JP2004186450A - Iron core having gap - Google Patents

Iron core having gap Download PDF

Info

Publication number
JP2004186450A
JP2004186450A JP2002352025A JP2002352025A JP2004186450A JP 2004186450 A JP2004186450 A JP 2004186450A JP 2002352025 A JP2002352025 A JP 2002352025A JP 2002352025 A JP2002352025 A JP 2002352025A JP 2004186450 A JP2004186450 A JP 2004186450A
Authority
JP
Japan
Prior art keywords
iron core
steel sheet
gap
loss
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002352025A
Other languages
Japanese (ja)
Inventor
Masahito Mizogami
雅人 溝上
Satoshi Arai
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002352025A priority Critical patent/JP2004186450A/en
Publication of JP2004186450A publication Critical patent/JP2004186450A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron core that can suppress an increase in loss which occurs when the iron core of a reactor or transformer having a gap in its magnetic circuit uses a unidirectional electromagnetic steel sheet, because a magnetic flux entering the iron core from the gap partially flows in the other direction than the rolling direction of the steel sheet. <P>SOLUTION: In the iron core manufactured by using a magnetic steel sheet and having the gap in part of the magnetic circuit, a bidirectional electromagnetic steel sheet is used as the material of at least the adjacent part of the gap. Consequently, the increase in loss caused by a fringing magnetic flux in a block iron core due to the gap or the increase in loss in a yoke caused by the flow of the magnetic flux in the other direction than the rolling direction can be suppressed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電気機器として用いられる変圧器あるいはリアクトルに関するもので、磁気回路の一部にギャップを有する鉄心に関するものである。
【0002】
【従来の技術】
電気機器の鉄心に関する主な技術課題として、損失の低減がある。損失は鉄心使用時の交流磁化によって鉄心内で無駄なエネルギが消費されてしまうもので、損失低減の努力が続けられている。
鉄心を用いる電気機器の一つとしてリアクトルがあるが、これは電気回路内で誘導性リアクタンスを発生させるものである。このリアクトルには巻線内に鉄心がない空心リアクトルと、鉄心がある鉄心リアクトルの2種類に大別される。これらにはそれぞれ一長一短があるが、その双方の長所を備えたものとしてギャップ付き鉄心リアクトルがあり、電力系統で多用されている。
【0003】
これは、図1に示すように巻線内の鉄心脚にギャップが設けられ、鉄心脚はブロック鉄心1で構成されるものである。このような構造の磁気回路では、図2に示すようにギャップ部分で半径方向に広がるフリンジング磁束4が発生する。この磁束4はブロック鉄心1の側面から進入するが、ブロック鉄心が電磁鋼板を同一方向に積み重ねただけの積層鉄心の場合には、鋼板の端面のみでなく表面からも磁束が侵入する現象が発生し、これにより鋼板の面内でうず電流損が発生するため、そこで局部過熱が発生したり鉄心全体の損失が増加したりする問題が生じる。
【0004】
この問題を解決するための手段として、例えば非特許文献1や特許文献1に示されているように、電磁鋼板をブロック鉄心の中心から外周向きに放射状に並べて作製する図3のようなラジアル鉄心が使用されている。このラジアル鉄心では磁束は鋼板の端面からのみ進入するため、フリンジング磁束による過大なうず電流の発生が抑制される。また、鉄心脚の両端には図1に示すように継鉄2が設置され、鉄心脚の端部からの磁束を流入させ、反対側の端部へ循環させるようになっている。
【0005】
【非特許文献1】
電気学会技術報告第616号
【特許文献1】
実開平5−69923号公報
【0006】
【発明が解決しようとする課題】
一般に、鉄心材料として用いられている一方向性電磁鋼板の鉄損特性は、図4に示される例のように、磁束の方向が圧延方向からずれると鉄損が大幅に増加してしまう。
ところで、フリンジング磁束はブロック鉄心に側面から進入するため、鋼板内の磁束の方向はその圧延方向からずれてしまう。また、継鉄2では鉄心脚から流入してきた磁束5は、図5に示すように圧延方向にほぼ直交する方向に流れ、徐々に圧延方向に向きを変える。同様の現象はギャップのある他の種類の鉄心でも発生する。巻線に直流電流が流れる変換器用変圧器では、磁気飽和を防ぐために鉄心脚と継鉄の間にギャップが設けられるが、この場合も継鉄内の磁束は前述したように流れる。
上記の圧延方向以外に流れる磁束は、図4から明らかなように損失増加を招く。本発明は、この圧延方向以外に流れる磁束による損失の増加を抑制する鉄心を提供するものである。
【0007】
【課題を解決するための手段】
本発明に係る磁気回路の一部にギャップを有する鉄心では、少なくともギャップに隣接する部分を二方向性電磁鋼板を用いて構成したことを特徴とするものである。
【0008】
【発明の実施の形態】
二方向性電磁鋼板の鉄損特性を一方向性電磁鋼板と比較したものを図6に示す。ここに示した特性は一方向性電磁鋼板では鋼板の圧延方向に励磁した場合と、その直角方向に励磁した場合に測定されたもので、二方向性電磁鋼板ではクロス圧延された2方向でそれぞれ励磁された場合に測定されたものである。一方向性電磁鋼板は圧延方向の鉄損が最も低いかわりに、直角方向の鉄損はその10倍以上となる。これがギャップを有する鉄心における損失増加の原因となる。これに対して二方向性電磁鋼板では、圧延方向の鉄損は一方向性電磁鋼板の2倍程度となるが、直角方向の鉄損もそれと同程度となり、一方向性電磁鋼板の直角方向の鉄損に比べて著しく低鉄損となる。
この二方向性電磁鋼板をブロック鉄心に用いた場合、フリンジング磁束が鋼板の側面から進入する部分でも鉄損の増加はほとんど発生しない。また、継鉄に用いた場合には、鉄心脚から流入する磁束による鉄損増加はほとんど発生しない。
【0009】
【実施例】
本発明の一実施例として、外形寸法240mm×240mm、脚幅60mm、継鉄幅が30mm、厚さが60mmで、脚が40mm長の3個のブロック鉄心からなる単相ギャップ付きリアクトル鉄心を製作した。
試験では、まず本発明の鉄心として、▲1▼脚と上下継鉄に板厚0.35mmの二方向性電磁鋼板を使用して左右の継鉄に板厚0.35mmの一方向性電磁鋼板を使用した場合、▲2▼全鉄心に二方向性電磁鋼板を用いた場合の評価を行った。この他に比較として、▲3▼全鉄心に一方向性電磁鋼板を用いた場合で試験を行った。励磁周波数は50Hzで、脚の磁束密度を1.3Tと1.7Tの2水準とし、全損失から重量あたりの損失を算出した結果を表1に示す。
【0010】
【表1】

Figure 2004186450
【0011】
脚と上下継鉄に二方向性電磁鋼板を用いた場合は、全鉄心に一方向性電磁鋼板を用いた場合に対して2%から3%の損失低減が見られる。また、全体に二方向性電磁鋼板を用いた場合に、脚と上下継鉄に二方向性電磁鋼板を用いた場合よりも損失増加が見られるのは、左右の継鉄は磁束が長手方向のみに流れるため、一方向性電磁鋼板を用いた方が低損失になるためと考えられる。
【0012】
【発明の効果】
以上説明した本発明による鉄心を用いることで、ギャップによるブロック鉄心でのフリンジング磁束による損失増加や、継鉄での圧延方向以外への磁束流れによる損失増加を抑制することができる。
【図面の簡単な説明】
【図1】ギャップ付き鉄心リアクトルの断面図。
【図2】ブロック鉄心とフリンジング磁束を示す図。
【図3】ブロック鉄心として用いられるラジアル鉄心での鋼板の配置を示す図。
【図4】磁束の方向と鉄損との関係を示す図。
【図5】鉄心脚と継鉄での磁束の流れを示す図。
【図6】二方向性電磁鋼板と一方向性電磁鋼板の鉄損特性を示す図。
【符号の説明】
1 ブロック鉄心
2 継鉄
3 コイル
4 フリンジング磁束
5 磁束線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transformer or a reactor used as electric equipment, and more particularly to an iron core having a gap in a part of a magnetic circuit.
[0002]
[Prior art]
One of the main technical issues related to the iron core of electric equipment is reduction of loss. Loss is a useless energy consumed in the iron core due to AC magnetization when the iron core is used, and efforts have been made to reduce the loss.
A reactor is one of the electric devices using an iron core, which generates an inductive reactance in an electric circuit. This reactor is roughly classified into two types, an air core reactor having no iron core in the winding and an iron core reactor having an iron core. Each of these has advantages and disadvantages, but the one with both advantages is a cored reactor with a gap, which is widely used in power systems.
[0003]
As shown in FIG. 1, a gap is provided in an iron core leg in a winding, and the iron core leg is constituted by a block iron core 1. In the magnetic circuit having such a structure, as shown in FIG. 2, a fringing magnetic flux 4 which spreads in the radial direction at the gap portion is generated. The magnetic flux 4 enters from the side surface of the block core 1. If the block core is a laminated core in which electromagnetic steel sheets are merely stacked in the same direction, a phenomenon occurs in which magnetic flux penetrates not only from the end face of the steel sheet but also from the surface. However, this causes eddy current loss in the plane of the steel sheet, which causes a problem that local overheating occurs and the loss of the entire iron core increases.
[0004]
As means for solving this problem, for example, as shown in Non-Patent Document 1 and Patent Document 1, a radial iron core as shown in FIG. 3 is manufactured by arranging electromagnetic steel plates radially from the center of a block iron core toward the outer periphery. Is used. In this radial iron core, the magnetic flux enters only from the end face of the steel sheet, so that the generation of an excessive eddy current due to the fringing magnetic flux is suppressed. Also, as shown in FIG. 1, yokes 2 are installed at both ends of the iron core leg, so that magnetic flux from the end of the iron core leg flows in and circulates to the opposite end.
[0005]
[Non-patent document 1]
IEEJ Technical Report No. 616 [Patent Document 1]
Japanese Utility Model Laid-Open No. 5-69923 [0006]
[Problems to be solved by the invention]
Generally, the iron loss characteristics of a grain-oriented electrical steel sheet used as an iron core material are such that when the direction of the magnetic flux deviates from the rolling direction, as shown in the example shown in FIG. 4, the iron loss greatly increases.
By the way, since the fringing magnetic flux enters the block core from the side, the direction of the magnetic flux in the steel sheet is shifted from the rolling direction. In the yoke 2, the magnetic flux 5 flowing from the iron core legs flows in a direction substantially perpendicular to the rolling direction as shown in FIG. 5, and gradually changes its direction in the rolling direction. A similar phenomenon occurs with other types of cores with gaps. In a transformer for a converter in which a DC current flows through a winding, a gap is provided between an iron core leg and a yoke to prevent magnetic saturation. In this case as well, the magnetic flux in the yoke flows as described above.
The magnetic flux flowing in a direction other than the above-mentioned rolling direction causes an increase in loss as is apparent from FIG. The present invention provides an iron core that suppresses an increase in loss due to magnetic flux flowing in a direction other than the rolling direction.
[0007]
[Means for Solving the Problems]
An iron core having a gap in a part of the magnetic circuit according to the present invention is characterized in that at least a portion adjacent to the gap is formed using a bidirectional electromagnetic steel sheet.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 6 shows a comparison between the iron loss characteristics of the bidirectional magnetic steel sheet and the unidirectional magnetic steel sheet. The characteristics shown here were measured when the unidirectional electrical steel sheet was excited in the rolling direction of the steel sheet and when it was excited in the direction perpendicular to the steel sheet. It was measured when excited. The unidirectional magnetic steel sheet has the lowest iron loss in the rolling direction, but the iron loss in the perpendicular direction is 10 times or more the iron loss in the rolling direction. This causes an increase in loss in the iron core having the gap. On the other hand, in the case of the bidirectional electrical steel sheet, the iron loss in the rolling direction is about twice that of the unidirectional electrical steel sheet, but the iron loss in the perpendicular direction is also about the same, and the iron loss in the perpendicular direction of the unidirectional electrical steel sheet is The iron loss is significantly lower than the iron loss.
When this bidirectional magnetic steel sheet is used for a block iron core, an increase in iron loss hardly occurs even in a portion where fringing magnetic flux enters from the side surface of the steel sheet. Also, when used for a yoke, there is almost no increase in iron loss due to magnetic flux flowing from the iron core leg.
[0009]
【Example】
As an embodiment of the present invention, a reactor core with a single-phase gap including three block cores each having an outer dimension of 240 mm × 240 mm, a leg width of 60 mm, a yoke width of 30 mm, a thickness of 60 mm, and a leg length of 40 mm is manufactured. did.
In the test, first, as the iron core of the present invention, (1) a unidirectional electromagnetic steel sheet having a thickness of 0.35 mm was used for the left and right yoke using a bidirectional electromagnetic steel sheet having a thickness of 0.35 mm for the legs and upper and lower yokes. When (2) was used, the evaluation was performed in the case where a bidirectional magnetic steel sheet was used for all the iron cores. In addition, as a comparison, (3) a test was performed in the case where a unidirectional magnetic steel sheet was used for all the iron cores. The excitation frequency was 50 Hz, the magnetic flux density of the legs was set to two levels of 1.3T and 1.7T, and the result of calculating the loss per weight from the total loss is shown in Table 1.
[0010]
[Table 1]
Figure 2004186450
[0011]
When the bidirectional magnetic steel sheet is used for the legs and the upper and lower yokes, a loss reduction of 2% to 3% is observed as compared with the case where the unidirectional magnetic steel sheet is used for all the iron cores. In addition, when bi-directional magnetic steel sheets are used as a whole, the loss increases compared to when bi-directional magnetic steel sheets are used for the legs and upper and lower yokes. It is considered that the use of a grain-oriented electrical steel sheet results in lower loss.
[0012]
【The invention's effect】
By using the iron core according to the present invention described above, it is possible to suppress an increase in loss due to fringing magnetic flux in the block iron due to the gap and an increase in loss in the yoke due to the flow of magnetic flux in a direction other than the rolling direction.
[Brief description of the drawings]
FIG. 1 is a sectional view of a cored reactor with a gap.
FIG. 2 is a diagram showing a block core and a fringing magnetic flux.
FIG. 3 is a diagram showing an arrangement of steel plates in a radial iron core used as a block iron core.
FIG. 4 is a diagram showing the relationship between the direction of magnetic flux and iron loss.
FIG. 5 is a diagram showing the flow of magnetic flux in the iron core leg and the yoke.
FIG. 6 is a view showing iron loss characteristics of a bidirectional magnetic steel sheet and a unidirectional magnetic steel sheet.
[Explanation of symbols]
1 block iron core 2 yoke 3 coil 4 fringing magnetic flux 5 flux line

Claims (1)

電磁鋼板を用いて製作され、磁気回路の一部にギャップを有する鉄心において、少なくともギャップに隣接する鉄心部分を二方向性電磁鋼板を用いて構成したことを特徴とするギャップを有する鉄心。An iron core manufactured using an electromagnetic steel sheet and having a gap in a part of a magnetic circuit, wherein at least an iron core part adjacent to the gap is formed using a bidirectional electromagnetic steel sheet.
JP2002352025A 2002-12-04 2002-12-04 Iron core having gap Withdrawn JP2004186450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352025A JP2004186450A (en) 2002-12-04 2002-12-04 Iron core having gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352025A JP2004186450A (en) 2002-12-04 2002-12-04 Iron core having gap

Publications (1)

Publication Number Publication Date
JP2004186450A true JP2004186450A (en) 2004-07-02

Family

ID=32753758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352025A Withdrawn JP2004186450A (en) 2002-12-04 2002-12-04 Iron core having gap

Country Status (1)

Country Link
JP (1) JP2004186450A (en)

Similar Documents

Publication Publication Date Title
Sakamoto et al. Large air-gap coupler for inductive charger [for electric vehicles]
US20050286270A1 (en) Full wave series resonant type DC to DC power converter with integrated magnetics
TW201511048A (en) Inductance and switch circuit including the inductance
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
Cheng et al. 3-D finite element modeling and validation of power frequency multishielding effect
EP2012327B1 (en) Filtering choke arrangement
US20160148747A1 (en) Transformer
JP2007123596A (en) Dc reactor and inverter device
US6816054B2 (en) Silicon steel core for transformers or choke coils
KR102136026B1 (en) Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same
RU49646U1 (en) TRANSFORMER
JP2009021079A (en) Induction heating device
JP2004186450A (en) Iron core having gap
JP5418311B2 (en) Single-phase reactor core with gap
Charap et al. A core loss model for laminated transformers
Wei et al. Design considerations of inductor for 500 kVA PV inverter based on Euro efficiency
JP5020837B2 (en) DC reactor
WO2020148942A1 (en) Stationary induction device
KR200203543Y1 (en) Reactor structure with air gap on magnetic pass
KR20190026323A (en) Reactor/transformer core capable of resolving local magnetic saturation
TWI638371B (en) Core joint construction of electromagnetic machine
JP2010192742A (en) Reactor
JP4241976B2 (en) Power transformer
RU99654U1 (en) ELECTRIC INDUCTION DEVICE
JP2002272022A (en) Electric motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207