JP2004186971A - Digital camera and smear removal method - Google Patents

Digital camera and smear removal method Download PDF

Info

Publication number
JP2004186971A
JP2004186971A JP2002351267A JP2002351267A JP2004186971A JP 2004186971 A JP2004186971 A JP 2004186971A JP 2002351267 A JP2002351267 A JP 2002351267A JP 2002351267 A JP2002351267 A JP 2002351267A JP 2004186971 A JP2004186971 A JP 2004186971A
Authority
JP
Japan
Prior art keywords
sensitivity
smear
low
image signal
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351267A
Other languages
Japanese (ja)
Inventor
Masaya Tamaru
雅也 田丸
Kazuhiko Takemura
和彦 竹村
Masahiko Sugimoto
雅彦 杉本
Manabu Hyodo
学 兵藤
Koji Ichikawa
幸治 市川
Koichi Sakamoto
浩一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002351267A priority Critical patent/JP2004186971A/en
Publication of JP2004186971A publication Critical patent/JP2004186971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove smear from an image picked up by a solid-state imaging device having high-sensitivity pixels and low-sensitivity pixels, up to a high-luminance area and to prevent sensitivity degradation of the image. <P>SOLUTION: A digital camera is provided with; a solid-state imaging device 10 having low-sensitivity pixels and high-sensitivity pixels formed; a smear calculation means 16 for calculating smear components from low-sensitivity image signals L obtained from the low-sensitivity pixels, high-sensitivity image signals H obtained from the high-sensitivity pixels, and the value of a sensitivity ratio of the low-sensitivity pixels and the high-sensitivity pixels; and a signal processing means for subtracting the smear components calculated by the smear calculation means from the high-sensitivity image signals to generate image data. Since the smear calculation means 16 can calculate only smear components by using the sensitivity ratio, only the smear components can be removed from high-sensitivity image signals without degrading sensitivity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は低感度画素と高感度画素の両方を有する固体撮像素子を搭載したデジタルカメラとスミア除去方法に関する。
【0002】
【従来の技術】
例えば特開平9―37156号公報に記載された従来のビデオカメラは、高感度画像を撮像する高感度画素と、低感度画像を撮像する低感度画素の2種類の画素を形成した固体撮像素子を搭載し、この固体撮像素子を用いて撮像して得た高感度画像信号から低感度画像信号を減算することで、スミアを除去している。
【0003】
【特許文献1】
特開平9―37156号公報
【0004】
【発明が解決しようとする課題】
上述した従来技術では、高感度画像信号と低感度画像信号の両方に等しく加算されているスミア成分を、高感度画像信号から低感度画像信号を減算処理することで除去しているが、この従来のスミア除去方法では、高感度画像信号の感度が減算処理により低下してしまうという問題があり、また、高輝度領域ではスミアが除去できない場合がある。
【0005】
本発明の目的は、高感度画像信号の感度低下を防ぎ、且つ高輝度領域でもスミアを良好に除去可能なデジタルカメラとスミア除去方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するデジタルカメラは、低感度画素と高感度画素とが形成された固体撮像素子と、前記低感度画素から得られる低感度画像信号と前記高感度画素から得られる高感度画像信号と前記低感度画素及び前記高感度画素の感度比の値とからスミア成分を算出するスミア算出手段と、該スミア算出手段の算出したスミア成分を前記高感度画像信号から減算処理して画像データを生成する信号処理手段とを備えることを特徴とする。
【0007】
この構成により、スミア成分だけを算出でき、高感度画像信号からスミア成分のみを除去可能となるため、高感度画像信号の感度低下が防止され、しかも、高輝度領域までスミアを良好に除去できる。
【0008】
本発明のデジタルカメラの前記信号処理手段は、前記スミア算出手段の算出したスミア成分を前記低感度画像信号からも減算処理し該減算処理後の低感度画像信号とスミア成分減算処理後の高感度画像信号とを合成して合成画像データを生成することを特徴とする。
【0009】
この構成により、スミアが無く、しかもダイナミックレンジの広い合成画像を得ることが可能となる。
【0010】
本発明のデジタルカメラの前記信号処理手段は、前記スミア算出手段が算出したスミア成分の前記減算処理を、該減算処理前の前記高感度画像信号が飽和値に達した画素に対しては停止することを特徴とする。
【0011】
この構成により、スミア除去の有効な画素からの信号に対してのみスミア除去が行われ、画質破綻の少ない画像を得ることが可能となる。
【0012】
本発明のデジタルカメラの前記信号処理手段は、スミア成分の前記減算処理を動画撮影時に実行することを特徴とする。
【0013】
この構成により、スミアの目立つ動画(連続撮影)の画像信号からスミアが除去され、画質の良好な動画の画像信号を得ることができ、また、カメラ背面等に設けられた液晶等の表示部に画質の優れたスルー画像を表示可能となる。
【0014】
上記目的を達成するスミア除去方法は、低感度画素と高感度画素とが形成された固体撮像素子によって撮像された画像信号からスミア成分を除去するスミア除去方法であって、前記低感度画素から得られる低感度画像信号と前記高感度画素から得られる高感度画像信号と前記低感度画素及び前記高感度画素の感度比の値とからスミア成分を算出し、算出した前記スミア成分を前記高感度画像信号から減算処理することを特徴とする。
【0015】
この構成により、スミア成分だけを算出でき、高感度画像信号からスミア成分のみを除去可能となるため、高感度画像信号の感度低下が防止され、しかも、高輝度領域までスミアを良好に除去できる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。
【0017】
図1は、本発明の一実施形態に係るデジタルカメラに搭載した固体撮像素子(CCD)の画素配置図である。広ダイナミックレンジの画像を撮像するCCD部分の画素1は、例えば特開平10―136391号公報に記載されている画素配置をとり、偶数行の各画素1に対して奇数行の各画素が水平方向に1/2ピッチずらして配置され、各画素1から読み出された信号電荷を垂直方向に転送する垂直転送路(図示せず)が、垂直方向の各画素を避けるように蛇行配置される構成をとっている。
【0018】
各画素1は、図示する例では、画素1の面積の約1/5を占める低感度画素2と、残りの約4/5を占める高感度画素3とに分割して設けられ、各低感度画素2の蓄積電荷(信号電荷)と、各高感度画素3の蓄積電荷(信号電荷)とを区別して上記垂直転送路に読み出し転送することができるようになっている。尚、画素1をどのような割合、どの様な位置で分割するかは設計的に決められるものであり、図1は単なる例示に過ぎない。
【0019】
図2は、本発明の一実施形態に係るデジタルカメラのブロック構成図である。このデジタルカメラは、静止画撮影モードと動画(連続撮影)撮影モードとを有し、図1で説明した固体撮像素子10と、この固体撮像素子10の出力信号を取り込み相関二重サンプリング処理するCDS回路11と、CDS回路11の出力信号をアナログ信号処理するアナログゲイン回路12と、アナログゲイン回路12の出力信号をデジタル信号に変換するA/D変換回路13とを備える。
【0020】
このデジタルカメラは更に、A/D変換回路13から出力される高感度画像信号(高感度画素3から読み出されデジタル信号に変換された信号)を記憶する第1バッファメモリ14と、A/D変換回路13から出力される低感度画像信号(低感度画素2から読み出されデジタル信号に変換された信号)を記憶する第2バッファメモリ15と、各バッファメモリ14,15内の信号を読み出して詳細は後述するようにスミア成分Sを算出するスミア算出回路16と、第1バッファメモリ14から読み出された高感度画像信号からスミア成分Sを減算する第1加算回路17と、第2バッファメモリ15から読み出された低感度画像信号からスミア成分Sを減算する第2加算回路18と、第1加算回路17から出力されるスミア除去後の高感度画像信号をゲイン補正する第1ゲイン補正回路19と、第2加算回路18から出力されるスミア除去後の低感度画像信号をゲイン補正する第2ゲイン補正回路20を備える。
【0021】
更にこのデジタルカメラは、第1ゲイン補正回路19から出力される高感度画像信号に対してガンマ補正を行う第1ガンマ補正回路21と、第2ゲイン補正回路20から出力される低感度画像信号に対してガンマ補正する第2ガンマ補正回路22と、第1,第2ガンマ補正回路21,22の両方の出力信号を取り込んで画像合成処理を行う合成処理回路23と、合成処理回路23から出力される合成画像信号を取り込み同時化処理を行うRGB補間処理回路24と、RGB信号を輝度信号Yと色差信号Cr,Cbでなる画像データに変換する変換回路25と、輝度信号Yに対して輪郭補正する輪郭補正回路26と、色差信号に対して色差マトリクスを乗算して色調補正する色差補正回路27と、輪郭補正後の輝度信号Yと色調補正後の色差信号とを取り込みJPEG画像等に圧縮する圧縮回路28とを備え、圧縮回路28から出力される最終画像(この例ではJPEG画像)を外部メモリ29に記録する様になっている。
【0022】
上述した第1,第2バッファメモリ14,15から輪郭補正回路26,色差補正回路27までは、例えば、DSP等のデジタル信号処理手段によって構成されるが、個々のディスクリートな信号処理回路によって実現してもよい。
【0023】
上述した固体撮像素子10から撮像画像信号を読み出す場合、先ず、低感度画素2の蓄積電荷(信号電荷)を垂直転送路に読み出し、この信号電荷を垂直転送路に沿って水平転送路まで転送させて固体撮像素子10から低感度画像信号として出力させる。そして次に、高感度画素3の蓄積電荷(信号電荷)を垂直転送路に読み出し、この信号電荷を垂直転送路に沿って水平転送路まで転送させて固体撮像素子10から高感度画像信号として出力させる。
【0024】
デジタルカメラで動画を撮像する場合には、固体撮像素子10のシャッタを開放状態に保ったまま低感度画素2の信号電荷の読み出し及び転送と高感度画素3の信号電荷の読み出し及び転送を繰り返すことになり、夫々の垂直転送路に沿った転送時に転送中の信号電荷にスミア成分が混入してしまうことになる。
【0025】
図3は、高感度画像信号と低感度画像信号の特性図であり、固体撮像素子から出力される低感度画像信号Lと高感度画像信号Hとにスミア成分Sが等しく加算されていると見ることができる。
【0026】
即ち、真の低感度画像信号をL0、真の高感度画像信号をH0とした場合、
L=L0+S
H=H0+S …式1
と表すことができる。
【0027】
一方、低感度画素2と高感度画素3の感度比kは、低感度画素2,高感度画素3の分割形状や各画素2,3のフォトダイオード構造等によって設計的に決まってしまう値であり、
k=H0/L0 …式2
と表すことができる。
【0028】
従って、これらの式1,式2からH0,L0を消去すると、
スミア成分S=(k・L−H)/(k−1) …式3
と表される。
【0029】
そこで、本実施形態に係るデジタルカメラの図2に示すスミア算出回路16は、第1バッファメモリ14から読み出した高感度画像信号H(=H0+S)と、第2バッファメモリ15から読み出した低感度画像信号L(=L0+S)と、デジタルカメラの図示しないメモリに予め記憶されている機種情報中の上記感度比kの値とからスミア成分Sを式3により求め、そして、算出したスミア成分Sの値を、第1加算回路17と第2加算回路18とに出力する。これにより、第1加算回路17からは真の高感度画像信号H0が出力され、第2加算回路18からは真の低感度画像信号L0が出力されることになる。
【0030】
画像合成処理回路23は、ゲイン補正,ガンマ補正された真の高感度画像信号H0及び低感度画像信号L0とを合成処理するため、図4に信号特性を示す様に、合成結果の合成画像Cはスミアの無いダイナミックレンジの広い綺麗な画像となる。また、本実施形態では、スミア成分Sを求めてスミア成分Sのみを高感度画像信号と低感度画像信号から減算するため、画像信号の感度を低下させることはなく、しかも、低輝度から高輝度まで全体に渡ってスミアを除去することが可能となる。
【0031】
本実施形態では、高感度画像信号と低感度画像信号とを合成して最終画像を得ているが、高感度画像信号Hからスミア成分Sを減算した真の高感度画像信号H0のみで完成画像を生成し、低感度画像信号はスミア成分Sの算出にのみ使用する構成でもよい。
【0032】
また、高感度画像信号Hが飽和状態(図3で水平になった状態)になると、高感度画像信号H中のスミア成分Sの量が不明となるため、高感度画像信号Hの値すなわちA/D変換回路13の出力ビット数が飽和を示す値になるまでは上記のスミア除去を実行し、飽和したときは上記のスミア除去を停止させる構成とすることでもよい。この様にしても、スミア除去の演算処理は画素単位に行われるため、1枚の画像中でスミアが乗っても目立たない白飛びしている画素部分だけがスミア除去対象外となるだけであり、画像全体の画質を低下させることにはならない。
【0033】
尚、上記実施形態は、動画撮影モードで連続して撮像した画像の1枚1枚の画像データからスミアを除去するのに有利であるが、メカニカルシャッタを使用せずに撮像した静止画像の画像データからスミアを除去するのにも効果がある。また、デジタルカメラの背面等に設けられた液晶等の表示部に表示されるスルー画像の画像データからスミアを除去するのにも効果がある。
【0034】
【発明の効果】
本発明によれば、低輝度から高輝度まで全体に渡ってスミアを除去することができ、しかも、感度低下を起こすことがないデジタルカメラとスミア除去方法を提供可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るデジタルカメラに搭載する固体撮像素子の画素配置図である。
【図2】図1に示す固体撮像素子を搭載した本発明の一実施形態に係るデジタルカメラのブロック構成図である。
【図3】高感度画像信号と低感度画像信号に乗るスミア成分を説明する信号特性図である。
【図4】本発明の一実施形態に係るデジタルカメラで合成処理した合成画像の信号特性図である。
【符号の説明】
1 画素
2 低感度画素
3 高感度画素
10 固体撮像素子
14 第1バッファメモリ
15 第2バッファメモリ
16 スミア算出回路
17 第1加算回路
18 第2加算回路
23 画像合成処理回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital camera equipped with a solid-state imaging device having both low-sensitivity pixels and high-sensitivity pixels and a smear removal method.
[0002]
[Prior art]
For example, a conventional video camera described in Japanese Patent Application Laid-Open No. 9-37156 has a solid-state image sensor formed with two types of pixels, a high-sensitivity pixel that captures a high-sensitivity image and a low-sensitivity pixel that captures a low-sensitivity image. The smear is removed by subtracting the low-sensitivity image signal from the high-sensitivity image signal that is mounted and imaged using this solid-state image sensor.
[0003]
[Patent Document 1]
JP-A-9-37156 [0004]
[Problems to be solved by the invention]
In the conventional technology described above, the smear component that is equally added to both the high-sensitivity image signal and the low-sensitivity image signal is removed by subtracting the low-sensitivity image signal from the high-sensitivity image signal. This smear removal method has a problem that the sensitivity of the high-sensitivity image signal is reduced by the subtraction process, and the smear may not be removed in a high-luminance region.
[0005]
An object of the present invention is to provide a digital camera and a smear removal method capable of preventing smear from being satisfactorily removed even in a high luminance region while preventing a reduction in sensitivity of a high sensitivity image signal.
[0006]
[Means for Solving the Problems]
A digital camera that achieves the above object includes a solid-state imaging device having a low-sensitivity pixel and a high-sensitivity pixel, a low-sensitivity image signal obtained from the low-sensitivity pixel, and a high-sensitivity image signal obtained from the high-sensitivity pixel. Smear calculation means for calculating a smear component from the sensitivity ratio value of the low sensitivity pixel and the high sensitivity pixel, and subtracting the smear component calculated by the smear calculation means from the high sensitivity image signal to generate image data And a signal processing means.
[0007]
With this configuration, only the smear component can be calculated, and only the smear component can be removed from the high-sensitivity image signal. Therefore, the sensitivity of the high-sensitivity image signal can be prevented from being lowered, and smear can be satisfactorily removed up to the high-luminance region.
[0008]
The signal processing means of the digital camera of the present invention subtracts the smear component calculated by the smear calculation means from the low-sensitivity image signal, and the high-sensitivity after the subtraction processing of the low-sensitivity image signal and the smear component A composite image data is generated by combining the image signal.
[0009]
With this configuration, it is possible to obtain a composite image having no smear and a wide dynamic range.
[0010]
The signal processing means of the digital camera according to the present invention stops the subtraction process of the smear component calculated by the smear calculation means for pixels for which the high-sensitivity image signal before the subtraction process has reached a saturation value. It is characterized by that.
[0011]
With this configuration, smear removal is performed only on signals from pixels where smear removal is effective, and an image with little image quality failure can be obtained.
[0012]
The signal processing means of the digital camera according to the present invention is characterized in that the smear component subtraction process is executed during moving image shooting.
[0013]
With this configuration, the smear is removed from the image signal of the moving image (continuous shooting) in which smear is conspicuous, and the image signal of the moving image with good image quality can be obtained, and the display unit such as a liquid crystal provided on the rear surface of the camera or the like. A through image with excellent image quality can be displayed.
[0014]
A smear removing method that achieves the above object is a smear removing method that removes smear components from an image signal captured by a solid-state imaging device in which low-sensitivity pixels and high-sensitivity pixels are formed, and is obtained from the low-sensitivity pixels. The smear component is calculated from the low-sensitivity image signal obtained, the high-sensitivity image signal obtained from the high-sensitivity pixel, and the sensitivity ratio value of the low-sensitivity pixel and the high-sensitivity pixel, and the calculated smear component is calculated as the high-sensitivity image. Subtraction processing is performed from the signal.
[0015]
With this configuration, only the smear component can be calculated, and only the smear component can be removed from the high-sensitivity image signal. Therefore, the sensitivity of the high-sensitivity image signal can be prevented from being lowered, and smear can be satisfactorily removed up to the high-luminance region.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a pixel arrangement diagram of a solid-state imaging device (CCD) mounted on a digital camera according to an embodiment of the present invention. The pixel 1 of the CCD portion that captures an image with a wide dynamic range has a pixel arrangement described in, for example, Japanese Patent Laid-Open No. 10-136391, and each pixel in the odd row is horizontally aligned with each pixel 1 in the even row. The vertical transfer path (not shown) for transferring the signal charge read from each pixel 1 in the vertical direction is meandered so as to avoid the pixels in the vertical direction. Have taken.
[0018]
In the illustrated example, each pixel 1 is divided into a low sensitivity pixel 2 occupying about 1/5 of the area of the pixel 1 and a high sensitivity pixel 3 occupying the remaining about 4/5. The accumulated charge (signal charge) of the pixel 2 and the accumulated charge (signal charge) of each high-sensitivity pixel 3 can be distinguished and transferred to the vertical transfer path. Note that the ratio and the position at which the pixel 1 is divided are determined by design, and FIG. 1 is merely an example.
[0019]
FIG. 2 is a block diagram of a digital camera according to an embodiment of the present invention. This digital camera has a still image shooting mode and a moving image (continuous shooting) shooting mode. The solid-state imaging device 10 described with reference to FIG. 1 and a CDS that receives an output signal of the solid-state imaging device 10 and performs correlated double sampling processing. The circuit 11 includes an analog gain circuit 12 that performs analog signal processing on the output signal of the CDS circuit 11, and an A / D conversion circuit 13 that converts the output signal of the analog gain circuit 12 into a digital signal.
[0020]
The digital camera further includes a first buffer memory 14 for storing a high-sensitivity image signal (a signal read from the high-sensitivity pixel 3 and converted into a digital signal) output from the A / D conversion circuit 13, and an A / D A second buffer memory 15 for storing a low-sensitivity image signal (a signal read from the low-sensitivity pixel 2 and converted into a digital signal) output from the conversion circuit 13 and signals in the buffer memories 14 and 15 are read out. As will be described in detail later, a smear calculation circuit 16 that calculates a smear component S, a first addition circuit 17 that subtracts the smear component S from the high-sensitivity image signal read from the first buffer memory 14, and a second buffer memory A second addition circuit 18 that subtracts the smear component S from the low-sensitivity image signal read from 15, and a high-sensitivity image after smear output that is output from the first addition circuit 17. It includes a first gain correction circuit 19 for gain correction, a second gain correction circuit 20 to the gain correcting low-sensitivity image signal after the smear removal that is output from the second summing circuit 18 to issue.
[0021]
Further, the digital camera uses a first gamma correction circuit 21 that performs gamma correction on the high-sensitivity image signal output from the first gain correction circuit 19 and a low-sensitivity image signal output from the second gain correction circuit 20. On the other hand, the second gamma correction circuit 22 that performs gamma correction, the synthesis processing circuit 23 that takes in the output signals of both the first and second gamma correction circuits 21 and 22 and performs image synthesis processing, and the synthesis processing circuit 23 output the signals. An RGB interpolation processing circuit 24 that captures and synchronizes the synthesized image signal, a conversion circuit 25 that converts the RGB signal into image data composed of the luminance signal Y and the color difference signals Cr and Cb, and contour correction for the luminance signal Y A contour correction circuit 26 that performs color tone correction by multiplying the color difference signal by a color difference matrix, a luminance signal Y after contour correction, and a color difference signal after color correction. And a compression circuit 28 for compressing the JPEG image or the like takes in bets, final image outputted from the compression circuit 28 (in this example JPEG image) has become as to record in the external memory 29.
[0022]
The above-described first and second buffer memories 14 and 15 to the contour correction circuit 26 and the color difference correction circuit 27 are configured by digital signal processing means such as a DSP, for example, but are realized by individual discrete signal processing circuits. May be.
[0023]
When reading a picked-up image signal from the solid-state image sensor 10 described above, first, the accumulated charge (signal charge) of the low-sensitivity pixel 2 is read to the vertical transfer path, and this signal charge is transferred to the horizontal transfer path along the vertical transfer path. And output as a low-sensitivity image signal from the solid-state imaging device 10. Next, the accumulated charge (signal charge) of the high-sensitivity pixel 3 is read out to the vertical transfer path, and this signal charge is transferred along the vertical transfer path to the horizontal transfer path and output from the solid-state imaging device 10 as a high-sensitivity image signal. Let
[0024]
When capturing a moving image with a digital camera, reading and transferring the signal charge of the low-sensitivity pixel 2 and reading and transfer of the signal charge of the high-sensitivity pixel 3 are repeated with the shutter of the solid-state imaging device 10 kept open. As a result, smear components are mixed into the signal charges being transferred during transfer along the respective vertical transfer paths.
[0025]
FIG. 3 is a characteristic diagram of the high-sensitivity image signal and the low-sensitivity image signal, and it is assumed that the smear component S is equally added to the low-sensitivity image signal L and the high-sensitivity image signal H output from the solid-state imaging device. be able to.
[0026]
That is, when the true low-sensitivity image signal is L0 and the true high-sensitivity image signal is H0,
L = L0 + S
H = H0 + S Equation 1
It can be expressed as.
[0027]
On the other hand, the sensitivity ratio k between the low-sensitivity pixel 2 and the high-sensitivity pixel 3 is a value determined by design depending on the division shape of the low-sensitivity pixel 2 and the high-sensitivity pixel 3, the photodiode structure of each pixel 2 and 3, and the like. ,
k = H0 / L0 Equation 2
It can be expressed as.
[0028]
Therefore, when erasing H0 and L0 from these equations 1 and 2,
Smear component S = (k · L−H) / (k−1) Equation 3
It is expressed.
[0029]
Therefore, the smear calculation circuit 16 shown in FIG. 2 of the digital camera according to the present embodiment uses the high-sensitivity image signal H (= H0 + S) read from the first buffer memory 14 and the low-sensitivity image read from the second buffer memory 15. The smear component S is obtained from the signal L (= L0 + S) and the value of the sensitivity ratio k in the model information stored in advance in a memory (not shown) of the digital camera by the equation 3, and the calculated value of the smear component S is calculated. Is output to the first addition circuit 17 and the second addition circuit 18. As a result, the true high-sensitivity image signal H0 is output from the first addition circuit 17, and the true low-sensitivity image signal L0 is output from the second addition circuit 18.
[0030]
The image composition processing circuit 23 performs composition processing on the gain-corrected and gamma-corrected true high-sensitivity image signal H0 and low-sensitivity image signal L0, and therefore, as shown in FIG. Becomes a beautiful image with a wide dynamic range without smear. Further, in the present embodiment, since the smear component S is obtained and only the smear component S is subtracted from the high-sensitivity image signal and the low-sensitivity image signal, the sensitivity of the image signal is not reduced, and the low-luminance to the high-luminance It is possible to remove smear throughout.
[0031]
In this embodiment, the final image is obtained by synthesizing the high-sensitivity image signal and the low-sensitivity image signal. However, the completed image is obtained only by the true high-sensitivity image signal H0 obtained by subtracting the smear component S from the high-sensitivity image signal H. The low-sensitivity image signal may be used only for calculating the smear component S.
[0032]
Further, when the high-sensitivity image signal H is in a saturated state (horizontal state in FIG. 3), the amount of the smear component S in the high-sensitivity image signal H becomes unknown, so the value of the high-sensitivity image signal H, that is, A The smear removal may be executed until the number of output bits of the / D conversion circuit 13 reaches a value indicating saturation, and the smear removal may be stopped when saturated. Even in this case, the smear removal calculation process is performed on a pixel-by-pixel basis, so that only the non-conspicuous white-out pixel portion is excluded from smear removal in one image. It does not reduce the image quality of the entire image.
[0033]
In addition, although the said embodiment is advantageous in removing a smear from the image data of every image continuously imaged in the moving image shooting mode, it is an image of a still image captured without using a mechanical shutter. It is also effective in removing smear from the data. Further, it is effective in removing smear from the image data of the through image displayed on the display unit such as a liquid crystal provided on the back surface of the digital camera.
[0034]
【The invention's effect】
According to the present invention, it is possible to provide a digital camera and a smear removing method that can remove smears from low luminance to high luminance over the whole and that does not cause a decrease in sensitivity.
[Brief description of the drawings]
FIG. 1 is a pixel arrangement diagram of a solid-state image sensor mounted on a digital camera according to an embodiment of the present invention.
FIG. 2 is a block configuration diagram of a digital camera according to an embodiment of the present invention on which the solid-state imaging device shown in FIG. 1 is mounted.
FIG. 3 is a signal characteristic diagram illustrating smear components that ride on a high-sensitivity image signal and a low-sensitivity image signal.
FIG. 4 is a signal characteristic diagram of a synthesized image synthesized by the digital camera according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pixel 2 Low sensitivity pixel 3 High sensitivity pixel 10 Solid-state image sensor 14 1st buffer memory 15 2nd buffer memory 16 Smear calculation circuit 17 1st addition circuit 18 2nd addition circuit 23 Image composition processing circuit

Claims (5)

低感度画素と高感度画素とが形成された固体撮像素子と、前記低感度画素から得られる低感度画像信号と前記高感度画素から得られる高感度画像信号と前記低感度画素及び前記高感度画素の感度比の値とからスミア成分を算出するスミア算出手段と、該スミア算出手段の算出したスミア成分を前記高感度画像信号から減算処理して画像データを生成する信号処理手段とを備えることを特徴とするデジタルカメラ。A solid-state imaging device in which a low sensitivity pixel and a high sensitivity pixel are formed, a low sensitivity image signal obtained from the low sensitivity pixel, a high sensitivity image signal obtained from the high sensitivity pixel, the low sensitivity pixel, and the high sensitivity pixel Smear calculation means for calculating a smear component from the value of the sensitivity ratio, and signal processing means for subtracting the smear component calculated by the smear calculation means from the high-sensitivity image signal to generate image data. A featured digital camera. 前記信号処理手段は、前記スミア算出手段の算出したスミア成分を前記低感度画像信号からも減算処理し該減算処理後の低感度画像信号とスミア成分減算処理後の高感度画像信号とを合成して合成画像データを生成することを特徴とする請求項1に記載のデジタルカメラ。The signal processing means subtracts the smear component calculated by the smear calculation means from the low-sensitivity image signal, and combines the low-sensitivity image signal after the subtraction process and the high-sensitivity image signal after the smear component subtraction process. The digital camera according to claim 1, wherein composite image data is generated. 前記信号処理手段は、前記スミア算出手段が算出したスミア成分の前記減算処理を、該減算処理前の前記高感度画像信号が飽和値に達した画素に対しては停止することを特徴とする請求項1または請求項2に記載のデジタルカメラ。The signal processing means stops the subtraction process of the smear component calculated by the smear calculation means for pixels for which the high-sensitivity image signal before the subtraction process has reached a saturation value. Item 3. The digital camera according to Item 1 or Item 2. 前記信号処理手段はスミア成分の前記減算処理を動画撮影時に実行することを特徴とする請求項1乃至請求項3のいずれかに記載のデジタルカメラ。The digital camera according to any one of claims 1 to 3, wherein the signal processing means executes the subtraction processing of the smear component at the time of moving image shooting. 低感度画素と高感度画素とが形成された固体撮像素子によって撮像された画像信号からスミア成分を除去するスミア除去方法であって、前記低感度画素から得られる低感度画像信号と前記高感度画素から得られる高感度画像信号と前記低感度画素及び前記高感度画素の感度比の値とからスミア成分を算出し、算出した前記スミア成分を前記高感度画像信号から減算処理することを特徴とするスミア除去方法。A smear removing method for removing a smear component from an image signal captured by a solid-state imaging device in which a low sensitivity pixel and a high sensitivity pixel are formed, the low sensitivity image signal obtained from the low sensitivity pixel and the high sensitivity pixel A smear component is calculated from the high-sensitivity image signal obtained from the sensitivity value of the low-sensitivity pixel and the high-sensitivity pixel, and the calculated smear component is subtracted from the high-sensitivity image signal. How to remove smear.
JP2002351267A 2002-12-03 2002-12-03 Digital camera and smear removal method Pending JP2004186971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351267A JP2004186971A (en) 2002-12-03 2002-12-03 Digital camera and smear removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351267A JP2004186971A (en) 2002-12-03 2002-12-03 Digital camera and smear removal method

Publications (1)

Publication Number Publication Date
JP2004186971A true JP2004186971A (en) 2004-07-02

Family

ID=32753232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351267A Pending JP2004186971A (en) 2002-12-03 2002-12-03 Digital camera and smear removal method

Country Status (1)

Country Link
JP (1) JP2004186971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125336A (en) * 2020-06-19 2022-03-01 深圳市汇顶科技股份有限公司 Smear reduction by digital cancellation in image sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125336A (en) * 2020-06-19 2022-03-01 深圳市汇顶科技股份有限公司 Smear reduction by digital cancellation in image sensors
CN114125336B (en) * 2020-06-19 2024-02-06 深圳市汇顶科技股份有限公司 Reduction of smear by digital cancellation in image sensors

Similar Documents

Publication Publication Date Title
KR101229600B1 (en) Image capturing apparatus and camera shake correction method, and computer-readable medium
US7050098B2 (en) Signal processing apparatus and method, and image sensing apparatus having a plurality of image sensing regions per image frame
JP3074967B2 (en) High dynamic range imaging / synthesis method and high dynamic range imaging apparatus
JPH06253251A (en) Digital electronic camera device
JP2004282552A (en) Solid state imaging device and solid state imaging apparatus
US8218021B2 (en) Image capture apparatus, method of controlling the same, and program
JP2000244823A (en) Device for concealing defective pixel of imaging device
JP3697172B2 (en) Signal processing apparatus, signal processing method, and imaging apparatus
JP4367910B2 (en) Solid-state imaging device
JP3980781B2 (en) Imaging apparatus and imaging method
JP4817529B2 (en) Imaging apparatus and image processing method
JP4272443B2 (en) Image processing apparatus and image processing method
JP3674420B2 (en) Solid-state imaging device
JP3988760B2 (en) Solid-state imaging device
JPH08307775A (en) Image pickup device
JP4279562B2 (en) Control method for solid-state imaging device
JP4732795B2 (en) Solid-state imaging device and image correction method
JP2004186971A (en) Digital camera and smear removal method
JP2004363193A (en) Cmos solid-state imaging device
JP2003333422A (en) Shading correction method and digital camera
JP3536502B2 (en) Digital still camera
JP3961975B2 (en) Signal processing apparatus and digital camera
JP4229234B2 (en) Digital camera
JP2006109046A (en) Imaging device
JP4630562B2 (en) Solid-state imaging device