JP2004186519A - Magnetic field generation device - Google Patents

Magnetic field generation device Download PDF

Info

Publication number
JP2004186519A
JP2004186519A JP2002353178A JP2002353178A JP2004186519A JP 2004186519 A JP2004186519 A JP 2004186519A JP 2002353178 A JP2002353178 A JP 2002353178A JP 2002353178 A JP2002353178 A JP 2002353178A JP 2004186519 A JP2004186519 A JP 2004186519A
Authority
JP
Japan
Prior art keywords
magnetic field
subject
workpiece
magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353178A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Yuko Okada
祐子 岡田
Noriyo Nishijima
規世 西嶋
Rei Okawa
令 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002353178A priority Critical patent/JP2004186519A/en
Publication of JP2004186519A publication Critical patent/JP2004186519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field generation device capable of excellently and inexpensively suppressing a magnetic field applied to a workpiece. <P>SOLUTION: The magnetic field producing device having a magnetic field producing means for a magnetized high-temperature superconductive bulk magnet and a workpiece supporting means for supporting the workpiece includes: a magnetic flux measuring means for measuring a magnetic field (flux density) of a workpiece placement space; a magnetic field analyzing means for analyzing a magnetic flux measuring position and the result of magnetic flux; and a workpiece supporting and carrying means and a position controlling means for controlling the workpiece supporting means in position so as to carry the workpiece to a desired magnetic space based on the analized result of the magnetic field analyzing means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁場発生装置に関するものである。
【0002】
【従来の技術】
数テスラ以上の高磁場内での被検体の特性を測定したり、高磁場内で容器内に内蔵した被検体の気体や液体の磁場中特性を測定したり、セル内に内蔵した被検体の気体や液体の化学的や物理的や電気的の合成や混合を高磁場内行ったり、高磁場内で被検体の磁気分離や磁気と電場、電界を組み合わせた分離、合成や分解等を行う装置を運転する時には、所定の磁界空間に固体の被検体や気体や液体状やコロイド状の被検体を設置保持できる必要がある。
所定の磁界空間とは、静的な磁界と動的な磁界が含まれる。また、磁界方向も任意な方向が必要となる。
【0003】
従来の高磁場供給装置の磁場供給手段としては、100K以下の温度に超電導臨界温度を有するブロック状の高温超電導バルク体を、100K以下の温度に冷凍機や液体ヘリウムや液体窒素等の冷媒を用いて冷却し、冷却しながら外部磁界で着磁して高温超電導バルク体に磁場を捕捉し、100K以下の低温に保冷した状態で磁石として使用する超電導バルク磁石がある。
【0004】
また、他の磁場供給手段としては、コイル状の超電導磁石を用い、これを100K以下の温度に冷凍機や液体ヘリウムや液体窒素等の冷媒を用いて極低温に保冷し、大電流を外部から供給して磁場を供給する超電導コイル磁石がある。
【0005】
一般に、磁場供給手段としてコイル状の超電導磁石を用いる場合、磁場供給磁場空間は超電導コイル内部中央部の均一磁界空間である。
これは、MRIやNMRの装置等ではより均一な磁界空間が必要とされるためである。コイル状の超電導磁石を使用した従来の磁場発生装置の構造は、特開平3−32005号公報に示されている。
この装置では、室温部の外部電源よりコイルに供給する電流の大きさを変えて磁界の大きさを制御する。この場合、外部電源と超電導磁石を物理的に電導線で接続する必要があり、極低温域にある超電導磁石に室温部から熱が浸入し、超電導磁石を冷却する液化ガスの消費量が増大したり、超電導磁石を直接もしくは間接的に冷却する冷凍機の熱負荷が増大し、冷凍機の消費電力が増大する問題が生じる。
【0006】
また、電流を供給する時に外部電源が停電等で電流送電不良に陥った場合、超電導磁石がクエンチし、超電導状態が破壊されて超電導磁石温度が上昇し、再冷却に多く時間が必要になったり、磁石自身が破壊する場合も生じ問題が発生する。
【0007】
いっぽう、磁場発生手段に高温超電導バルク体を使用する場合では、着磁された高温超電導バルク体の捕捉磁界は、一般に図4に示すように、例えば円形の高温超電導バルク体の板厚方向に一様な磁界中で着磁された場合の捕捉磁界は、円形の高温超電導バルク体表面上に円錐状の等磁界分布B(T)(T:テスラ)を示すことが、第62回2000年度春季 低温工学・超電導学会講演概要集(2000年5月29日、30日、31日開催、低温工学会出版)ページ199、「市販用高温超電導バルクの磁化特性」に示されている。
【0008】
すなわち、高温超電導バルク体の表面上から離れるにしたがって磁界が大きく減少しする特性であり、ほぼ均一な磁界の空間は微少な空間に限られている。
【0009】
上記の超電導バルク体を使用した従来の磁場発生装置の構造は、特開平10−12429に示されている。この装置では、超電導バルク体とこれを保持する例えば銅製のホルダと、これを冷却する冷凍機、超電導バルク体、銅製のホルダおよび冷凍機の低温部を真空断熱する真空容器で構成されている。
この磁場発生装置では、単に磁気力を利用して磁性体である被検体を磁気的に保持したり、磁気吸引したりする効果を有するが、所定の磁界領域に被検体を保持する手段はなく任意の磁界空間に被検体を設置できない問題がある。
【0010】
【特許文献1】
特開平3−32005号公報
【非特許文献2】
第62回2000年度春季 低温工学・超電導学会講演概要集(2000年5月29日、30日、31日開催、低温工学会出版)ページ199「市販用高温超電導バルクの磁化特性」
【0011】
【発明が解決しようとする課題】
しかしながら、上述した従来の被検体に与える磁界の磁界供給方法では、コイル式超電導磁石を使用する場合、磁界制御時に外部電源と超電導磁石を物理的に電導線で接続する必要があり、極低温域にある超電導磁石に室温部から熱が浸入し、超電導磁石を冷却する液化ガスの消費量が増大したり、超電導磁石を直接もしくは間接的に冷却する冷凍機の熱負荷が増大し、冷凍機の消費電力が増大する問題がある。また、電流を供給する時に外部電源が停電等で電流送電不良に陥った場合、超電導磁石がクエンチし、超電導状態が破壊されて超電導磁石温度が上昇し、再冷却に多く時間が必要になったり、磁石自身が破壊する場合も生じる問題がある。
【0012】
いっぽう、高温超電導バルク体を使用する場合公示の構造では、所定の磁界領域に被検体を保持する手段はなく任意の磁界空間に被検体を設置できない問題がある。また、任意の動的な磁界を被検体に与える手段が無く、動的な磁界や、任意な方向の磁界を供給できない問題がある。
【0013】
本発明は、前記のような従来技術の問題を解決するためになされたもので、被検体に与える磁界を、低コストでかつ良好に抑制することができる磁場発生装置を提供することにある。
【0014】
本発明の目的は、所定の磁界領域に被検体を保持することが可能な磁場発生装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的は、永久磁石やコイル式超電導磁石もしくは高温超電導バルク体磁石の磁場発生手段と、被検体を支持する被検体支持手段を有する磁場発生装置において、本装置は、被検体設置空間の磁界(磁束密度)を計測する磁束計測手段と、磁束計測位置と磁束結果を解析する磁界解析手段と、前記被検体支持手段を前記磁界解析手段の解析結果をもとに被検体を任意の磁場空間に搬送、位置制御を行う被検体支持手段搬送、位置制御手段から構成した磁場発生装置である。本装置では、被検体支持手段に設置した磁束素子により、被検体に磁場を供給する前に被検体配置移動空間の3次元的位置の磁界を、計測し、被検体支持手段に固定支持した被検体を、その任意の磁界の位置、磁界方向に、被検体支持手段搬送、位置制御手段により搬送することに達成される。
【0016】
【発明の実施の形態】
以下、本発明の一実施例を図1により説明する。
図1は磁場発生装置の構造を説明する断面図である。
本引例では、磁場発生手段としてイットリウム系やサマリュウム系のBCuO材料からなる円盤状の高温超電導バルク体1を用い、これを補強および熱伝導体からなる銅や、銅、アルミニュウムとステンレスとの複合体からなる保持体2で囲み、これをパルス管式やギフォード・マクマホン式やスターリング式冷凍機や熱音響式冷凍機やペルチェ素子を用いた電子冷凍機等の冷凍機3の冷却ステージ4と熱的に一体化し、保持体2を通じて高温超電導バルク体1を超電導臨界温度以下に冷却し温度を維持する。
【0017】
低温部は真空断熱槽5内に設置され真空断熱され、低温部の周りは輻射熱の浸入を防止するために、図示していないがアルミニュウムを蒸着したプラスチックフィルム等で囲っている。外部から着磁用電磁石コイル(図示せず)を使用して高温超電導バルク体1内に磁束を浸入させ、高温超電導バルク体1を冷凍機で超電導臨界温度以下に冷却しながら着磁する。
冷却後、外務磁界を取り去ると高温超電導バルク体1に捕捉された磁束は保持されており、冷却して低温に保持している限り、あたかも永久磁石のごとく磁場を発生し続ける。着磁後これらは台座6に固定支持される。
【0018】
被検体7は平板状の試料台8状の上面に固定保持され、試料台8の下面には磁束測定素子9が固定保持されている。試料台8は回転シャフト10と一体化され、回転シャフトがモータ11で回転することにより、被検体7は高温超電導バルク体1がバルク面12上に発生する磁界内において回転可能であり、バルク面12に対し被検体7には相対的に供給磁界方向が変えられる。
モータ11は支持台13に固定され、支持台13はZ方向に移動可能なシャフト14に固定され、シャフト14はスライダー15、17で支持され、駆動装置16でZ方向に移動可能である。
スライダー15、17駆動装置16は支持板18に支持固定され、支持板18は台座6に固定されたXYステージ19に固定されている。XYステージ19は、図2の紙面垂直X方向と紙面のY方向で移動可能である。
【0019】
次に磁場制御運転方法について説明する。
まず、着磁された高温超電導バルク体1が発生する磁場をバルク面12近傍の真空容器5の端面21面上の空間について試料台8の下面には磁束測定素子9を用いて計測する。すなわち、手動入力により設定された空間情報に基づいて、磁場供給制御機20が各駆動装置への出力信号を計算し、この電気信号を制御線22、23、24でXYステージ19、駆動装置16、モータ11を駆動して計測し、その計測結果は信号線25を通じて磁場供給制御機20に収集されデータを保存し、磁場空間分布を解析する。
【0020】
被検体7に与えたい被検体7体積の平均磁場強さおよび磁界方向を磁場供給制御機20に手動入力すると、先に解析した磁場空間分布より必要な3次元的な移送位置、方向を算出し、XYステージ19、駆動装置16、モータ11を駆動して被検体を移送し、設定された時間の被検体に磁場を経験させる。この場合、試料台8を反転させて被検体7を真空容器5の端面21面により近づけることにより、大きな磁場を供給できる。
【0021】
また、時間的な磁場変動を被検体7に供給したい場合には、その変動モードを磁場供給制御機20に手動入力し、先に解析した磁場空間分布より必要な時間的定常および非定常な移送位置、方向を算出し、XYステージ19、駆動装置16、モータ11を駆動して被検体を移送し、設定された時間パターンと磁場および磁界方向を被検体に磁場を経験させることができる。
【0022】
以上記載したように、本実施例では本装置では、被検体支持手段に設置した磁束素子により、被検体に磁場を供給する前に被検体配置移動空間の3次元的位置の磁界を計測し、その後、被検体支持手段に固定支持した被検体を、その任意の磁界の位置、磁界方向に、被検体支持手段搬送、位置制御手段により搬送することに特徴があり、安価なコストで、外部磁界で着磁された高温超電導バルク体磁石の固定的な磁気勾配を有する磁場分布を利用し、被検体に任意の磁場および磁界方向を定常、非定常的に供給することができる効果がある。
【0023】
以上の実施例において、磁場発生手段に高温超電導バルクを使用した磁石を提供した場合について説明したが、図2は磁場発生手段に永久磁石24を提供した場合である。
永久磁石24は、非磁性材料の例えばプラスチック製の磁石支持台25に支持され、台座6に固定支持される。
本実施例では、発生磁場の大きさは超電導磁石ほど大きくは取れないが、磁場発生手段に冷凍機等の電気機器が不必要であり、安価な装置を提供でき、かつ取り扱いが容易である効果がある。
【0024】
図3は、磁場発生手段にコイル型の超電導磁石26を提供した場合である。 超電導磁石26は、例えば高温超電導導体をコイル状に構成し、外部電源27より電源リード線28、29を通じて超電導磁石26コイルに通電し、コイル端部に磁界を発生させる。超電導磁石は冷凍機3で超電導状態に冷却維持される。
本実施例では、磁場を発生維持させるためには、外部電源が必要であるが、通電電流を多く流すことにより超電導バルク磁石より発生磁場の大きさを大きく取れる効果がある。
【0025】
【発明の効果】
本発明によれば、所定の磁界領域に被検体を保持することが可能な磁場発生装置を提供できる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施例を示す磁場発生装置の断面図である。
【図2】図2は、本発明になる他の実施例を示す磁場発生装置の断面図である。
【図3】本発明の他の実施例を備えた磁場発生装置の断面図である。
【図4】図4は、円形の高温超電導バルク体の板厚方向に一様な磁界中で着磁された場合の捕捉磁界分布を示す図である。
【符号の説明】
1・・・高温超電導バルク体、 3・・・冷凍機、 5・・・真空容器、7・・・被検体、8・・・試料台、13・・・支持台、18・・・支持板、 19・・・XYステージ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic field generator.
[0002]
[Prior art]
Measure the characteristics of the subject in a high magnetic field of several Tesla or more, measure the characteristics of the gas or liquid of the test object built in the container in the high magnetic field, or measure the characteristics of the test sample built in the cell. A device that performs chemical, physical, and electrical synthesis and mixing of gases and liquids in a high magnetic field, and performs magnetic separation of a subject in a high magnetic field, and separation, synthesis, and decomposition of a combination of magnetism and electric and electric fields. When the device is operated, it is necessary to be able to install and hold a solid analyte, a gaseous, liquid, or colloidal analyte in a predetermined magnetic field space.
The predetermined magnetic field space includes a static magnetic field and a dynamic magnetic field. Also, an arbitrary direction of the magnetic field is required.
[0003]
As a magnetic field supply means of a conventional high magnetic field supply device, a block-shaped high-temperature superconducting bulk body having a superconducting critical temperature at a temperature of 100 K or less is used, and a refrigerator or a refrigerant such as liquid helium or liquid nitrogen is used at a temperature of 100 K or less. There is a superconducting bulk magnet used as a magnet in a state where the magnetic field is captured by a high-temperature superconducting bulk body by being magnetized by an external magnetic field while cooling, and kept at a low temperature of 100 K or less.
[0004]
Further, as another magnetic field supply means, a coil-shaped superconducting magnet is used, and this is kept at a very low temperature using a refrigerator or a refrigerant such as liquid helium or liquid nitrogen at a temperature of 100 K or less, and a large current is externally supplied. There is a superconducting coil magnet that supplies and supplies a magnetic field.
[0005]
Generally, when a coil-shaped superconducting magnet is used as the magnetic field supply means, the magnetic field supply magnetic field space is a uniform magnetic field space in the central portion inside the superconducting coil.
This is because a more uniform magnetic field space is required in an MRI or NMR apparatus. The structure of a conventional magnetic field generator using a coiled superconducting magnet is disclosed in Japanese Patent Application Laid-Open No. 3-200505.
In this device, the magnitude of the magnetic field is controlled by changing the magnitude of the current supplied to the coil from the external power supply at room temperature. In this case, it is necessary to physically connect the external power supply and the superconducting magnet with a conducting wire, and heat enters the superconducting magnet in a cryogenic region from a room temperature portion, and the consumption of liquefied gas for cooling the superconducting magnet increases. Also, the heat load of the refrigerator that directly or indirectly cools the superconducting magnet increases, and the power consumption of the refrigerator increases.
[0006]
Also, if the external power supply fails due to a power failure, etc. when supplying current, the superconducting magnet will be quenched, the superconducting state will be destroyed, the temperature of the superconducting magnet will rise, and much time will be required for recooling. However, the magnet itself may be destroyed, which causes a problem.
[0007]
On the other hand, when a high-temperature superconducting bulk body is used as the magnetic field generating means, the trapped magnetic field of the magnetized high-temperature superconducting bulk body generally has, for example, one direction in the thickness direction of the circular high-temperature superconducting bulk body, as shown in FIG. The trapped magnetic field when magnetized in such a magnetic field shows a conical uniform magnetic field distribution B Z (T) (T: Tesla) on the surface of a circular high-temperature superconducting bulk material. Spring The summary of lectures of the Society of Low Temperature Engineering and Superconductivity, held on May 29, 30, and 31, 2000, published by the Society of Low Temperature Engineering, page 199, "magnetization characteristics of commercial high-temperature superconducting bulk".
[0008]
That is, the magnetic field greatly decreases as the distance from the surface of the bulk high-temperature superconducting body increases, and the space of the substantially uniform magnetic field is limited to a minute space.
[0009]
The structure of a conventional magnetic field generator using the above-described superconducting bulk body is disclosed in JP-A-10-12429. This apparatus is composed of a superconducting bulk body, a holder made of, for example, copper for holding the superconducting body, a refrigerator for cooling the same, a superconducting bulk body, a copper holder, and a vacuum vessel for vacuum-insulating a low-temperature portion of the refrigerator.
This magnetic field generator has the effect of magnetically holding or subjecting a subject, which is a magnetic substance, simply to use a magnetic force, but there is no means for holding the subject in a predetermined magnetic field region. There is a problem that the subject cannot be placed in an arbitrary magnetic field space.
[0010]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 3-32005 [Non-Patent Document 2]
62nd Spring of 2000, Abstracts of Low Temperature Engineering and Superconductivity Conference (May 29, 30, 31st, 2000, published by Low Temperature Engineering Society), page 199, "Magnetization Properties of Commercially Available High Temperature Superconducting Bulk"
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional magnetic field supply method for applying a magnetic field to a subject, when a coil-type superconducting magnet is used, it is necessary to physically connect an external power supply and the superconducting magnet with a conducting wire during magnetic field control, and a cryogenic region. Heat enters the superconducting magnet at room temperature from the room temperature, increasing the consumption of liquefied gas that cools the superconducting magnet, and increasing the heat load of the refrigerator that cools the superconducting magnet directly or indirectly. There is a problem that power consumption increases. Also, if the external power supply fails due to a power failure, etc. when supplying current, the superconducting magnet will be quenched, the superconducting state will be destroyed, the temperature of the superconducting magnet will rise, and much time will be required for recooling. However, there is a problem that the magnet itself may be broken.
[0012]
On the other hand, when using a high-temperature superconducting bulk material, the disclosed structure has a problem in that there is no means for holding the subject in a predetermined magnetic field region, and the subject cannot be placed in an arbitrary magnetic field space. Further, there is no means for applying an arbitrary dynamic magnetic field to the subject, and there is a problem that a dynamic magnetic field or a magnetic field in an arbitrary direction cannot be supplied.
[0013]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems of the related art, and it is an object of the present invention to provide a magnetic field generator capable of favorably suppressing a magnetic field applied to a subject at low cost.
[0014]
An object of the present invention is to provide a magnetic field generator capable of holding a subject in a predetermined magnetic field region.
[0015]
[Means for Solving the Problems]
The object is to provide a magnetic field generator having a magnetic field generating means of a permanent magnet, a coil-type superconducting magnet or a high-temperature superconducting bulk magnet and a subject supporting means for supporting a subject. A magnetic flux measuring means for measuring magnetic flux density), a magnetic field analyzing means for analyzing a magnetic flux measuring position and a magnetic flux result, and the subject supporting means for moving the subject to an arbitrary magnetic field space based on the analysis result of the magnetic field analyzing means. This is a magnetic field generation device that includes a subject support unit that performs transport and position control, and a transport and position control unit. In this apparatus, the magnetic field at the three-dimensional position in the moving space for placing the subject is measured by the magnetic flux element installed in the subject supporting means before the magnetic field is supplied to the subject, and the subject fixedly supported by the subject supporting means is measured. It is achieved that the sample is transported by the subject support means transport and the position control means in the position of the magnetic field and the direction of the magnetic field in the arbitrary magnetic field.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a sectional view illustrating the structure of the magnetic field generator.
In this reference, a disk-shaped high-temperature superconducting bulk body 1 made of a yttrium-based or samarium-based BCuO material is used as a magnetic field generating means, and is reinforced and a composite of copper, copper, aluminum and stainless steel made of a heat conductor is used. And a cooling stage 4 of a refrigerator 3 such as a pulse tube type, a Gifford McMahon type, a Stirling type refrigerator, a thermoacoustic refrigerator, or an electronic refrigerator using a Peltier device. Then, the high-temperature superconducting bulk body 1 is cooled to a superconducting critical temperature or lower through the holding body 2 to maintain the temperature.
[0017]
The low-temperature section is installed in a vacuum heat-insulating tank 5 and is insulated by vacuum. The low-temperature section is surrounded by a plastic film or the like (not shown) on which aluminum is deposited, in order to prevent radiant heat from entering. A magnetic flux penetrates into the high-temperature superconducting bulk body 1 from the outside using a magnetizing electromagnetic coil (not shown), and the high-temperature superconducting bulk body 1 is magnetized while being cooled to a superconducting critical temperature or lower by a refrigerator.
After cooling, when the external magnetic field is removed, the magnetic flux captured by the high-temperature superconducting bulk body 1 is retained, and as long as the magnetic field is cooled and maintained at a low temperature, the magnetic field continues to be generated as if it were a permanent magnet. After magnetization, these are fixedly supported by the pedestal 6.
[0018]
The subject 7 is fixed and held on the upper surface of a flat sample stage 8, and the magnetic flux measuring element 9 is fixed and held on the lower surface of the sample stage 8. The sample stage 8 is integrated with a rotating shaft 10, and the rotating shaft is rotated by a motor 11, whereby the subject 7 can rotate in a magnetic field generated by the high-temperature superconducting bulk body 1 on the bulk surface 12. The supply magnetic field direction of the subject 7 is changed relative to 12.
The motor 11 is fixed to a support 13, and the support 13 is fixed to a shaft 14 movable in the Z direction. The shaft 14 is supported by sliders 15 and 17, and can be moved in the Z direction by a driving device 16.
The sliders 15 and 17 drive unit 16 is supported and fixed to a support plate 18, and the support plate 18 is fixed to an XY stage 19 fixed to the pedestal 6. The XY stage 19 is movable in the X direction perpendicular to the paper surface of FIG. 2 and the Y direction on the paper surface.
[0019]
Next, a magnetic field control operation method will be described.
First, the magnetic field generated by the magnetized high-temperature superconducting bulk body 1 is measured in the space on the end surface 21 of the vacuum vessel 5 near the bulk surface 12 using the magnetic flux measuring element 9 on the lower surface of the sample table 8. That is, based on the spatial information set by manual input, the magnetic field supply controller 20 calculates an output signal to each drive device, and transmits the electric signal to the XY stage 19, the drive device 16 via the control lines 22, 23, and 24. The motor 11 is driven and measured, and the measurement result is collected by the magnetic field supply controller 20 through the signal line 25, data is stored, and the magnetic field spatial distribution is analyzed.
[0020]
When the average magnetic field strength and magnetic field direction of the volume of the subject 7 to be given to the subject 7 are manually input to the magnetic field supply controller 20, a necessary three-dimensional transfer position and direction are calculated from the magnetic field spatial distribution analyzed previously. The XY stage 19, the driving device 16, and the motor 11 are driven to transfer the subject, and the subject experiences a magnetic field for a set time. In this case, a large magnetic field can be supplied by inverting the sample table 8 and bringing the subject 7 closer to the end face 21 of the vacuum vessel 5.
[0021]
When it is desired to supply a temporal magnetic field fluctuation to the subject 7, the fluctuation mode is manually input to the magnetic field supply controller 20, and the necessary temporally steady and unsteady transfer from the previously analyzed magnetic field spatial distribution is performed. The position and direction are calculated, the XY stage 19, the driving device 16, and the motor 11 are driven to transfer the subject, and the subject can experience the magnetic field with the set time pattern, magnetic field, and magnetic field direction.
[0022]
As described above, in this embodiment, in the present apparatus, the magnetic field at the three-dimensional position of the subject placement movement space is measured by the magnetic flux element installed on the subject support means before supplying the magnetic field to the subject, Thereafter, the subject fixedly supported by the subject support means is transported by the subject support means transport and position control means in an arbitrary magnetic field position and direction of the magnetic field. By utilizing the magnetic field distribution having a fixed magnetic gradient of the high-temperature superconducting bulk magnet magnetized in the above, there is an effect that an arbitrary magnetic field and a magnetic field direction can be supplied to the subject in a steady or unsteady manner.
[0023]
In the above embodiment, the case where the magnet using the high-temperature superconducting bulk is provided for the magnetic field generating means has been described. FIG. 2 shows the case where the permanent magnet 24 is provided for the magnetic field generating means.
The permanent magnet 24 is supported on a magnet support 25 made of a nonmagnetic material, for example, made of plastic, and fixedly supported on the pedestal 6.
In the present embodiment, the magnitude of the generated magnetic field cannot be as large as that of the superconducting magnet, but an electric device such as a refrigerator is not required for the magnetic field generating means, an inexpensive device can be provided, and the handling is easy. There is.
[0024]
FIG. 3 shows a case where the coil type superconducting magnet 26 is provided to the magnetic field generating means. The superconducting magnet 26 is formed, for example, of a high-temperature superconducting conductor in the form of a coil, and energizes the superconducting magnet 26 coil from an external power supply 27 through power supply leads 28 and 29 to generate a magnetic field at the coil end. The superconducting magnet is cooled and maintained in a superconducting state by the refrigerator 3.
In the present embodiment, an external power supply is required to generate and maintain a magnetic field. However, by flowing a large amount of current, there is an effect that the magnitude of the generated magnetic field can be made larger than that of the superconducting bulk magnet.
[0025]
【The invention's effect】
According to the present invention, it is possible to provide a magnetic field generator capable of holding a subject in a predetermined magnetic field region.
[Brief description of the drawings]
FIG. 1 is a sectional view of a magnetic field generator showing one embodiment of the present invention.
FIG. 2 is a sectional view of a magnetic field generator showing another embodiment according to the present invention.
FIG. 3 is a sectional view of a magnetic field generator having another embodiment of the present invention.
FIG. 4 is a diagram showing a trapped magnetic field distribution when a circular high-temperature superconducting bulk body is magnetized in a uniform magnetic field in the thickness direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High-temperature superconducting bulk material, 3 ... Refrigerator, 5 ... Vacuum container, 7 ... Subject, 8 ... Sample stand, 13 ... Support stand, 18 ... Support plate , 19 ... XY stage.

Claims (2)

被検体用磁場空間である作業領域に静磁界を生成するための静磁場発生手段と、前記作業領域の磁界を計測するための磁場計測手段とを有する磁場発生装置において、
前記作業領域への被検体の固定、搬送、姿勢駆動、搬出をおこなう被検体支持手段と、前記磁場計測手段で計測した磁場計測情報から被検体に必要な磁場を与えたられる前記作業領域の位置、方向を解析する磁場解析手段と、前記磁場解析情報から前記被検体支持手段で被検体を適切な磁界位置に相対的に搬送、姿勢駆動、固定、搬出する制御手段とを備えたことを特徴とする磁場発生装置。
In a magnetic field generator having a static magnetic field generating means for generating a static magnetic field in a work area that is a magnetic field space for the subject, and a magnetic field measuring means for measuring a magnetic field in the work area,
A subject support means for fixing, transporting, posture driving, and unloading the subject to the work area, and a position of the work area to which a magnetic field necessary for the subject is given from magnetic field measurement information measured by the magnetic field measurement means Magnetic field analysis means for analyzing the direction, and control means for transporting, posture driving, fixing, and unloading the subject relative to an appropriate magnetic field position in the subject support means from the magnetic field analysis information. Magnetic field generator.
請求項1記載の磁場発生装置において、前記静磁場発生手段を高温超電導バルク材で構成されていることを特徴とする磁場発生装置。2. The magnetic field generator according to claim 1, wherein said static magnetic field generator is made of a high-temperature superconducting bulk material.
JP2002353178A 2002-12-05 2002-12-05 Magnetic field generation device Pending JP2004186519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353178A JP2004186519A (en) 2002-12-05 2002-12-05 Magnetic field generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353178A JP2004186519A (en) 2002-12-05 2002-12-05 Magnetic field generation device

Publications (1)

Publication Number Publication Date
JP2004186519A true JP2004186519A (en) 2004-07-02

Family

ID=32754527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353178A Pending JP2004186519A (en) 2002-12-05 2002-12-05 Magnetic field generation device

Country Status (1)

Country Link
JP (1) JP2004186519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142179A (en) * 2005-11-18 2007-06-07 National Institute For Materials Science Superconductive magnet device with room temperature work plane
JP2007187368A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Magnetic work substance rotary magnetic refrigerator
JP2008192848A (en) * 2007-02-05 2008-08-21 Hitachi Ltd Magnetic-field generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142179A (en) * 2005-11-18 2007-06-07 National Institute For Materials Science Superconductive magnet device with room temperature work plane
JP2007187368A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Magnetic work substance rotary magnetic refrigerator
JP4567609B2 (en) * 2006-01-12 2010-10-20 財団法人鉄道総合技術研究所 Magnetic working substance rotating type magnetic refrigerator
JP2008192848A (en) * 2007-02-05 2008-08-21 Hitachi Ltd Magnetic-field generator
US7764153B2 (en) 2007-02-05 2010-07-27 Hitachi, Ltd. Magnetic field generator

Similar Documents

Publication Publication Date Title
Pan et al. He 3 refrigerator based very low temperature scanning tunneling microscope
US6545474B2 (en) Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method
US6489769B2 (en) Nuclear magnetic resonance apparatus
Oka Processing and applications of bulk HTSC
Moseley et al. Improved pulsed field magnetisation in MgB2 trapped-field magnets
JP2004186519A (en) Magnetic field generation device
US6841995B2 (en) Radiative reduction of entropy
Pobell The quest for ultralow temperatures: What are the limitations?
Choi et al. Conduction-cooled superconducting magnet for material control application
Hirschberger Quasiparticle excitations with Berry curvature in insulating magnets and Weyl semimetals
Vanderbemden Design of an AC susceptometer based on a cryocooler
Takahashi et al. Simulation study for magnetic levitation in pure water exploiting the ultra-high magnetic field gradient product of a hybrid trapped field magnet lens (HTFML)
Frey et al. Compensating vibrating reed magnetometer
Vakaliuk Novel Lorentz Force Velocimetry system based on bulk high-temperature superconductors
JP2004101308A (en) Prober device with superconducting electromagnet, and cooling device of superconducting electromagnet
Palma Magnetic cooling and on-chip thermometry for nanoelectronics below 10 mK
JP2002221560A (en) Magnetic field generation device
Choi et al. Design and fabrication of vibration-free cryostat for cryocooler-cooled superconducting magnet in CPS
Close The observation and measurement of quantized circulation in superfluid helium-3
Jiang et al. Measurement of the transition temperature distribution and magnetic field profile of large superconducting films
Mulay et al. Magnetic susceptibility. Trends in instrumentation and applications to solid state science
Chang Mechanics of superconducting magnetic bearings
JP2002143120A (en) Method for generating uniform magnetic field
JP2001257115A (en) Repetitively magnetizing method of superconductive bulk body
Khanna et al. Faraday induction and flux flow voltages in type‐II superconductors