic cell. The effective chlorine concentration of the electrolytic water discharged at this time was 80 ppm.
Using a silicon tube as the discharge tube under these conditions, we observed how the deterioration of the tube occurred.During the experiment, there was no visible deterioration of the tube, but after several days, A phenomenon in which the inside of the tube turned white and became brittle was observed.
Therefore, the electrolysis was carried out continuously for 10 days without stopping the electrolysis, and the silicon tube in the case where electrolysis was carried out for 10 days by repeating the 1-day cycle for 8 days and stopping the remaining 16 hours for 10 days. Comparing the white embrittlement phenomena, no more is seen in the tube that has been subjected to electrolysis for 10 consecutive days, and the whitening increases every day when the operation and stop are repeated for 10 days. It was found that the silicon tube deteriorated.
Therefore, it was considered that the largest cause of the whitening deterioration of the silicon tube was during the suspension of electrolysis, and it was speculated that the cause might be moist chlorine gas generated by electrolysis.
It is believed that the cause of the deterioration of the silicon tube may be the gas accumulated inside the tube during resting, particularly because the whitening of the air accumulation part and the upper part of the tube is severe.
In that case, when stopping or suspending, it is thought that it is good to stop the power supply for electrolysis first, wash the electrolytic chamber and the inside of the tube with raw water and then stop, and wash for several minutes at the stop with the previous operation and stop cycle. The first invention was completed by including a circuit to perform the above.
Embodiment 1
5% to 6% using a titanium plate as a cathode plate coated with iridium oxide as an anode plate in an electrolytic cell having a structure shown in FIGS. Was subjected to direct current electrolysis.
The electrolyte was discharged while sending 240 ml per minute to the electrolytic cell. The effective chlorine concentration of the electrolytic water discharged at this time was 80 ppm.
After running for 8 hours, the inside is washed with raw water for 3 minutes and stopped. Then rest for 16 hours. The operation was performed for 10 to 90 days as one cycle.
During this test, the appearance and deterioration of the electrolytic water discharge tube (silicon tube) after the test were visually observed.
【result】
After 10 days of operation, no whitening phenomenon was observed.
Thereafter, a cycle test was conducted for 90 consecutive days, and it was found that almost no deterioration whitening was observed.
In addition, the hardness of the silicon tube was checked, but it had the same flexibility as a new tube.
[Comparative Example 1]
A cycle test for 10 to 90 days was performed under the same conditions as in Example 1 except that the cleaning of the solution was not carried out with the raw water for 3 minutes when the above Example 1 was stopped.
【result】
The whitening of the silicon tube increased every day, and the state after the end of 90 days was hard and inflexible at all, and broke and burst when forcibly bent.
Next, the second object of the present invention is how to efficiently perform electrolysis, and furthermore, dissipate heat generated without using a compact and unnecessary accessory part, and disinfect a large amount of sterilizing water sufficiently containing an effective chlorine concentration. In order to achieve the purpose, to electrolyze a certain concentration of electrolyte and to electrolyze a low concentration of electrolyte, even if the total amount of electrolyte is the same, It is clear from the difference in the current value flowing when the same voltage is applied to the aqueous solution that the efficiency is higher when the electrolytic solution with a significantly higher concentration is electrolyzed. It depends on whether you use a tank.
Even if it is a dense electrolyte, it means an electrolyte concentration at which electrolysis can be performed in order to generate water having a practically effective chlorine concentration of about 10 to 60 ppm.
As a result of examining the concentration, it was found that if the effective chlorine concentration formed was about the upper limit of about 600 ppm, a method of diluting with raw water and adjusting the concentration to 10 to 60 ppm could be taken.
Also, depending on the applied voltage, the generation of effective chlorine water of 300 to 600 ppm generates a large amount of heat, and if the chlorine water stays in the electrolytic cell for a long time, it will be in a boiling state and exceed 100 ° C.
As a countermeasure, it is effective to minimize the volume of the electrolysis chamber in the electrolyzer in order to minimize the residence time of the electrolyzed water in the electrolyzer. There was a limit in the electrolytic cell.
The generation of the available chlorine of about 300 to 600 ppm is achieved by electrolyzing about 4 g / liter of NaCl at a DC of 9 to 12 volts at about 18 amps, but producing 120 ml / min. However, an abnormal temperature rise can be prevented by passing through the electrolytic cell in about 15 seconds.
If it is simply calculated, it is only necessary to be smaller than the electrolytic chamber of 120 ml × 15 seconds / 60 seconds = 30 ml.
In other words, the point is how narrow the space between the electrode plates can be made to allow the electrolyte to pass therethrough.
In the present invention, a plastic plate having a volume of 84 mm x 110 mm x 10 mm welded to an end plate is inserted into an electrolytic chamber having a hollowed volume of 86 mm x 112 mm x 12 mm (116 ml), and the fluid is inserted into the electrolytic chamber. By shaving the entrance and exit as shown in FIG. 4, the volume of the electrolytic chamber of the conventional electrolytic cell was reduced to about 1/4, and this condition was created, thereby achieving the second object of the present invention.
Embodiment 2
An electrolytic cell having a structure shown in FIGS. 3 and 4 in which a titanium plate is coated with iridium oxide as an anode plate without using a diaphragm as an electrolyte solution of 2% saline, and a 9 V DC is applied using a titanium plate as a cathode plate. Electrolysis was performed.
The plane area of the electrode plate was 44 square centimeters, and the volume of the electrolytic chamber was 8.8 cc.
The electrolyte was discharged while sending 110 ml per minute to the electrolytic cell. On the other hand, a bypass liquid sending circuit for raw water that does not pass through the electrolytic tank was assembled, and 1,400 ml of liquid was sent to dilute the electrolytic water discharged after being electrolyzed. At this time, the available chlorine concentration of the mixed water discharged from the electrolyzed water and the dilution water was 60 ppm.
This configuration was operated for a while, and the state of generation of electrolyzed water was observed.
【result】
The effluent contained almost 60 ppm of available chlorine and was stable until the end of the test.
[Comparative Example 2]
5% to 6% of a titanium plate coated with iridium oxide as an anode plate using a 2% saline solution as an electrolyte without using a diaphragm as an electrolytic solution, and a 9 V DC using a titanium plate as a cathode plate. Electrolysis was performed.
The plane area of the electrode plate was 44 square centimeters, and the volume of the electrolytic chamber was 53 cc. The electrolyte was discharged while sending 110 ml per minute to the electrolytic cell. On the other hand, a bypass liquid sending circuit for raw water that does not pass through the electrolytic tank was assembled, and 1,400 ml of liquid was sent to dilute the electrolytic water discharged after being electrolyzed. At this time, the available chlorine concentration of the mixed water discharged from the electrolyzed water and the dilution water was 60 ppm.
This configuration was operated for a while, and the state of generation of electrolyzed water was observed.
【result】
The temperature of the generated electrolyzed water gradually increased and finally began to boil in the electrolyzer, so that electrolysis could not be continued.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific configuration example of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a countermeasure against corrosion deterioration of constituent materials due to chlorine gas, which is a first object of the present invention, and is a flow chart showing movements of main electric circuits and components. 2 is shown in FIG. 2 for comparison.
In FIG. 1, by turning on the operation switch of the apparatus, all the electric parts are energized, and raw water such as tap water and saline solution are supplied into the electrolytic cell, and direct current is supplied to the electrode plate in the electrolytic cell. Voltage is applied.
In addition, an operation indicator light is lit on the device, and it can be visually recognized that the vehicle is being driven.
When the operation switch is turned off, the timer operates, the power supply for electrolysis and the supply pump for the electrolyte are immediately stopped, and the indicator light and the solenoid valve for supplying raw water are stopped after the set time of the timer.
During the set time of the timer, the raw water cleans the inside of the electrolytic cell and discharges the gas and the electrolytic solution.
Since the supply of the electrolytic assistant and the electrolytic power, which are electrolytes, is stopped first, the discharged water from the electrolytic cell gradually becomes low in effective chlorine while being washed with raw water.
Adjust the timer setting time by checking the available chlorine concentration of the discharged water.
On the other hand, as shown in FIG. 2, conventionally, all the electric circuits were operated and stopped at the same time when the operation switch was turned on and off. Remained as it was, causing corrosion deterioration of the device material.
Next, FIGS. 3 and 4 show a specific structure example of a plastic plate material constituting an electrolytic cell, which is a second object of the present invention.
In the figure, the electrolytic cell is composed of materials 1 to 6, and 1 is a plastic plate to which the projections are bonded, for example, a vinyl chloride plate (PVC plate) having a plate thickness of 10 mm.
The PVC plate of No. 2 has a thickness of 12 mm and has a hollow body.
Numeral 7 denotes a fluid inlet / outlet for joining a plastic pipe by welding or cutting and screwing.
Reference numeral 6 denotes the same PVC plate having no protrusion.
Reference numerals 3 and 5 denote electrode plates, 3 is a titanium plate having a large number of small holes 9, and is slightly larger than the hollow portion of 2.
Reference numeral 5 denotes a plate obtained by coating iridium oxide on a titanium plate by sintering, and has the same size as 3.
For example, a rubber packing having a thickness of 1 mm is appropriately sandwiched between 1 and 6 (not shown), and between the third and fifth plates is a packing layer 4 in which several packings are stacked in particular. adjust.
8 is a hole for passing a bolt.
When the above structures 1 to 6 are skewered with bolts and nuts and stopped, an electrolytic cell is formed, and one projection is inserted into the second hollow portion, so that the internal capacity of the electrolyte can be extremely reduced.
The residence time of the electrolytic solution in the electrolytic chamber can be adjusted by the size of the one protrusion.
Due to such a structure, the same thickness as that of the conventional plate for attaching the inlet / outlet portion of the fluid can be employed, and the electrolytic water heated by the target electrolysis is quickly discharged from the electrolytic cell. It is extremely easy to adjust the volume.
Further, when the supply of the power supply circuit for performing the electrolysis is stopped and the supply of the raw water is continued, the passage of the raw water discharges the electrolyzed water and gas, and the raw water alone is replaced.
When the supply electromagnetic valve for raw water is closed after a certain time by a timer, the inside of the pipe stops in a state filled with raw water.
On the other hand, in FIGS. 5 and 6, since there is no six-plate protrusion corresponding to one plate, the hollow portion of the seven plates becomes the volume of the electrolytic chamber as it is, and when a high-concentration aqueous electrolyte solution is electrolyzed, heat is generated and the temperature rises.
Therefore, inefficient electrolysis can be performed with a low-concentration aqueous electrolyte solution.
Next, the flow of the fluid of the present invention is shown in FIG.
Since the movement on the electric circuit is shown in FIGS. 1 and 2, here, the configuration showing the flow of the fluid is shown by a flow diagram.
In FIG. 8, when the operation switch of the raw water is turned on, the solenoid valve is opened, and raw water such as tap water is sent to the flow meter A and the flow meter B.
The flow rate of the flow meter A is adjusted to the state where 100% electrolysis is performed by the addition amount of the electrolysis auxiliary (such as saline solution), so that the highest current value is obtained and the opening amount of the smallest amount that suppresses the temperature rise due to heat generation. Adjust the flow rate in degrees.
The flow meter B is for diluting the concentration of available chlorine water generated by the flow meter A, and usually adjusts the opening so that the available chlorine is about 30 to 60 ppm.
[Action]
[0006]
When sterilizing water is generated by continuously electrolyzing an electrolyte such as saline, the generated water is discharged together with chlorine gas.However, when the apparatus is stopped or stopped, these corrosive gases and water are contained in the piping. It remains and accumulates in the piping and the components, resulting in significant deterioration.
When the equipment is stopped or stopped, if only raw water such as tap water is supplied for a certain period of time in the pipe through which the generated water passes, the generated water passage will be cleaned and corrosive substances will be discharged. So that corrosiveness does not end.
Further, when a plastic plate having an arbitrary volume is filled in a cavity formed by holding a plastic plate having a hollow body in the center and holding the plastic plate from the left and right with a flat plate having no hollow portion, the volume in the cavity is reduced. Using the formed cavity as an electrolytic chamber, insert an electrode and stop with packing to create an electrolytic cell, and let the electrolyte flow out and in.If the plastic plate is filled in the cavity, if it is not filled The dwell time is shorter than that.
Therefore, the electrolytic solution generated by the electrolysis is quickly discharged from the electrolytic cell, and the temperature is suppressed in the electrolytic chamber.
[0007]
【The invention's effect】
When a salt solution containing chloride ions as an electrolyte is electrolyzed, corrosive chlorine gas or hydrochloric acid is generated.
This gas dissolves in water to produce hypochlorous acid (salt). When shutting down the equipment, if this gas or aqueous solution is exhausted and all the equipment is shut down, corrosion of pipes and components will occur. The durability does not remain, and the durability is dramatically improved.
In addition, when performing electrolysis, it is efficient to increase the concentration of the electrolyte as much as possible. However, if a hollow plate such as a PVC plate or a polyethylene plate (PE plate) is sandwiched with a plate that is not hollowed out, it is easy. When an electrolytic cell is formed and the hollow plate is filled with an appropriate volume of plate, the volume in the electrolytic cell can be freely changed, and the electrolytic solution can be prevented from staying in the electrolytic cell for a long time. In addition, the rise in temperature is suppressed, the corrosion of the constituent materials and the change in the electrolytic reaction rate are reduced, and stable electrolytic water can be generated.
In this way, a plastic plate with a certain thickness is used to attach the inlet and outlet of the fluid, and the hollowed-out volume that hits the electrolytic chamber is filled with filler to reduce the volume, thereby improving the efficiency of the electrolytic reaction and increasing the effective chlorine concentration generated. Dilute high water to a practical use concentration and drain.
The first object of the invention is to improve the durability of the electrolysis apparatus by itself, but it is possible to further improve the performance by combining with the second object.
Of course, the second purpose alone is sufficient to improve the efficiency. In the above description, an example of a non-diaphragm has been described. However, the present invention is naturally applied to the case of a diaphragm, and can contribute to improvement of the durability of the diaphragm.
[Brief description of the drawings]
FIG. 1 is a main electric control diagram of an electrolyzed water generator of the present invention. FIG. 2 is a main electric control diagram of a conventional electrolyzed water generator. FIG. FIG. 4 is an example of a perspective view of an electrolytic cell having a flat plate facing the electrode of the present invention. FIG. 5 is a cross-sectional view of a conventional electrolytic cell having a flat plate facing the electrode. FIG. FIG. 7 is an example of a conventional cylindrical drum-shaped electrolytic cell structure. FIG. 8 is a flow chart showing the flow of a fluid according to the present invention.
1 plastic plate provided with projections 2 plastic plate with hollow body and fluid inlet / outlet attached 3 electrode plate with holes 4 rubber packing 5 for electrode insulation ‥‥ Electrode plate 6 ‥‥‥ Plastic plate without protrusion 7 ‥‥‥ Inlet and outlet of fluid 8 ‥‥‥ Hole for bolt 9 ‥‥‥ Perforation of electrode plate 10 ‥‥ Terminal mounting hole 11 of electrode plate ‥‥ Drum -Shaped cathode plate 12 陽極 drum-shaped anode plate 13 ‥‥ insulating mold 14 ‥‥ fluid inlet 15 ‥‥ fluid outlet

Claims (2)

原水に電解質を添加または、隔膜を通してイオンを供給して電気分解を連続的に行う流水式強電解水生成装置において、装置を休止または停止する際に、直流電解電源の供給を停止した後、少なくとも陽極のある電解室への原水の供給を所定時間行った後に、装置が全停止するようにした流水式強電解水生成装置In a flowing water type strong electrolyzed water generator in which an electrolyte is added to raw water or an ion is continuously supplied by supplying ions through a diaphragm, when stopping or stopping the apparatus, at least after stopping the supply of DC electrolysis power, A running water strong electrolyzed water generator in which the apparatus is completely stopped after supplying raw water to the electrolytic chamber with the anode for a predetermined time 胴部を筒状にくり抜いたプラスチック板に流体の出入り口を設け、パッキンにより電極板を挟んで、左右からプラスチック板を当ててボルトナットで締め付けることによって空洞を形成し、左右のプラスチック板のうちの一方が、空洞の一部を埋める突起部を有している電解槽構造をした流水式の電解水生成装置を用いて、装置を休止または停止する際に、直流電解電源の供給を停止した後、少なくとも陽極のある電解室への原水の供給を所定時間行った後に、装置が全停止するようにした流水式強電解水生成装置The body is hollowed out into a plastic plate, and the fluid port is provided in the plastic plate.The electrode plate is sandwiched by packing, the plastic plate is applied from the left and right, and the cavity is formed by tightening the bolts and nuts. One uses a flow-through type electrolyzed water generator having an electrolytic cell structure having a projection part filling a part of the cavity, and when stopping or stopping the apparatus, after stopping the supply of DC electrolysis power A running water strong electrolyzed water generator in which the apparatus is completely stopped after at least a predetermined time of supply of raw water to an electrolytic chamber having an anode
JP2002383040A 2002-12-06 2002-12-06 Flowing water type highly electrolyzed water producing apparatus Pending JP2004188398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383040A JP2004188398A (en) 2002-12-06 2002-12-06 Flowing water type highly electrolyzed water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383040A JP2004188398A (en) 2002-12-06 2002-12-06 Flowing water type highly electrolyzed water producing apparatus

Publications (1)

Publication Number Publication Date
JP2004188398A true JP2004188398A (en) 2004-07-08

Family

ID=32766872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383040A Pending JP2004188398A (en) 2002-12-06 2002-12-06 Flowing water type highly electrolyzed water producing apparatus

Country Status (1)

Country Link
JP (1) JP2004188398A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539588A (en) * 2006-06-16 2009-11-19 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for electrochemical water treatment
JP2015507098A (en) * 2012-02-10 2015-03-05 ハイドロクス ホールディングス リミテッド Method and apparatus for generating gas
JP2020006373A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation system
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539588A (en) * 2006-06-16 2009-11-19 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for electrochemical water treatment
JP2015507098A (en) * 2012-02-10 2015-03-05 ハイドロクス ホールディングス リミテッド Method and apparatus for generating gas
US9683298B2 (en) 2012-02-10 2017-06-20 Hydrox Holdings Limited Method and apparatus for producing gas
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system
JP2020006373A (en) * 2019-10-17 2020-01-16 パナソニックIpマネジメント株式会社 Electrolytic water generation system

Similar Documents

Publication Publication Date Title
US8062485B2 (en) Water treatment device
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
JP4967050B2 (en) Electrolytic ion water generator
JP4904367B2 (en) Membrane electrolysis reactor system with four chambers
JP3520060B2 (en) Hypochlorous acid generation method and apparatus
JP2004188398A (en) Flowing water type highly electrolyzed water producing apparatus
KR20140130758A (en) Producing device of medical treatment sterilized water containing the residual chlorine
JP2005177671A (en) Electrolysis type ozonizer
JP2004223497A (en) Method for cleaning electrode of running water type apparatus for forming strongly acidic water
JP2011235208A (en) Electrolyzed water producing apparatus and method of producing electrolyzed water using the same
JPH08192161A (en) Silver ion water generator
JPH11319839A (en) Electrolytic cell of electrolytic neutral water forming machine
KR101063572B1 (en) Electrolysis device with negative electrode plate protection member
JP2004082104A (en) Electrolytic sterilizing apparatus and method
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP4924999B2 (en) Method for preventing scale adhesion of electrolytic cell, and electrolyzed water generating apparatus using the same
AU2011325851A1 (en) Water cleaning and sanitising apparatus
KR102062810B1 (en) Cooling-type barrel structure diaphragm electro-analysised water producing device
JP2005161196A (en) Electrolytic sterilized water producing apparatus
JP3364769B2 (en) Continuous electrolyzed water generator
JP3653129B2 (en) Electrolyzed water generator
JP2004082079A (en) Method and equipment for manufacturing electrolytic/sterilizing water containing gold as effective component
JPS6351990A (en) System for producing sterilizable electrolytic ionic water