JP2004186195A - Method of manufacturing electrode sheet for electric double layer capacitor - Google Patents

Method of manufacturing electrode sheet for electric double layer capacitor Download PDF

Info

Publication number
JP2004186195A
JP2004186195A JP2002347942A JP2002347942A JP2004186195A JP 2004186195 A JP2004186195 A JP 2004186195A JP 2002347942 A JP2002347942 A JP 2002347942A JP 2002347942 A JP2002347942 A JP 2002347942A JP 2004186195 A JP2004186195 A JP 2004186195A
Authority
JP
Japan
Prior art keywords
electrode sheet
drying
electrode
sheet
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002347942A
Other languages
Japanese (ja)
Other versions
JP3803084B2 (en
Inventor
Koju Ozaki
幸樹 尾崎
Masanori Tsutsui
正典 筒井
Manabu Iwaida
学 岩井田
Shigeki Koyama
茂樹 小山
Kenichi Murakami
顕一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002347942A priority Critical patent/JP3803084B2/en
Priority to US10/721,757 priority patent/US6872616B2/en
Publication of JP2004186195A publication Critical patent/JP2004186195A/en
Priority to US11/041,371 priority patent/US7068493B2/en
Application granted granted Critical
Publication of JP3803084B2 publication Critical patent/JP3803084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an electric double layer capacitor to be improved in long-term durability and reliability. <P>SOLUTION: A method of manufacturing an electrode sheet for an electric double layer capacitor includes a drying process composed of two steps, one is a continuous drying step where the electrode sheet is dried up passing through a drying chamber as it is fed from a rolled-up electrode sheet and then rolled up again into the rolled-up electrode sheet, and the other is a vacuum drying step where the rolled-up electrode sheet subjected to the continuous drying step is housed in a vacuum chamber and then dried out, whereby the electrode sheet can be made extremely small in residual moisture content and residual IPA content. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサ用電極シートの製造方法に係り、特に電極シートを乾燥させる乾燥工程を改良したものに関する。
【0002】
【従来の技術】
電気二重層コンデンサ(キャパシタ)は、ファラッド級の大容量を有し、且つ充放電サイクル特性にも優れることから、電気機器のバックアップ電源や自動車を初めとする各種輸送機のバッテリとして用いられる他、エネルギー有効利用の観点から、今後は夜間電力の貯蔵といった用途での使用も検討されている。
【0003】
電気二重層コンデンサの構造と充放電の仕組みを端的に説明すると、まず、その構造は、2枚のシート状活性炭(シート状電極)で集電箔を挟んだシート(以下、電極シートと称する。)とイオンが浸過可能な絶縁セパレータ(以下、セパレータと称する。)とからなる電気二重層コンデンサ用分極性電極を、イオン性溶液中に浸したものであり、充放電の仕組みとしては、前記した電気二重層コンデンサ用分極性電極に電気分解の起こらない程度の電圧をかけ、界面にプラス、マイナスの電気を相対させて充放電をするようになっている。
【0004】
よって、上記したような電気二重層コンデンサの性質上、電極シートに水分が残留すると電圧をかけた際に、その水分が電気分解を起し電気二重層コンデンサの性能低下を招く恐れがあるため、製造過程において、電極シートの水分を実用上問題のない程度まで除去する乾燥工程が必要となる。
【0005】
このような、水分除去を目的とした乾燥工程を含む電気二重層コンデンサの製造方法として、例えば電極シートとセパレータとからなる電気二重層コンデンサ用分極性電極を、電気二重層コンデンサ用容器としての有底円筒形容器に収容した後、注液口を有する蓋体により容器を封口し、次いで該容器ごと露点−20℃以下の雰囲気にて乾燥させ、前記注液口から非水系電解液を注入し、この注液口を封口するといったものがある(例えば、特許文献1参照)。
また、例えば炭素系粉、導電性助剤、及びバインダからなるシート状電極の原料を混合、混練し、この混練物に対し水分除去の乾燥工程を行うといったものもある(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開2000−49052号公報(第3−4頁)
【0007】
【特許文献2】
特開2001−307964号公報(第4−5頁)
【0008】
【発明が解決しようとする課題】
前述した通り、電気二重層コンデンサ用分極性電極に電圧をかけた際に、電極シートに水分が混入している場合、この水分が電気分解を起してしまうため電気二重層コンデンサの静電容量の低下、抵抗の上昇、耐久性の劣化等の問題が発生してしまう。
【0009】
しかし、電極シートを構成する活性炭(炭素質粉末)は多孔質であるため、水分の吸着性が極めて高い上、それぞれの原料を混合する際等には、混合を容易にするためアルコール系の有機溶剤を添加するので、原料に必然的に水分が存在するという、相反する問題がある。
【0010】
よって、電気二重層コンデンサの長期的な耐久性、信頼性を確保するためには、その製造工程において電極シートにおける水分や有機溶剤の残量を極めて低いレベルにする乾燥工程が不可欠である。
しかしながら、上記した特許文献1では、電極シートとセパレータとからなる電気二重層コンデンサ用分極性電極を円筒状に巻いた状態、且つ容器内で乾燥させるため、電気二重層コンデンサ用分極性電極の中心部分まで良好に乾燥させることが難しい。
【0011】
また、上記の特許文献2では、電極シートではなく、シート状電極の原材料を混合・混練した段階で乾燥を行うため、その後、混練物を圧延してシート状電極を製造し、更にこのシート状電極を箔に張り合わせて電極シートとして完成するまでにシート状電極が再度吸湿してしまうという問題がある。
【0012】
本発明は上記事情に鑑みてなされたものであり、その目的は、電極シートにおける水分等の残量を極めて低い値にすることができ、実使用時において水の電気分解が起きず、長期に亘り耐久性、信頼性を維持できる電気二重層コンデンサ用電極シートの製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明の電気二重層コンデンサ用電極シートの製造方法は、炭素質粉末、導電性助剤及びバインダを含む原料を混合、混練し成形材料を作成する工程と、この成形材料を成形、圧延して長尺なシート状電極を形成する工程と、このシート状電極と集電箔とを貼り合わせて電極シートを作成する工程と、前記電極シートを乾燥する乾燥工程とを実行するもので、特に乾燥工程は、電極シートを繰り出しながら連続乾燥機の乾燥室を通して乾燥させる連続乾燥と、この連続乾燥を経た、ロール状の電極シートを真空乾燥機の真空室に収容して乾燥させる真空乾燥とを含むことを特徴とする(請求項1)。
【0014】
この構成によれば、乾燥工程を電極シートを形成した後に行う、つまり電極シート自体が完成された状態で乾燥させるため、また、この乾燥工程は電極シートを広げた状態で行う連続乾燥と真空乾燥の双方を行うため、電極シートにおける水分や有機溶剤の残量を極めて低い値とすることができる。
【0015】
ところで、シート状電極の乾燥は通常、シート状電極にノズルからの加熱風を吹き当てて行うが、その加熱風に配管中(例えばヒータとノズルを結ぶ配管)の金属微紛やヒータにおける発熱線の劣化粉等が混入することがあり、この場合には、それらが電極シート表面に付着し不純物となることによって、電気二重層コンデンサの耐久性低下の一因となる。
【0016】
そこで、電気二重層コンデンサの長期的な耐久性、信頼性を確保するためには、電極シートの乾燥工程において加熱風を用いる場合、その加熱風に混入する不純物量を厳密にコントロールすることも非常に重要となる。
このことに関して本発明では、前記連続乾燥において、ヘパフィルタを通した加熱風を吹き当てて行うので(請求項2)、加熱風にヒータの劣化粉等の不純物が含まれていたとしたとしても、0.3μm以上の粒子を99.97%以上捕集できる能力を有するヘパフィルタによって、それらの不純物が除去できるため不純物が電極シートに付着することがない。
【0017】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて説明する。
図1には、電気二重層コンデンサ用電極シート(以下、電極シートと称する。)を製造する際の製造工程が示されている。電極シートを構成するシート状電極を製造する原料は、炭素質粉末として活性炭、導電性助剤としてカーボンブラック、バインダとしてPTFE(ポリテトラフルオロエチレン)の粉末、バインダ用助剤として液体状のIPA(イソプロピルアルコール)である。
【0018】
まず、各原料の計量を行う。次に、活性炭とカーボンブラックをミキサの容器内に投入し、回転する撹拌羽根によりこれらの混合を行う。これにより、活性炭とカーボンブラックとが極力均一に混合される。
そして、PTFEとIPAとを上記ミキサの容器内に投入し、これらと上記活性炭とカーボンブラックの混合物とを混合する。これにより、活性炭とカーボンブラックとPTFEとが混合されると共に、PTFEが繊維化して活性炭とカーボンブラックとが絡められる。
【0019】
次に、この混合された混合物を混練機(ニーダ)の容器内に収容し、蓋を被せて、この蓋により混合物を加圧しながらブレードを回転させることにより混練を行う。この混練により、混合物は粘土状に混練されると共に、PTFEが一層繊維化して活性炭とカーボンブラックとが結着されるようになる。このとき、混練機の容器、蓋及びブレードは、例えば90℃となるように温度制御する。
次に、上記混練機で混練された混練物をキザミ機9の容器内に収容し細かい粒にした後に、カレンダ成形機に投入し、この混合物を2本のローラによりシート状に成形する。成形されたシート状成形体は、巻取りローラにより巻き取る。このとき、シート状成形体の厚さは、例えば200μmとする。
【0020】
次に、ロール圧延工程において、上記シート状成形体を、2本のローラ間を通して圧延する。このロール圧延工程を複数回行うことにより、所定の厚さ、例えば160μmのシート状電極が形成される。ちなみに、このロール圧延の最終工程において、シート状電極の幅方向の両端部をカッタにより切断する。以上に記載したものがシート状電極を形成する工程となる。
次に、ラミネート工程において、圧延された上記シート状電極を、集電箔としてのアルミ箔貼り合わせ電極シートを形成する。これが電極シートを作成する工程である。そして、このロール状の電極シートに連続乾燥、真空乾燥から成る乾燥工程を実施する。
【0021】
ここで、前記した乾燥工程における連続乾燥と真空乾燥の詳細を図2ないし図4を用いて説明する。
まず、連続乾燥は、図2に示すように電極シート1の連続乾燥装置2において、ロール状に巻き取られた電極シート1を一方のローラから繰り出しながら乾燥室3に通して乾燥させ、この乾燥された電極シート1を別のローラにて巻回し、再度ロール状にする。
【0022】
この場合、電極シート1を繰り出すローラは、電極シート1のロール径(巻き取られた厚み)に応じたブレーキ力を加えるテンションコントロールを行い、また、乾燥された電極シート1を再度巻回するローラの一段階前のローラ4では、電極シート1の張力が幅方向各部において一定となるように、電極シート1を幅方向に変位させるエッジコントロールを行うものとなっている。
【0023】
上記した乾燥室3内には、連続乾燥される電極シート1に上下から加熱風を吹き当てるノズル5が複数設けられている。ノズル5の数は、電極シート1を乾燥させるに足るものならば、幾つであっても構わない。加熱風は図3に示すようにヒータ6aとファン6bを有する第一の加熱風供給手段6で生成され、そして、ヘパフィルタ7(High Efficency Particulate Airfilter)を通りヒータ8aとファン8bを有する第二の加熱風供給手段8を経てノズル5へ送られる。
【0024】
ヘパフィルタ7は、樹脂繊維の不織布をひだ形状にして集塵面積を向上させ、0.3μm以上の粒子を99.97%捕集する能力を有するもので、ヘパフィルタ7を通過した加熱風は配管中の金属粉やヒータの劣化粉等が除去される。しかし、ヘパフィルタ7は、その高い捕集能力故に密度が非常に高いため、その抵抗により加熱風の勢いが低下する。また、ヘパフィルタ7は、その密度故に熱容量も高く、ヘパフィルタ7を通過した加熱風は、その温度も下降してしまう。よって、本実施例ではヘパフィルタ7を通った加熱風を再度、第二の加熱風供給手段8を用いて温度と圧力を増大させた上で、ノズル5から電極シート1へ吹き当てる構成となっている。
【0025】
なお、ヘパフィルタ7を通過した加熱風は上記した通り、その空気の不純物は極めて少ないため、本実施例において第二の加熱風供給手段8とノズル5とを結ぶ配管は、耐食性のステンレス製とし、また、例えばヒータ8bとしてのニクロム線を同耐食性のステンレス製パイプで覆って、それぞれ発塵を防止している。
【0026】
このため、第二の加熱風供給手段8からの加熱風も極めて不純物が少ないものとなっているが、加熱風を生成する構成は乾燥工程の環境によって、必ずしもこれに限定されるものではない。
【0027】
このように、電極シート1を広げて行う連続乾燥により、電極シート1に含まれていた水分及びIPAの残分が効果的に除去される。
電極シート1に吹き当てられる時の加熱風の温度は、例えば約120℃とする。この温度より高くなった場合は、接着剤等の劣化という問題が生じるからである。
なお、乾燥室3内では、電極シート1を蛇行させて、何度か折り返しながら乾燥を行ったり、また、加熱風を吹き当てると同時に乾燥室3内に遠赤外線装置等を設置する等して、さらに乾燥能力を高めても何ら問題ない。
【0028】
また、電極シート1への発塵を防止するために、前記した第二の加熱風供給手段8のヒータだけでなく、第一の加熱風供給手段6においても、ステンレス等で被覆したヒータ、或いは配管を使用してもよい。
真空乾燥においては、連続乾燥後にロール状に巻き取られた電極シート1を、ロール状態のまま、真空乾燥装置9の真空室10に収容して乾燥させる。
【0029】
真空室10は、図示しない真空ポンプに接続されたバキュームパイプ11、及びパージパイプ12により真空度の調整、或いは真空室内の風流の調節を行い、真空度は真空計13を用いて測定することができる。観察窓14が取り付けられた扉15は、真空室10を密閉し取手15aによって開閉される。
また、真空室10の周壁にはヒータ16が設けられ、このヒータ16によって真空室10内の温度は制御される。そして、真空室10の内壁面には芯支え17が設けられており、この芯支え17にて、ロール状の電極シート1のボビン(巻き芯)18に通した芯19を支えることができる。
【0030】
真空室10内に、芯19と芯支え17によって支えられたロール状の電極シート1は、上述したように加熱されながら、真空下におかれるため、連続乾燥で除去し切れなかった水分、及びIPAが除去される。
以上のように、電極シート1の乾燥を、その形成途中でなく完成後に行うため、電極シート1(シート状電極)に含まれる水分、及びIPAを極力除去することが可能となり、ひいては質の高い電気二重層コンデンサの製造が可能となる。
【0031】
ここで、前記真空乾燥が終了した電極シート1は、その残水分量、残IPA分量、全体の外観等の検査がなされるが、残水分量としては、例えば2000ppm以下、残IPA量としては900ppm以下とする。
【0032】
なお、連続乾燥後の電極シート1を巻回してロール状にする工程を、乾燥室3に連続するドライブース(−20℃以下のドライエリア内よりも低い露点。)を設け、このドライブース内で行うことにより、電極シート1の巻回時に水分等の再吸着を防止するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施例を示すもので、電気二重層コンデンサ用電極シートの製造方法を示す図
【図2】乾燥室を示す側面図
【図3】乾燥室内の加熱風の供給流れを示すブロック図
【図4】真空室を示す斜視図
【符号の説明】
図中、1は電極シート、2は連続乾燥装置、3は乾燥室、4はローラ、5はノズル、6は第一の加熱風供給手段、6aはヒータ、6bはファン、7はヘパフィルタ、8は第二の加熱風供給手段、8aはヒータ、8bはファン、9は真空乾燥装置、10は真空室、11はバキュームパイプ、12はパージノズル、13は真空計、14は観察窓、15は扉、15aは取手、16はヒータ、17は芯支え、18はボビン(巻き芯)、19は芯である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electrode sheet for an electric double layer capacitor, and more particularly to an improved method for drying an electrode sheet.
[0002]
[Prior art]
Electric double-layer capacitors (capacitors) have farad-class large capacities and have excellent charge-discharge cycle characteristics, so they are used as backup power supplies for electric equipment and batteries for various transport vehicles such as automobiles. From the viewpoint of effective use of energy, use in applications such as storage of nighttime electric power is being studied in the future.
[0003]
The structure of the electric double layer capacitor and the mechanism of charge and discharge will be briefly described. First, the structure is a sheet (hereinafter, referred to as an electrode sheet) in which a current collector foil is sandwiched between two sheets of activated carbon (sheet electrodes). ) And an insulating separator capable of penetrating ions (hereinafter referred to as a separator), in which a polarizable electrode for an electric double-layer capacitor is immersed in an ionic solution. A voltage that does not cause electrolysis is applied to the polarized electrode for an electric double layer capacitor, and positive and negative electricity are applied to the interface to charge and discharge.
[0004]
Therefore, due to the nature of the electric double layer capacitor as described above, when a voltage is applied when moisture remains on the electrode sheet, the moisture may cause electrolysis and cause a decrease in the performance of the electric double layer capacitor. In the manufacturing process, a drying step for removing the water content of the electrode sheet to a practically acceptable level is required.
[0005]
As a method of manufacturing such an electric double layer capacitor including a drying step for removing water, for example, a polarizable electrode for an electric double layer capacitor including an electrode sheet and a separator is used as a container for an electric double layer capacitor. After being accommodated in the bottom cylindrical container, the container was sealed with a lid having a liquid inlet, and then the container was dried in an atmosphere having a dew point of −20 ° C. or less, and a non-aqueous electrolyte was injected from the liquid inlet. There is a method of closing the liquid inlet (for example, see Patent Document 1).
Further, for example, there is a method of mixing and kneading raw materials for a sheet-like electrode composed of a carbon-based powder, a conductive auxiliary agent, and a binder, and performing a drying step of removing moisture on the kneaded material (for example, see Patent Document 2). ).
[0006]
[Patent Document 1]
JP-A-2000-49052 (pages 3-4)
[0007]
[Patent Document 2]
JP 2001-307964 A (page 4-5)
[0008]
[Problems to be solved by the invention]
As described above, when water is mixed in the electrode sheet when a voltage is applied to the polarizable electrode for an electric double layer capacitor, the water causes electrolysis, and thus the capacitance of the electric double layer capacitor is increased. Problems such as a decrease in resistance, an increase in resistance, and a deterioration in durability occur.
[0009]
However, since the activated carbon (carbonaceous powder) constituting the electrode sheet is porous, it has a very high water absorption property. In addition, when mixing the respective raw materials, an alcohol-based organic material is used to facilitate the mixing. Since the solvent is added, there is a contradictory problem that water is inevitably present in the raw material.
[0010]
Therefore, in order to ensure long-term durability and reliability of the electric double-layer capacitor, a drying step in which the remaining amount of water and organic solvent in the electrode sheet is extremely low is indispensable in the manufacturing process.
However, in Patent Document 1 described above, since the polarizable electrode for an electric double layer capacitor composed of an electrode sheet and a separator is rolled in a cylindrical shape and dried in a container, the center of the polarizable electrode for an electric double layer capacitor is dried. It is difficult to dry the part well.
[0011]
Further, in Patent Document 2 described above, since the drying is performed at the stage where the raw materials of the sheet electrode are mixed and kneaded instead of the electrode sheet, the kneaded material is then rolled to produce a sheet electrode, and further the sheet electrode is formed. There is a problem that the sheet-shaped electrode absorbs moisture again until the electrode is bonded to the foil and completed as an electrode sheet.
[0012]
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the remaining amount of water and the like in an electrode sheet to an extremely low value. An object of the present invention is to provide a method for manufacturing an electrode sheet for an electric double layer capacitor that can maintain durability and reliability over a long period of time.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing an electrode sheet for an electric double layer capacitor according to the present invention comprises the steps of mixing and kneading raw materials including a carbonaceous powder, a conductive auxiliary agent and a binder to form a molding material; Forming and rolling a material to form a long sheet-like electrode, laminating the sheet-like electrode and a current collector foil to form an electrode sheet, and drying the electrode sheet. In particular, the drying step is a continuous drying in which the electrode sheet is fed through a drying chamber of a continuous dryer while being fed out, and the rolled electrode sheet that has passed through the continuous drying is housed in a vacuum chamber of a vacuum dryer. And vacuum drying for drying (claim 1).
[0014]
According to this configuration, the drying step is performed after the electrode sheet is formed, that is, the electrode sheet itself is dried in a completed state, and the drying step is performed in a state where the electrode sheet is spread, and continuous drying and vacuum drying are performed. Therefore, the residual amounts of water and organic solvent in the electrode sheet can be set to extremely low values.
[0015]
By the way, the drying of the sheet-shaped electrode is usually performed by blowing heated air from a nozzle onto the sheet-shaped electrode, and the heated air is subjected to fine metal powder in a pipe (for example, a pipe connecting the heater and the nozzle) or a heating wire in the heater. In this case, the powder may be mixed with the surface of the electrode sheet and become an impurity, thereby contributing to a reduction in the durability of the electric double layer capacitor.
[0016]
Therefore, in order to ensure long-term durability and reliability of the electric double layer capacitor, when using heated air in the drying process of the electrode sheet, it is very important to strictly control the amount of impurities mixed in the heated air. Is important.
In this regard, in the present invention, the continuous drying is performed by blowing heated air through a hepa filter (Claim 2). These impurities can be removed by a hepafilter capable of collecting 99.97% or more of particles of 0.3 μm or more, so that the impurities do not adhere to the electrode sheet.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a manufacturing process for manufacturing an electrode sheet for an electric double layer capacitor (hereinafter, referred to as an electrode sheet). The raw materials for producing the sheet-like electrode constituting the electrode sheet include activated carbon as a carbonaceous powder, carbon black as a conductive aid, PTFE (polytetrafluoroethylene) powder as a binder, and liquid IPA as a binder aid. Isopropyl alcohol).
[0018]
First, each raw material is measured. Next, activated carbon and carbon black are put into a container of a mixer, and these are mixed by a rotating stirring blade. Thereby, activated carbon and carbon black are mixed as uniformly as possible.
Then, PTFE and IPA are charged into the container of the mixer, and these are mixed with the mixture of activated carbon and carbon black. Thereby, the activated carbon, the carbon black, and the PTFE are mixed, and the PTFE is fiberized, so that the activated carbon and the carbon black are entangled.
[0019]
Next, the mixed mixture is accommodated in a container of a kneader (kneader), covered with a lid, and kneaded by rotating a blade while pressing the mixture with the lid. By this kneading, the mixture is kneaded in a clay state, and the PTFE is further fiberized to bind the activated carbon and the carbon black. At this time, the temperature of the container, the lid and the blade of the kneading machine is controlled to, for example, 90 ° C.
Next, the kneaded material kneaded by the above kneading machine is accommodated in a container of the knurling machine 9 to be made into fine particles, and then charged into a calendering machine, and the mixture is formed into a sheet by two rollers. The formed sheet-shaped body is wound up by a winding roller. At this time, the thickness of the sheet-shaped molded body is, for example, 200 μm.
[0020]
Next, in a roll rolling step, the sheet-shaped compact is rolled through two rollers. By performing this roll rolling step a plurality of times, a sheet-like electrode having a predetermined thickness, for example, 160 μm is formed. Incidentally, in the final step of the roll rolling, both end portions in the width direction of the sheet electrode are cut by a cutter. What has been described above is the step of forming the sheet-like electrode.
Next, in a laminating step, the rolled sheet electrode is formed into an aluminum foil-bonded electrode sheet as a current collector foil. This is the step of preparing an electrode sheet. Then, a drying step including continuous drying and vacuum drying is performed on the roll-shaped electrode sheet.
[0021]
Here, the details of the continuous drying and the vacuum drying in the above-described drying step will be described with reference to FIGS.
First, in the continuous drying, as shown in FIG. 2, in a continuous drying device 2 for the electrode sheet 1, the electrode sheet 1 wound in a roll shape is passed through one of the rollers and dried through a drying chamber 3. The rolled electrode sheet 1 is wound by another roller and rolled again.
[0022]
In this case, the roller that feeds out the electrode sheet 1 performs tension control for applying a braking force according to the roll diameter (the wound thickness) of the electrode sheet 1, and the roller that rewinds the dried electrode sheet 1. In the roller 4 one stage before, edge control for displacing the electrode sheet 1 in the width direction is performed so that the tension of the electrode sheet 1 is constant in each portion in the width direction.
[0023]
A plurality of nozzles 5 for blowing heated air from above and below to the electrode sheet 1 to be continuously dried are provided in the drying chamber 3 described above. The number of nozzles 5 may be any number as long as it is sufficient to dry the electrode sheet 1. The heated air is generated by a first heated air supply means 6 having a heater 6a and a fan 6b as shown in FIG. 3 and then passed through a hepa filter 7 (High Efficiency Particulate Air Filter) to have a second air having a heater 8a and a fan 8b. The hot air is supplied to the nozzle 5 via the hot air supply means 8.
[0024]
The hepa filter 7 has a capability of collecting 99.97% of particles having a size of 0.3 μm or more by improving the dust collection area by forming a nonwoven fabric of resin fibers into a pleated shape. Metal powder and powder degraded by the heater are removed. However, since the density of the hepa filter 7 is very high due to its high trapping ability, the resistance reduces the momentum of the heated air. Further, the heat capacity of the hepa filter 7 is high because of its density, and the temperature of the heated air that has passed through the hepa filter 7 also decreases. Therefore, in this embodiment, the heated air that has passed through the hepa filter 7 is again blown onto the electrode sheet 1 from the nozzle 5 after the temperature and pressure are increased using the second heated air supply unit 8. I have.
[0025]
As described above, since the heated air that has passed through the hepa filter 7 has very little impurities in the air, the pipe connecting the second heated air supply means 8 and the nozzle 5 in this embodiment is made of corrosion-resistant stainless steel. In addition, for example, a nichrome wire serving as the heater 8b is covered with a stainless steel pipe having the same corrosion resistance to prevent dust generation.
[0026]
For this reason, the heating air from the second heating air supply means 8 also has very few impurities, but the configuration for generating the heating air is not necessarily limited to this depending on the environment of the drying process.
[0027]
As described above, the continuous drying performed by spreading the electrode sheet 1 effectively removes moisture and IPA residues contained in the electrode sheet 1.
The temperature of the heated air blown to the electrode sheet 1 is, for example, about 120 ° C. If the temperature is higher than this, a problem of deterioration of the adhesive or the like occurs.
In the drying chamber 3, the electrode sheet 1 is meandered and dried while being folded several times, or a far-infrared ray device or the like is installed in the drying chamber 3 while blowing hot air. There is no problem even if the drying ability is further increased.
[0028]
Further, in order to prevent dust from being generated on the electrode sheet 1, not only the heater of the above-mentioned second heated air supply means 8 but also the heater coated with stainless steel or the like in the first heated air supply means 6 or Piping may be used.
In vacuum drying, the electrode sheet 1 wound up in a roll after continuous drying is stored in a vacuum chamber 10 of a vacuum drying device 9 and dried in a rolled state.
[0029]
The vacuum chamber 10 adjusts the degree of vacuum or adjusts the airflow in the vacuum chamber by a vacuum pipe 11 and a purge pipe 12 connected to a vacuum pump (not shown), and the degree of vacuum can be measured using a vacuum gauge 13. it can. The door 15 to which the observation window 14 is attached seals the vacuum chamber 10 and is opened and closed by a handle 15a.
A heater 16 is provided on the peripheral wall of the vacuum chamber 10, and the temperature in the vacuum chamber 10 is controlled by the heater 16. A core support 17 is provided on the inner wall surface of the vacuum chamber 10, and the core support 17 can support a core 19 passed through a bobbin (winding core) 18 of the roll-shaped electrode sheet 1.
[0030]
Since the roll-shaped electrode sheet 1 supported by the core 19 and the core support 17 in the vacuum chamber 10 is placed under vacuum while being heated as described above, moisture that cannot be completely removed by continuous drying, and IPA is removed.
As described above, since the drying of the electrode sheet 1 is performed not during the formation but after the completion, it is possible to remove water and IPA contained in the electrode sheet 1 (sheet-like electrode) as much as possible, and as a result, high quality is achieved. It becomes possible to manufacture electric double layer capacitors.
[0031]
Here, the electrode sheet 1 after the vacuum drying is inspected for its residual moisture content, residual IPA content, overall appearance and the like. The residual moisture content is, for example, 2000 ppm or less, and the residual IPA content is 900 ppm. The following is assumed.
[0032]
The step of winding the electrode sheet 1 after the continuous drying into a roll is performed by providing a continuous dries (a dew point lower than in a dry area of −20 ° C. or less) in the drying chamber 3. By doing so, re-adsorption of moisture or the like may be prevented when the electrode sheet 1 is wound.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention and is a view showing a method for manufacturing an electrode sheet for an electric double layer capacitor. FIG. 2 is a side view showing a drying chamber. FIG. 3 is a supply flow of heated air in the drying chamber. FIG. 4 is a perspective view showing a vacuum chamber.
In the figure, 1 is an electrode sheet, 2 is a continuous drying device, 3 is a drying chamber, 4 is a roller, 5 is a nozzle, 6 is a first heated air supply means, 6a is a heater, 6b is a fan, 7 is a hepa filter, 8 Is a second heating air supply means, 8a is a heater, 8b is a fan, 9 is a vacuum dryer, 10 is a vacuum chamber, 11 is a vacuum pipe, 12 is a purge nozzle, 13 is a vacuum gauge, 14 is an observation window, and 15 is a door. , 15a are handles, 16 is a heater, 17 is a core support, 18 is a bobbin (winding core), and 19 is a core.

Claims (2)

炭素質粉末、導電性助剤及びバインダを含む原料を混合、混練し成形材料を作成する工程と、
この成形材料を成形、圧延して長尺なシート状電極を形成する工程と、
このシート状電極と集電箔とを貼り合わせて電極シートを作成する工程と、
前記電極シートを乾燥する乾燥工程とを実行して、電気二重層コンデンサ用電極シートを製造する方法であって、
前記乾燥工程は、電極シートを繰り出しながら乾燥室に通して乾燥させる連続乾燥と、
この連続乾燥を経て、ロール状に巻回された電極シートを真空室に収容して乾燥させる真空乾燥とを含むことを特徴とする電気二重層コンデンサ用電極シートの製造方法。
A step of mixing and kneading the raw materials including the carbonaceous powder, the conductive auxiliary agent and the binder to form a molding material,
Forming and rolling this molding material to form a long sheet-like electrode;
Bonding the sheet electrode and the current collector foil to form an electrode sheet;
Performing a drying step of drying the electrode sheet, a method of manufacturing an electrode sheet for an electric double layer capacitor,
The drying step is continuous drying in which the electrode sheet is passed through a drying chamber while being fed and dried.
A method of manufacturing an electrode sheet for an electric double layer capacitor, comprising: vacuum drying in which, after the continuous drying, the electrode sheet wound into a roll is housed in a vacuum chamber and dried.
前記連続乾燥は、乾燥室においてヘパフィルタを通した加熱風を電極シートに吹き当てて行うことを特徴とする請求項1記載の電気二重層コンデンサ用電極シートの製造方法。The method for producing an electrode sheet for an electric double layer capacitor according to claim 1, wherein the continuous drying is performed by blowing heated air that has passed through a hepa filter in the drying chamber onto the electrode sheet.
JP2002347942A 2002-11-29 2002-11-29 Manufacturing method of electrode sheet for electric double layer capacitor Expired - Fee Related JP3803084B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002347942A JP3803084B2 (en) 2002-11-29 2002-11-29 Manufacturing method of electrode sheet for electric double layer capacitor
US10/721,757 US6872616B2 (en) 2002-11-29 2003-11-26 Manufacturing method of polarizing property electrode for electrical double layer capacitor, and manufacturing method of electrode sheet for electrical double layer capacitor
US11/041,371 US7068493B2 (en) 2002-11-29 2005-01-25 Polarizing property electrode for electrical double layer capacitor and manufacturing method of polarizing property electrode for electrical double layer capacitor, and manufacturing method of electrode sheet for electrical double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347942A JP3803084B2 (en) 2002-11-29 2002-11-29 Manufacturing method of electrode sheet for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2004186195A true JP2004186195A (en) 2004-07-02
JP3803084B2 JP3803084B2 (en) 2006-08-02

Family

ID=32750991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347942A Expired - Fee Related JP3803084B2 (en) 2002-11-29 2002-11-29 Manufacturing method of electrode sheet for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3803084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127373A (en) * 2016-03-09 2018-11-28 잽고 엘티디 How to reduce outgasing in supercapacitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606466B (en) * 2013-11-07 2016-01-06 宁波南车新能源科技有限公司 The manufacturing process of ultracapacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127373A (en) * 2016-03-09 2018-11-28 잽고 엘티디 How to reduce outgasing in supercapacitors
KR102371036B1 (en) * 2016-03-09 2022-03-07 잽고 엘티디 How to reduce outgassing in supercapacitors

Also Published As

Publication number Publication date
JP3803084B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP4904807B2 (en) Electrochemical capacitor electrode manufacturing method and electrochemical capacitor electrode manufacturing apparatus
JP4754553B2 (en) Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
US11430614B2 (en) Modified activated carbon and method for producing same
CN104192836A (en) Thermal preparation method of solution of self-supported porous graphene-based membrane
CN102881464A (en) Method for making energy storage device
US7068493B2 (en) Polarizing property electrode for electrical double layer capacitor and manufacturing method of polarizing property electrode for electrical double layer capacitor, and manufacturing method of electrode sheet for electrical double layer capacitor
KR101660297B1 (en) Active carbon synthesized from ionic liquids, manufacturing method of the same, supercapacitor using the active carbon and manufacturing method of the supercapacitor
US7057879B2 (en) Polarizable electrode for electric double-layer capacitor, process for producing the polarizable electrode and process for producing the electric double-layer capacitor
JP6492583B2 (en) Electrode manufacturing method
CN106024411A (en) Electrode material and preparation method of electrode material, electrode piece and supercapacitor
JP3803084B2 (en) Manufacturing method of electrode sheet for electric double layer capacitor
US7297300B2 (en) Method of making polarizable electrode for electric double layer capacitor
JP4839834B2 (en) Electrochemical capacitor electrode manufacturing method and electrochemical capacitor electrode manufacturing apparatus
US6898067B1 (en) Electric double-layer capacitor
JP3793751B2 (en) Method for producing polarizable electrode for electric double layer capacitor
JP2017143013A (en) Method of manufacturing battery
JP2005191425A (en) Production process of electrode for capacitor
JP2006324284A (en) Method for manufacturing electrochemical capacitor
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2004349529A (en) Electrode material for electric double layer capacitor and its manufacturing method
KR101571679B1 (en) Carbon nanofiber-ionic liquids composite, manufacturing method of the same, ultra-capacitor using the composite and manufacturing method of the ultra-capacitor
JP2003100572A (en) Electric double layer capacitor and method for manufacturing the same
JPH11162788A (en) Method for manufacturing electrical double-layer capacitor
CN218743410U (en) A cleaning device and roll subassembly for pole piece rolls roller
EP4123757A1 (en) Multi-porous lead-carbon electrode sheets and method for making thereof and lead-carbon batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees