JP2004184378A - Inspection method of decarbonization or burn mark of steel component - Google Patents

Inspection method of decarbonization or burn mark of steel component Download PDF

Info

Publication number
JP2004184378A
JP2004184378A JP2002355113A JP2002355113A JP2004184378A JP 2004184378 A JP2004184378 A JP 2004184378A JP 2002355113 A JP2002355113 A JP 2002355113A JP 2002355113 A JP2002355113 A JP 2002355113A JP 2004184378 A JP2004184378 A JP 2004184378A
Authority
JP
Japan
Prior art keywords
wave
polishing
decarburization
inner ring
suj2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355113A
Other languages
Japanese (ja)
Other versions
JP4093039B2 (en
Inventor
Katsuhiko Kizawa
克彦 木澤
Noriyasu Oguma
規泰 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002355113A priority Critical patent/JP4093039B2/en
Publication of JP2004184378A publication Critical patent/JP2004184378A/en
Application granted granted Critical
Publication of JP4093039B2 publication Critical patent/JP4093039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of decarbonization or burn mark of a steel component capable of inspecting the decarbonization or the burn mark of the steel component simply, inexpensively and safely, without performing a breaking test of the steel component and without restricting a place for inspecting the decarbonization or the burn mark of the steel component. <P>SOLUTION: An SH wave transmitter 1 and an SH wave receiver 2 are installed in a mutually separated state respectively on an orbital plane 10A of an inner ring 10. An SH wave is transmitted from the SH wave transmitter 1, and the SH wave propagated near the surface layer of the inner ring 10 made of SUJ2 is received by the SH wave receiver 2, to thereby measure a propagation velocity of the SH wave to the inner ring 10. The decarbonization or the burn mark of the inner ring 10 is determined based on the propagation velocity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、鋼製部品における脱炭または研磨焼けの検査方法に関する。
【0002】
【従来の技術】
従来、鋼製部品の脱炭の検査方法としては、電子線マイクロアナライザー(Electron Prove Micro Analyzer : EPMA)を用いた方法がある。この電子線マイクロアナライザーを用いた方法では、鋼製部品を切断することによって鋼製部品から鋼製部品の一部を取出して、この鋼製部品の一部の表面を研磨して試料を作成した後、この試料に電子線を照射してこの試料から炭素の特性X線を発生させて、この炭素の特性X線の測定を行っている。そして、この炭素の特性X線の測定に基づいて鋼製部品中の炭素の含有率を検出して、鋼製部品の脱炭を判断している。
【0003】
また、他の鋼製部品の脱炭または研磨焼の検査方法としては、X線照射装置を用いた方法もある。このX線照射装置を用いた方法では、鋼製部品にX線を照射することによって、この鋼製部品の残留応力、X線回折強度に対する回折角の半価幅および残留オーステナイト量を測定している。そして、この測定結果に基づいて鋼製部品の脱炭または研磨焼を判断している(例えば、特許文献1参照)。
【0004】
また、更なる鋼製部品の脱炭または研磨焼の検査方法としては、鏡面状に加工した表面(軌道最表面または切断面)をエッチングし、組織観察により判断する手法がある。
【0005】
【特許文献1】
特開2000−304710
【0006】
【発明が解決しようとする課題】
しかしながら、上記電子線マイクロアナライザーやエッチングを用いた検査方法では、鋼製部品の破壊が必要になるので、検査した鋼製部品を使用できないという問題がある。
【0007】
また、鋼製部品の破壊や、鋼製部品から取出した鋼製部品の一部の研磨等を必要とするので、鋼製部品の脱炭または研磨焼(エッチングを用いる方法のみ)を検査するときの工数が多くなって、鋼製部品の脱炭または研磨焼の検査に要するコストと労力が大きくなるという問題がある。
【0008】
一方、上記X線照射装置を用いた検査方法では、鋼製部品の脱炭または研磨焼の検査に大掛りなX線照射装置を用いるので、このX線照射装置を自由に検査現場に持ち運びできず、鋼製部品の脱炭または研磨焼の検査を行う場所が限定されるという問題がある。
【0009】
また、人体に危険な放射線のX線を用いるので、X線照射装置の操作に熟練を必要とし、鋼製部品の脱炭または研磨焼の検査を安全かつ簡単にできないという問題がある。
【0010】
そこで、本発明の目的は、鋼製部品の脱炭または研磨焼の検査を行う場所が限定されず、かつ、鋼製部品の破壊検査をせずに鋼製部品の脱炭または研磨焼を簡単安価かつ安全に検査できる鋼製部品の脱炭または研磨焼の検査方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本件第1の発明の鋼製部品の脱炭または研磨焼の検査方法は、鋼製部品の表層に表面波またはSH波(horizontally polalized shear wave)を伝播させて、この表層を伝播する表面波またはSH波の伝播速度を測定することで上記鋼製部品の脱炭または研磨焼を検査することを特徴としている。
【0012】
尚、上記研磨焼とは、鋼製部品の表面を研磨する最終工程で、鋼製部品の表面の表面温度が上がって、鋼製部品がもう一度焼き入れされて鋼製部品の材質が再焼でかたくてもろくなったり、鋼製部品の焼戻しが生じて鋼製部品の材質が軟化したりして、出来上がった鋼製部品が、所定の規格に合わなくなる現象をいう。上記再焼の場合は、鋼製部品の製造ラインに異常が発生した場合に生じるため鋼製部品の異常の発見が比較的容易である一方、上記焼戻しの場合は、鋼製部品の異常の発見が困難である。この発明の鋼製部品の研磨焼の検査方法は、主に上記鋼製部品の焼戻しの検査を行うものとする。
【0013】
また、上記脱炭とは、酸化性の雰囲気下で鋼を加熱する時、鋼中酸素と反応することにより生じる現象であり、軸受鋼のような高炭素鋼の場合は、比較的容易に生じることが知られている。
【0014】
また、上記SH波とは、主振動方向が伝播方向に垂直でかつ材料の表面に略平行な方向で、かつ、材料の表面に沿って伝播する超音波であり、上記表面波とは、主振動方向が材料の表面の法線方向で、かつ、材料の表面に沿って伝播する超音波である。
【0015】
また、この発明の鋼製部品の脱炭または研磨焼の検査方法は、主に使用前の鋼製部品の品質保証のために行うものであるが、使用中の鋼製部品の劣化状態を検査するために行っても良いことは勿論である。
【0016】
上記第1の発明の鋼製部品の脱炭または研磨焼の検査方法を、例えば、次のようにして行う。表面波送信機またはSH波送信機と、表面波受信機またはSH波受信機とを被検査物である鋼製部品の表面上に所定の間隔を隔てて配置して、上記表面波送信機またはSH波送信機から送信されて上記鋼製部品を伝播した表面波またはSH波を、上記表面波受信機またはSH波受信機で受信して、この受信された表面波またはSH波の伝播速度を測定することによって行う。
【0017】
上記第1の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、例えば、表面波送信機またはSH波送信機と、表面波受信機またはSH波受信機とを鋼製部品の表面上に所定の間隔を隔てて配置して、表面波またはSH波の伝播速度を測定するだけで、鋼製部品の脱炭または研磨焼の検査を行うことができるので、上記電子線マイクロアナライザーやエッチングを用いる検査方法とは異なり、鋼製部品の脱炭または研磨焼の検査を行うのに鋼製部品を破壊したり、鏡面加工する必要がない。また、鋼製部品の脱炭または研磨焼の検査を行うときの工数を大幅に低減できて、鋼製部品の脱炭または研磨焼の検査に要するコストと労力を大幅に低減できる。
【0018】
また、上記第1の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、軽くて小型で持ち運び可能な表面波送信機またはSH波送信機と、表面波受信機またはSH波受信機とを用いることができて、かつ、人体に安全な表面波またはSH波の伝播速度に基づいて鋼製部品の脱炭または研磨焼の検査を行うので、大掛りで人体に危険なX線を使用するX線照射装置を用いる検査方法とは異なり、鋼製部品の脱炭または研磨焼の検査を行う場所が限定されず、かつ、鋼製部品の脱炭または研磨焼の検査を安全に行うことができる。
【0019】
また、本件第2の発明の鋼製部品の脱炭または研磨焼の検査方法は、上記第1の発明の鋼製部品の脱炭または研磨焼の検査方法において、上記鋼製部品は、SUJ2(高炭素クロム軸受鋼)の普通焼入品であり、このSUJ2の普通焼入品の表層を伝播する上記表面波またはSH波の伝播速度が、3180m/s以上の場合に、上記SUJ2の普通焼入品に脱炭が生じていると判断することを特徴としている。
【0020】
本発明者は、SH波における伝播速度と、SUJ2の普通焼入品中の残留応力に相関関係があることを見出し、SH波の伝播速度が3180m/s以上の場合に、SUJ2の普通焼入品に脱炭を示す引張応力が生じていることを発見した。
【0021】
上記第2の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、鋼製部品としてSUJ2の普通焼入品を用い、かつ、SH波または表面波(鋼製部品を伝播する表面波の伝播速度は、鋼製部品を伝播するSH波の伝播速度とほとんど変わらない)の伝播速度が3180m/s以上の場合に上記SUJ2の普通焼入品に脱炭が生じていると判断するので、脱炭が生じているSUJ2の普通焼入品を確実に発見して排除できて、高品質なSUJ2の普通焼入品を峻別することができる。
【0022】
また、本件第3の発明の鋼製部品の脱炭または研磨焼の検査方法は、上記第1の発明の鋼製部品の脱炭または研磨焼の検査方法において、上記鋼製部品は、SUJ2の普通焼入品であり、このSUJ2の普通焼入品の表層を伝播する上記表面波またはSH波の伝播速度が、3150m/s以上の場合に、上記SUJ2の普通焼入品に研磨焼が生じていると判断することを特徴としている。
【0023】
本発明者は、SH波の伝播速度と研磨焼の発生に対応関係があることを見出した。詳細には、SH波の伝播速度が3150m/s以上の場合に、上記SUJ2の普通焼入品に研磨焼が生じていることを見出した。
【0024】
上記第3の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、鋼製部品としてSUJ2の普通焼入品を用い、かつ、SH波または表面波の伝播速度が3150m/s以上の場合にSUJ2の普通焼入品に研磨焼が生じていると判断するので、研磨焼が生じているSUJ2の普通焼入品を確実に発見して排除できて、高品質な上記SUJ2の普通焼入品を峻別することができる。
【0025】
【発明の実施の形態】
以下、この発明の鋼製部品の脱炭または研磨焼の検査方法の一実施形態としての円筒ころ軸受の内輪10の脱炭または研磨焼の検査方法を、図示の実施の形態により詳細に説明する。この内輪10は、普通焼入品であるSUJ2からなる。
【0026】
図1(A)は、上記内輪10の軌道面10Aを示す平面図であり、図1(B)は、内輪10の正面図である。この実施形態では、図1(A),(B)に示すように、SH波送信機1と内輪10の軌道面10Aとが接触線3で線接触するように、SH波送信機1を内輪10の軌道面10Aの軸方向の略中央に設置する一方、SH波受信機2と内輪10の軌道面10Aとが接触線5で線接触するように、SH波受信機2をSH波送信機1から周方向に離間した状態で内輪10の軌道面10Aの軸方向の略中央に設置している。上記SH波送信機1およびSH波受信機2の軸方向の寸法D1は、内輪10の軸方向の寸法D2の3分の1になっている。
【0027】
また、この実施形態では、図1(B)に示すように、SH波送信機1の接触線3と内輪10の中心P0とを結ぶ直線Lrと、SH波受信機2の接触線5と上記中心P0とを結ぶ直線Lqとがなす角度2αを40°とした。また、上記SH波送信機1の接触線3は、SH波送信機1の軌道面10Aに対する対向面1AのうちのSH波を発生する有効部分7に含まれており、上記SH波受信機2の接触線5は、SH波受信機2の軌道面10Aに対する対向面2AのうちのSH波を検知可能な有効部分8に含まれている。
【0028】
上記構成において、SH送信機1が内蔵する圧電素子からなるSH波発振部(図示せず)を駆動することで、対向面1Aの有効部分7を振動させて、上記SH波送信機1からSH波を発信する。そして、上記SH送信機1から発信されて内輪10の表層付近を伝播したSH波をSH波受信機2で受信して、SH波の伝播速度の測定を行う。具体的には、SH波の振幅が0になるSH波のゼロクロス点を計時基準にして、SH波送信機1の接触線3からSH波受信機2の線接触5までのSH波の伝播時間tを求め、以下の式(1)からSH波の伝播速度Vを測定する。
【0029】
V=2πr・(2α/360°)÷t
=2πr/(9t)[m/s]・・・・・・(1)
(ここで、rは軌道面10Aの半径[m]、πは円周率である。)
【0030】
図2の表に、試料番号が付された10個のSUJ2製の内輪の夫々において、内輪を伝播するSH波の伝播速度と、内輪の一部を切断して内輪の切断面を光学顕微鏡で観察したときの内輪の軌道面の表層部の組織観察による内輪組織の研磨焼の合否結果を示す。この表に示すように、上記組織観察で不合格と判断された試料番号1から5の内輪は、SH波の伝播速度が全て3160m/s以上となる一方、組織観察で合格と判断された試料番号6から10の内輪は、SH波の伝播速度が全て3140m/s以下となっている。このことから、SUJ2製の内輪に研磨焼が生じているか否かを判断するSH波の伝播速度の閾値を、3150m/sにすることができるのである。これは、焼戻しを生じている状態は、SUJ2製の内輪10内の結晶の粒が揃った状態であるが、内輪内の結晶の粒が揃うにつれて、内輪を伝播するSH波の伝播速度が早くなるからである。
【0031】
図3は、図2の表をグラフ化したものである。図3には、SH波伝播速度3150m/s上に引かれた線よりも上に存在する試料番号1から5の内輪が、不合格になる一方、この線よりも下に存在する試料番号6から10の内輪が、合格になる様子を示している。
【0032】
図4は、SUJ2製の内輪を伝播するSH波の伝播速度と、X線照射装置を用いて測定した上記内輪の残留応力との関係を示す図である。
【0033】
図4に示すように、X線照射装置を用いた検査方法での内輪内の残留応力0MPaが、上記実施形態の検査方法でのSH波伝播速度3180m/sに対応していることがわかる。
【0034】
このことから、SUJ2の残留応力が0を境にして引張応力になっている領域は、SUJ2に脱炭を生じている状態であるので、SH波伝播速度が3180m/s以上の領域は、SUJ2製の内輪10に脱炭を生じている状態である。というのも、脱炭を生じている状態では、SUJ2製の内輪に引張応力が生じ、この引張応力が生じると内輪を伝播するSH波の伝播速度が速くなるからである。
【0035】
図5の表に、試料番号が付された10個の内輪の夫々において、内輪の軌道面の表層部を伝播するSH波の伝播速度と、内輪の一部を切断して内輪の軌道面表層部の切断面を光学顕微鏡で観察したときの内輪の組織観察による内輪組織の脱炭の合否結果を示す。この表に示すように、上記組織観察で不合格と判断された試料番号1から5の内輪は、SH波の伝播速度が全て3190m/s以上となる一方、組織観察で合格と判断された試料番号6から10の内輪は、SH波の伝播速度が全て3156m/s以下となっている。このことから、SUJ2製の内輪に脱炭が生じているか否かを判断するSH波の伝播速度の閾値を、3180m/sにすることができるのである。
【0036】
図6は、図5の表をグラフ化したものである。図6には、SH波伝播速度3180m/s上に引かれた線よりも上に存在する試料番号1から5の内輪が、不合格になる一方、この線よりも下に存在する試料番号6から10の内輪が、合格になる様子を示している。
【0037】
上記実施形態の鋼製部品の脱炭または研磨焼の検査方法によれば、SH波送信機1と、SH波受信機2とを内輪10の表面上に所定の間隔を隔てて配置して、SH波の伝播速度を測定するだけで、内輪10の脱炭または研磨焼の検査を行うことができるので、上記電子線マイクロアナライザーやエッチングを用いる検査方法とは異なり、内輪10の脱炭または研磨焼の検査を行うのに内輪10を破壊したり、鏡面加工する必要がない。また、内輪10の脱炭または研磨焼の検査を行うときの工数を大幅に低減できて、内輪10の脱炭または研磨焼の検査に要するコストと労力を大幅に低減できる。
【0038】
また、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法によれば、軽くて小型で持ち運び可能なSH波送信機1とSH波受信機2とを用いることができて、かつ、人体に安全なSH波の伝播速度に基づいて内輪10の脱炭または研磨焼の検査を行うので、大掛りで人体に危険なX線を使用するX線照射装置を用いる検査方法とは異なり、内輪10の脱炭または研磨焼の検査を行う場所が限定されず、かつ、内輪10の脱炭または研磨焼の検査を安全に行うことができる。
【0039】
また、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法において、鋼製部品としてSUJ2製の内輪10を用い、かつ、SH波の内輪10を伝播するときの伝播速度が3180m/s以上の伝播速度になった場合には、SUJ2製の内輪10に脱炭が生じていると判断できるので、脱炭が生じているSUJ2製の内輪10を確実に発見して排除できて、高品質なSUJ2製の内輪10を峻別することができる。
【0040】
また、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法において、鋼製部品としてSUJ2製の内輪10を用い、かつ、SH波の内輪10を伝播するときの伝播速度が3150m/s以上の伝播速度になった場合には、SUJ2製の内輪10に研磨焼が生じていると判断できるので、研磨焼が生じているSUJ2製の内輪10を確実に発見して排除できて、高品質なSUJ2製の内輪10を峻別することができる。
【0041】
尚、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法では、SH波送信機1およびSH波受信機2を用いて、鋼製部品の一例としての内輪10内にSH波を伝播させて内輪10の脱炭または研磨焼を検査したが、表面波送信機および表面波受信機を用いて、内輪10内にSH波と略同等な伝播速度を有する表面波を伝播させて、内輪10の脱炭または研磨焼を検査しても良い。
【0042】
また、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法では、この検査方法を、SUJ2製の円筒ころ軸受の内輪10に適用したが、この検査方法を、SUJ2製の円筒ころ軸受の外輪に適用しても良い。また、この検査方法を、SUJ2製の円筒ころ軸受の内輪および外輪に限らず、SUJ2製の他の軸受や鋼製部品に適用しても良く、SUJ2製以外の鋼製部品に適用しても良い。
【0043】
また、上記実施形態の鋼製部品の脱炭または研磨焼の検査方法では、SH波の伝播速度をSH波の変位のゼロクロス点に基づいて測定したが、この発明の鋼製部品の脱炭または研磨焼の検査方法では、SH波の伝播速度をSH波の波形の変位の所定の閾値を超えた部分に基づいて測定しても良い。
【0044】
【発明の効果】
以上より明らかなように、第1の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、例えば、表面波送信機またはSH波送信機と、表面波受信機またはSH波受信機とを鋼製部品の表面上に所定の間隔を隔てて配置して、表面波またはSH波の伝播速度を測定するだけで、鋼製部品の脱炭または研磨焼の検査を行うことができるので、鋼製部品の脱炭または研磨焼の検査を行うのに鋼製部品を破壊する必要がない。また、鋼製部品の脱炭または研磨焼の検査を行うときの工数を大幅に低減できて、鋼製部品の脱炭または研磨焼の検査に要するコストと労力を大幅に低減できる。
【0045】
また、第1の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、軽くて小型で持ち運び自由な表面波またはSH波送信機と、表面波またはSH波受信機とを用いることができて、かつ、人体に安全なSH波または表面波の伝播速度に基づいて鋼製部品の脱炭または研磨焼の検査を行うので、鋼製部品の脱炭または研磨焼の検査を行う場所が限定されず、かつ、鋼製部品の脱炭または研磨焼の検査を安全に行うことができる。
【0046】
また、第1の発明の鋼製部品の脱炭または研磨焼の検査方法は、検査機材が小型、軽量、安価であり安定性が高いため、鋼製部品の製造ラインの一部あるいは検査ラインを構成する検査装置にも適用し易い。
【0047】
また、第2の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、鋼製部品としてSUJ2の普通焼入品を用い、かつ、SH波または表面波の伝播速度が3180m/s以上の場合に上記SUJ2の普通焼入品に脱炭が生じていると判断するので、脱炭が生じている上記SUJ2の普通焼入品を確実に発見して排除できて、高品質なSUJ2の普通焼入品を峻別することができる。
【0048】
また、第3の発明の鋼製部品の脱炭または研磨焼の検査方法によれば、鋼製部品としてSUJ2の普通焼入品を用い、かつ、SH波または表面波の伝播速度が3150m/s以上の場合に上記SUJ2の普通焼入品に研磨焼が生じていると判断するので、研磨焼が生じている上記SUJ2の普通焼入品を確実に発見して排除できて、高品質なSUJ2の普通焼入品を峻別することができる。
【図面の簡単な説明】
【図1】図1(A)は、この発明の一実施形態の軸受の内輪の脱炭または研磨焼の検査方法を行うときの内輪の軌道面上のSH波送信機およびSH波受信機の配置を示す平面図であり、図1(B)は、上記内輪の軸方向の正面図である。
【図2】10個の試料におけるSH波伝播速度と、この10個の試料の組織観察における研磨焼検査の合否との関係を示す図である。
【図3】図2のグラフである。
【図4】内輪の残留応力とSH波伝播速度との関係を示す図である。
【図5】10個の試料におけるSH波伝播速度と、この10個の試料の組織観察における脱炭検査の合否との関係を示す図である。
【図6】図5のグラフである。
【符号の説明】
1 SH波送信機
2 SH波受信機
10 内輪
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for inspecting a steel part for decarburization or burning.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method for inspecting decarburization of steel parts, there is a method using an electron probe micro analyzer (EPMA). In the method using the electron beam microanalyzer, a sample was prepared by cutting a steel part, extracting a part of the steel part from the steel part, and polishing a surface of a part of the steel part. Thereafter, the sample is irradiated with an electron beam to generate characteristic X-rays of carbon from the sample, and the characteristic X-rays of the carbon are measured. Then, the carbon content of the steel part is detected based on the measurement of the characteristic X-rays of the carbon to determine the decarburization of the steel part.
[0003]
As another inspection method for decarburization or polishing and burning of steel parts, there is a method using an X-ray irradiator. In the method using this X-ray irradiator, a steel part is irradiated with X-rays to measure the residual stress, the half width of the diffraction angle with respect to the X-ray diffraction intensity, and the residual austenite amount of the steel part. I have. Then, decarburization or polishing and burning of the steel part is determined based on the measurement result (for example, see Patent Document 1).
[0004]
Further, as a further inspection method for decarburization or polishing and burning of a steel part, there is a method of etching a mirror-finished surface (the outermost surface of a track or a cut surface) and observing the structure.
[0005]
[Patent Document 1]
JP-A-2000-304710
[0006]
[Problems to be solved by the invention]
However, the inspection method using the electron beam microanalyzer and the etching requires destruction of a steel part, and thus has a problem that the inspected steel part cannot be used.
[0007]
Also, when inspecting steel parts for decarburization or polishing (only using the method of etching), it requires destruction of steel parts and grinding of parts of steel parts taken out of steel parts. And the cost and labor required for inspection of decarburization or polishing and burning of steel parts are increased.
[0008]
On the other hand, in the inspection method using the X-ray irradiator, a large-scale X-ray irradiator is used for inspection of decarburization or polishing and burning of steel parts, so that this X-ray irradiator can be freely carried to the inspection site. In addition, there is a problem that the place where the inspection for decarburization or polishing and burning of steel parts is limited.
[0009]
Further, since X-rays which are dangerous to the human body are used, the operation of the X-ray irradiator requires skill, and there is a problem that the inspection of decarburization or polishing and burning of steel parts cannot be performed safely and easily.
[0010]
Therefore, an object of the present invention is to limit the place where the inspection of decarburization or polishing and firing of steel parts is not limited, and to easily perform decarburization or polishing and firing of steel parts without performing destructive inspection of steel parts. It is an object of the present invention to provide a method for inspecting decarburization or polishing and burning of steel parts which can be inspected cheaply and safely.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the method for inspecting decarburization or polishing and burning of a steel part according to the first aspect of the present invention includes transmitting a surface wave or a SH (horizontally polarized shear wave) to a surface layer of the steel part. It is characterized in that the steel part is inspected for decarburization or burning by measuring the propagation speed of the surface wave or SH wave propagating in the surface layer.
[0012]
The above-mentioned polishing and sintering is the final step of polishing the surface of a steel part, in which the surface temperature of the surface of the steel part rises, the steel part is quenched again, and the material of the steel part is re-fired. It refers to a phenomenon in which a steel part becomes inconsistent with a predetermined standard because the steel part becomes hard and brittle or the material of the steel part softens due to tempering of the steel part. In the case of the above-mentioned reheating, it is relatively easy to find the abnormality of the steel part because it occurs when an abnormality occurs in the production line of the steel part, while in the case of the above-mentioned tempering, the abnormality of the steel part is found. Is difficult. The inspection method for polishing and polishing of a steel part according to the present invention mainly performs the inspection for tempering of the steel part.
[0013]
The above-mentioned decarburization is a phenomenon that occurs when steel is heated in an oxidizing atmosphere by reacting with oxygen in the steel. In the case of high-carbon steel such as bearing steel, the decarburization occurs relatively easily. It is known.
[0014]
The SH wave is an ultrasonic wave that propagates along the surface of the material in a direction in which the main vibration direction is perpendicular to the propagation direction and is substantially parallel to the surface of the material. Ultrasonic waves whose vibration direction is normal to the surface of the material and propagates along the surface of the material.
[0015]
In addition, the method for inspecting decarburization or polishing and burning of steel parts of the present invention is mainly performed for quality assurance of steel parts before use, but inspects the deterioration state of steel parts in use. Needless to say, it may be carried out in order to do so.
[0016]
The inspection method of decarburization or polishing and burning of a steel part of the first invention is performed, for example, as follows. The surface wave transmitter or the SH wave transmitter and the surface wave receiver or the SH wave receiver are arranged at predetermined intervals on the surface of a steel part to be inspected, and the surface wave transmitter or The surface wave or the SH wave transmitted from the SH wave transmitter and propagated through the steel part is received by the surface wave receiver or the SH wave receiver, and the propagation speed of the received surface wave or SH wave is determined. This is done by measuring.
[0017]
According to the method for inspecting decarburization or polishing and burning of a steel part of the first invention, for example, a surface wave transmitter or an SH wave transmitter and a surface wave receiver or an SH wave receiver are used for the steel part. Since the inspection for decarburization or polishing and burning of steel parts can be performed only by arranging them at predetermined intervals on the surface and measuring the propagation speed of surface waves or SH waves, the above electron beam microanalyzer can be used. Unlike the inspection method using etching or etching, there is no need to break or mirror-finish the steel part to inspect the decarburization or polishing and burning of the steel part. In addition, the number of steps for inspecting steel parts for decarburization or polishing and burning can be greatly reduced, and the cost and labor required for inspection of steel parts for decarburizing or polishing and burning can be significantly reduced.
[0018]
Further, according to the method for inspecting decarburization or polishing and burning of a steel part according to the first aspect of the present invention, a light, small and portable surface wave transmitter or SH wave transmitter, and a surface wave receiver or SH wave reception are provided. And the inspection of steel parts for decarburization or polishing and burning based on the propagation speed of surface waves or SH waves that are safe for the human body. Unlike the inspection method using an X-ray irradiator, which uses an X-ray irradiator, the place where the inspection for decarburization or polishing and burning of steel parts is not limited, and the inspection for decarburization or polishing and burning of steel parts can be performed safely. It can be carried out.
[0019]
Further, the inspection method for decarburization or polishing and burning of a steel part according to the second invention is a method for inspecting decarburization or polishing and burning of a steel part according to the first invention, wherein the steel part is SUJ2 ( High-carbon chromium bearing steel), and when the propagation speed of the surface wave or SH wave propagating on the surface layer of the SUJ2 normally quenched product is 3180 m / s or more, the SUJ2 normally quenched. It is characterized by determining that decarburization has occurred in the goods.
[0020]
The present inventor has found that there is a correlation between the propagation speed of the SH wave and the residual stress in the normally quenched product of SUJ2, and when the propagation speed of the SH wave is 3180 m / s or more, the SUJ2 is normally quenched. It was discovered that the product had tensile stress indicating decarburization.
[0021]
According to the inspection method for decarburization or polishing and sintering of steel parts according to the second aspect of the invention, an ordinary hardened product of SUJ2 is used as a steel part, and an SH wave or a surface wave (a surface propagating through a steel part) is used. (The propagation speed of the wave is almost the same as the propagation speed of the SH wave propagating through the steel part.) When the propagation speed is 3180 m / s or more, it is determined that decarburization has occurred in the normally quenched product of SUJ2. Therefore, the normally quenched SUJ2 product in which decarburization has occurred can be reliably found and eliminated, and the high-quality, normally quenched SUJ2 product can be distinguished.
[0022]
The inspection method for decarburization or polishing and burning of a steel part according to the third invention is a method for inspecting decarburization or polishing and burning of a steel part according to the first invention, wherein the steel part is an SUJ2. When the propagation speed of the surface wave or SH wave propagating on the surface layer of the SUJ2 normally quenched product is 3150 m / s or more, polishing and burning occur in the SUJ2 normally quenched product. It is characterized by judging that there is.
[0023]
The present inventor has found that there is a correspondence between the propagation speed of the SH wave and the occurrence of polishing burn. Specifically, it has been found that when the propagation speed of the SH wave is 3150 m / s or more, the above-mentioned SUJ2 ordinary hardened product is polished and burned.
[0024]
According to the method for inspecting decarburization or polishing and sintering of steel parts according to the third aspect of the invention, a normally quenched product of SUJ2 is used as a steel part, and the propagation speed of SH waves or surface waves is 3150 m / s or more. In this case, it is determined that polishing hardening has occurred in the normally hardened SUJ2 product, so that the normally hardened SUJ2 product in which the polishing hardening has occurred can be reliably detected and eliminated, and the high-quality SUJ2 normal hardened product can be removed. Quenched products can be distinguished.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for inspecting decarburization or polishing of the inner race 10 of a cylindrical roller bearing as an embodiment of the method for inspecting decarburization or polishing and burning of a steel part of the present invention will be described in detail with reference to the illustrated embodiment. . The inner ring 10 is made of SUJ2 which is a normally hardened product.
[0026]
FIG. 1A is a plan view showing a raceway surface 10 </ b> A of the inner ring 10, and FIG. 1B is a front view of the inner ring 10. In this embodiment, as shown in FIGS. 1A and 1B, the SH wave transmitter 1 is fixed to the inner ring so that the SH wave transmitter 1 and the raceway surface 10A of the inner ring 10 make line contact with the contact line 3. The SH wave receiver 2 is installed at substantially the center of the raceway surface 10A of the inner ring 10 in the axial direction, and the SH wave receiver 2 is so arranged that the SH wave receiver 2 and the raceway surface 10A of the inner race 10 make line contact with the contact line 5. The inner race 10 is installed at a substantially axial center of the raceway surface 10A of the inner race 10 in a state of being spaced apart from the inner race 1 in the circumferential direction. The axial dimension D1 of the SH wave transmitter 1 and the SH wave receiver 2 is one third of the axial dimension D2 of the inner race 10.
[0027]
Further, in this embodiment, as shown in FIG. 1B, a straight line Lr connecting the contact line 3 of the SH wave transmitter 1 and the center P0 of the inner ring 10, the contact line 5 of the SH wave receiver 2, The angle 2α formed by the straight line Lq connecting the center P0 was set to 40 °. The contact line 3 of the SH wave transmitter 1 is included in an effective portion 7 of the surface 1A facing the orbital surface 10A of the SH wave transmitter 1 that generates the SH wave. The contact line 5 is included in the effective portion 8 of the facing surface 2A of the SH wave receiver 2 facing the track surface 10A, which can detect the SH wave.
[0028]
In the above configuration, by driving an SH wave oscillating section (not shown) composed of a piezoelectric element incorporated in the SH transmitter 1, the effective portion 7 of the facing surface 1A is vibrated, and the SH transmitter 1 Emit waves. Then, the SH wave transmitted from the SH transmitter 1 and propagated in the vicinity of the surface of the inner ring 10 is received by the SH wave receiver 2, and the propagation speed of the SH wave is measured. Specifically, the propagation time of the SH wave from the contact line 3 of the SH wave transmitter 1 to the line contact 5 of the SH wave receiver 2 is set with reference to the zero-cross point of the SH wave at which the amplitude of the SH wave becomes 0. t is obtained, and the propagation velocity V of the SH wave is measured from the following equation (1).
[0029]
V = 2πr · (2α / 360 °) ÷ t
= 2πr / (9t) [m / s] (1)
(Here, r is the radius [m] of the raceway surface 10A, and π is the pi.)
[0030]
In the table of FIG. 2, in each of the ten SUJ2 inner rings with sample numbers, the propagation speed of the SH wave propagating through the inner ring and the cut surface of the inner ring by cutting a part of the inner ring with an optical microscope are shown. The results of pass / fail of polishing and burning of the inner ring structure by observing the structure of the surface layer portion of the raceway surface of the inner ring when observed are shown. As shown in this table, the inner rings of Sample Nos. 1 to 5, which were determined to be unacceptable in the above-described tissue observation, had SH wave propagation speeds of 3160 m / s or more, while the samples which were determined to be unacceptable in the tissue observation. The inner rings Nos. 6 to 10 all have SH wave propagation speeds of 3140 m / s or less. From this, it is possible to set the threshold value of the SH wave propagation velocity for determining whether or not polishing and burning has occurred in the inner ring made of SUJ2 to 3150 m / s. This means that the tempering state is a state in which the crystal grains in the inner ring 10 made of SUJ2 are aligned, but as the crystal grains in the inner ring are aligned, the propagation speed of the SH wave propagating through the inner ring increases. Because it becomes.
[0031]
FIG. 3 is a graph of the table of FIG. In FIG. 3, the inner rings of Sample Nos. 1 to 5 existing above the line drawn above the SH wave propagation velocity of 3150 m / s are rejected, while the Sample No. 6 existing below this line is rejected. 10 to 10 show that the inner ring passes.
[0032]
FIG. 4 is a diagram showing the relationship between the propagation speed of the SH wave propagating through the inner ring made of SUJ2 and the residual stress of the inner ring measured using an X-ray irradiator.
[0033]
As shown in FIG. 4, it can be seen that the residual stress of 0 MPa in the inner race in the inspection method using the X-ray irradiation device corresponds to the SH wave propagation velocity of 3180 m / s in the inspection method of the above embodiment.
[0034]
From this, the region where the residual stress of SUJ2 is a tensile stress with 0 as a boundary is a state where SUJ2 is decarburized, and the region where the SH wave propagation speed is 3180 m / s or more is the SUJ2. Is a state in which decarburization has occurred in the inner ring 10 made of steel. This is because, in a state where decarburization is occurring, a tensile stress is generated in the inner ring made of SUJ2, and when this tensile stress is generated, the propagation speed of the SH wave propagating through the inner ring is increased.
[0035]
In the table of FIG. 5, in each of the ten inner rings with sample numbers, the propagation speed of the SH wave propagating in the surface layer of the raceway surface of the inner ring and the raceway surface layer of the inner ring by cutting a part of the inner ring are shown. The result of pass / fail of decarburization of the inner ring structure by observing the structure of the inner ring when the cut surface of the portion is observed with an optical microscope is shown. As shown in this table, the inner rings of Sample Nos. 1 to 5, which were determined to be unacceptable in the above-described tissue observation, had SH wave propagation velocities of 3190 m / s or more, while the samples which were determined to be unacceptable in the tissue observation. The inner rings Nos. 6 to 10 all have SH wave propagation speeds of 3156 m / s or less. From this, it is possible to set the threshold value of the SH wave propagation speed for determining whether or not decarbonization has occurred in the inner ring made of SUJ2 to 3180 m / s.
[0036]
FIG. 6 is a graph of the table of FIG. FIG. 6 shows that the inner rings of Sample Nos. 1 to 5 existing above the line drawn on the SH wave propagation velocity of 3180 m / s are rejected, while the Sample No. 6 existing below this line is rejected. 10 to 10 show that the inner ring passes.
[0037]
According to the inspection method of decarburization or polishing and burning of a steel part of the above embodiment, the SH wave transmitter 1 and the SH wave receiver 2 are arranged on the surface of the inner race 10 at a predetermined interval, Decarburization or polishing of the inner ring 10 can be inspected only by measuring the propagation speed of the SH wave. Therefore, unlike the inspection method using the electron beam microanalyzer or etching, decarburization or polishing of the inner ring 10 is performed. There is no need to destroy the inner ring 10 or perform mirror finishing to perform the burn inspection. In addition, the number of steps required for inspecting the inner ring 10 for decarburization or polishing / burning can be significantly reduced, and the cost and labor required for inspection of the inner ring 10 for decarburization or polishing / burning can be significantly reduced.
[0038]
Further, according to the inspection method for decarburization or polishing and burning of a steel part of the above-described embodiment, the light, small, and portable SH wave transmitter 1 and SH wave receiver 2 can be used, and Since the inspection of decarburization or polishing and burning of the inner ring 10 is performed based on the propagation speed of the SH wave that is safe for the human body, unlike the inspection method using an X-ray irradiator that uses X-rays that are dangerous to the human body on a large scale, The place where the decarburization or polishing and baking of the inner ring 10 is inspected is not limited, and the inspection of the decarburization and polishing and baking of the inner ring 10 can be performed safely.
[0039]
In the inspection method for decarburization or polishing and burning of a steel part of the above embodiment, the inner ring 10 made of SUJ2 is used as the steel part, and the propagation speed when the SH wave propagates through the inner ring 10 is 3180 m / s. When the above propagation speed is reached, it can be determined that decarburization has occurred in the inner ring 10 made of SUJ2. Therefore, the inner ring 10 made of SUJ2 in which decarburization has occurred can be reliably detected and eliminated, and High quality SUJ2 inner races 10 can be distinguished.
[0040]
Further, in the inspection method for decarburizing or polishing and burning of steel parts of the above embodiment, the inner speed 10 made of SUJ2 is used as the steel part, and the propagation speed when the SH wave propagates through the inner ring 10 is 3150 m / s. When the above propagation speed is reached, it can be determined that the SUJ2 inner ring 10 has been polished and burned. Therefore, the SUJ2 inner ring 10 having polished and burned can be reliably found and eliminated. High quality SUJ2 inner races 10 can be distinguished.
[0041]
In the inspection method for decarburization or polishing and burning of a steel part in the above embodiment, the SH wave is propagated into the inner ring 10 as an example of the steel part using the SH wave transmitter 1 and the SH wave receiver 2. The inner ring 10 was inspected for decarburization or polishing and burnt. However, a surface wave having a propagation speed substantially equal to that of the SH wave was propagated through the inner ring 10 using a surface wave transmitter and a surface wave receiver. Ten decarburization or polishing burns may be inspected.
[0042]
In the inspection method for decarburization or polishing and burning of steel parts in the above embodiment, this inspection method is applied to the inner ring 10 of the cylindrical roller bearing made of SUJ2. However, this inspection method is applied to the cylindrical roller bearing made of SUJ2. May be applied to the outer ring. Further, this inspection method is not limited to the inner ring and the outer ring of the cylindrical roller bearing made of SUJ2, but may be applied to other bearings and steel parts made of SUJ2, and may be applied to steel parts other than SUJ2. good.
[0043]
In the inspection method for decarburizing or polishing and burning steel parts of the above embodiment, the propagation speed of the SH wave was measured based on the zero cross point of the displacement of the SH wave. In the polishing burn inspection method, the propagation speed of the SH wave may be measured based on a portion of the SH wave waveform where the displacement exceeds a predetermined threshold.
[0044]
【The invention's effect】
As is clear from the above, according to the inspection method for decarburization or polishing and burning of steel parts of the first invention, for example, a surface wave transmitter or SH wave transmitter, and a surface wave receiver or SH wave receiver Can be inspected for decarburization or polishing and sintering of a steel part simply by arranging them on the surface of the steel part at predetermined intervals and measuring the propagation speed of the surface wave or SH wave. In addition, there is no need to destroy the steel part to perform the inspection for decarburization or polishing and burning of the steel part. In addition, the number of steps for inspecting steel parts for decarburization or polishing and burning can be greatly reduced, and the cost and labor required for inspection of steel parts for decarburizing or polishing and burning can be significantly reduced.
[0045]
According to the inspection method for decarburizing or polishing and burning steel parts of the first invention, the use of a light, small and portable surface wave or SH wave transmitter, and a surface wave or SH wave receiver. In order to inspect steel parts for decarburization or polishing and burning based on the propagation speed of SH waves or surface waves that are safe for the human body, a place to inspect steel parts for decarburizing or polishing and burning However, it is not limited, and the inspection of decarburization or polishing and burning of steel parts can be performed safely.
[0046]
Further, the inspection method for decarburization or polishing and burning of steel parts according to the first invention has a small, lightweight, inexpensive and highly stable inspection equipment. It is easy to apply to the configured inspection device.
[0047]
According to the inspection method for decarburization or polishing and sintering of a steel part of the second invention, a normally quenched SUJ2 product is used as the steel part, and the propagation speed of the SH wave or surface wave is 3180 m / s. In the above case, since it is determined that decarburization has occurred in the normally quenched SUJ2 product, the normally quenched SUJ2 product in which decarburization has occurred can be reliably found and eliminated, and high-quality SUJ2 can be obtained. Can be distinguished.
[0048]
Further, according to the inspection method for decarburization or polishing and sintering of a steel part of the third invention, a normal quenched product of SUJ2 is used as the steel part, and the propagation speed of the SH wave or surface wave is 3150 m / s. In the above case, it is determined that polishing hardening has occurred in the normally hardened SUJ2 product, so that the normally hardened SUJ2 hardened product can be reliably found and eliminated, and a high quality SUJ2 can be obtained. Can be distinguished.
[Brief description of the drawings]
FIG. 1 (A) is an SH-wave transmitter and an SH-wave receiver on a raceway surface of an inner ring when an inspection method for decarburization or polishing and burning of an inner ring of a bearing according to an embodiment of the present invention is performed. FIG. 1B is a plan view showing the arrangement, and FIG. 1B is a front view of the inner ring in the axial direction.
FIG. 2 is a diagram showing a relationship between SH wave propagation velocities of ten samples and pass / fail of polishing and burning inspection in the structure observation of the ten samples.
FIG. 3 is a graph of FIG. 2;
FIG. 4 is a diagram showing a relationship between residual stress of an inner ring and SH wave propagation velocity.
FIG. 5 is a diagram showing a relationship between SH wave propagation velocities of ten samples and pass / fail of a decarburization inspection in the structure observation of the ten samples.
FIG. 6 is a graph of FIG.
[Explanation of symbols]
1 SH wave transmitter 2 SH wave receiver 10 Inner ring

Claims (3)

鋼製部品の表層に表面波またはSH波を伝播させて、この表層を伝播する表面波またはSH波の伝播速度を測定することで上記鋼製部品の脱炭または研磨焼を検査する鋼製部品の脱炭または研磨焼の検査方法。A steel part for propagating a surface wave or SH wave to the surface layer of a steel part and measuring the speed of propagation of the surface wave or SH wave propagating on the surface layer to inspect the steel part for decarburization or polishing. Inspection method for decarburization or polishing and firing. 請求項1に記載の鋼製部品の脱炭または研磨焼の検査方法において、上記鋼製部品は、SUJ2の普通焼入品であり、このSUJ2の普通焼入品の表層を伝播する上記表面波またはSH波の伝播速度が、3180m/s以上の場合に、上記SUJ2の普通焼入品に脱炭が生じていると判断する鋼製部品の脱炭または研磨焼の検査方法。The inspection method for decarburization or polishing and sintering of a steel part according to claim 1, wherein the steel part is a normal quenched product of SUJ2, and the surface wave propagating on a surface layer of the normal quenched product of SUJ2. Alternatively, a method for inspecting decarburization or polishing and sintering of a steel part which determines that decarburization has occurred in the normally quenched SUJ2 product when the propagation speed of the SH wave is 3180 m / s or more. 請求項1に記載の鋼製部品の脱炭または研磨焼の検査方法において、上記鋼製部品は、SUJ2の普通焼入品であり、このSUJ2の普通焼入品の表層を伝播する上記表面波またはSH波の伝播速度が、3150m/s以上の場合に、上記SUJ2の普通焼入品に研磨焼が生じていると判断する鋼製部品の脱炭または研磨焼の検査方法。The inspection method for decarburization or polishing and sintering of a steel part according to claim 1, wherein the steel part is a normal quenched product of SUJ2, and the surface wave propagating on a surface layer of the normal quenched product of SUJ2. Alternatively, a method for inspecting decarburization or polishing and burning of a steel part which determines that polishing and burning has occurred in the normally quenched SUJ2 product when the propagation speed of the SH wave is 3150 m / s or more.
JP2002355113A 2002-12-06 2002-12-06 Inspection method for decarburization of steel parts and inspection method for polishing and firing of steel parts Expired - Fee Related JP4093039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355113A JP4093039B2 (en) 2002-12-06 2002-12-06 Inspection method for decarburization of steel parts and inspection method for polishing and firing of steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355113A JP4093039B2 (en) 2002-12-06 2002-12-06 Inspection method for decarburization of steel parts and inspection method for polishing and firing of steel parts

Publications (2)

Publication Number Publication Date
JP2004184378A true JP2004184378A (en) 2004-07-02
JP4093039B2 JP4093039B2 (en) 2008-05-28

Family

ID=32755900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355113A Expired - Fee Related JP4093039B2 (en) 2002-12-06 2002-12-06 Inspection method for decarburization of steel parts and inspection method for polishing and firing of steel parts

Country Status (1)

Country Link
JP (1) JP4093039B2 (en)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279856A (en) * 1990-03-28 1991-12-11 Japan Steel Works Ltd:The Ultrasonic material testing device
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH0614026B2 (en) * 1986-05-27 1994-02-23 日立建機株式会社 Ultrasonic measurement of the depth of the hardened layer
JPH06317570A (en) * 1993-04-30 1994-11-15 Hitachi Constr Mach Co Ltd Ultrasonic propagation-velocity measuring method
JPH095309A (en) * 1995-06-22 1997-01-10 Toshiba Tungaloy Co Ltd Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH0980031A (en) * 1995-09-14 1997-03-28 Toda Constr Co Ltd Method and apparatus for ultrasonic flaw detection
JPH09257766A (en) * 1996-03-22 1997-10-03 Hihakai Kensa Kk Method and apparatus for evaluating degree of embrittlement of metal material
JPH10111281A (en) * 1996-10-03 1998-04-28 Nkk Corp Ultrasonic flaw detection and ultrasonic probe
JPH10123106A (en) * 1996-10-23 1998-05-15 Non Destructive Inspection Co Ltd Method and device for evaluating degree of deterioration of test body by surface wave
JPH10153585A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Surface layer evaluating method and apparatus therefor
JPH10293124A (en) * 1997-04-17 1998-11-04 Hitachi Constr Mach Co Ltd Inspecting equipment of depth of quench hardened layer
JPH11211699A (en) * 1998-01-21 1999-08-06 Toshiba Tungaloy Co Ltd Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP3004349B2 (en) * 1990-11-29 2000-01-31 光洋精工株式会社 Bearing seizure prediction device
JP2000088818A (en) * 1998-09-17 2000-03-31 Toyota Motor Corp Quality evaluating method for surface modified layer
JP2000180415A (en) * 1998-12-17 2000-06-30 Osaka Bearing Co Ltd Apparatus for judging deterioration of surface material quality and method for its judgement
JP2000275122A (en) * 1999-03-23 2000-10-06 Nsk Ltd Method and device for detecting amount of pre-load of rolling bearing
JP2000304710A (en) * 1999-04-16 2000-11-02 Koyo Seiko Co Ltd Method for measuring degree of fatigue due to rolling fatigue
JP2001249118A (en) * 2000-03-06 2001-09-14 Masahiro Nishikawa Method for ultrasonically detecting degradation of metal
JP2002116191A (en) * 2000-05-18 2002-04-19 Torrington Co:The Method and apparatus to provide dynamic ultrasonic measurement of rolling element bearing parameter
JP3288254B2 (en) * 1997-04-30 2002-06-04 株式会社日立製作所 Surface wave sound velocity measuring method and surface wave sound velocity measuring device
JP2003329657A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Fatigue measuring method of metal material
JP2004151077A (en) * 2002-09-03 2004-05-27 Koyo Seiko Co Ltd Ultrasonic propagation velocity measuring method and solid surface measuring method using the same
JP2004184258A (en) * 2002-12-04 2004-07-02 Koyo Seiko Co Ltd Metallic member surface layer part inspecting method
JP3831292B2 (en) * 2002-05-15 2006-10-11 株式会社ジェイテクト Fatigue measurement method for inner ring of cylindrical roller bearing

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614026B2 (en) * 1986-05-27 1994-02-23 日立建機株式会社 Ultrasonic measurement of the depth of the hardened layer
JPH03279856A (en) * 1990-03-28 1991-12-11 Japan Steel Works Ltd:The Ultrasonic material testing device
JP3004349B2 (en) * 1990-11-29 2000-01-31 光洋精工株式会社 Bearing seizure prediction device
JPH05281201A (en) * 1992-04-06 1993-10-29 Hitachi Ltd Method and apparatus for measurement of depth of quenched and hardened layer
JPH06317570A (en) * 1993-04-30 1994-11-15 Hitachi Constr Mach Co Ltd Ultrasonic propagation-velocity measuring method
JPH095309A (en) * 1995-06-22 1997-01-10 Toshiba Tungaloy Co Ltd Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH0980031A (en) * 1995-09-14 1997-03-28 Toda Constr Co Ltd Method and apparatus for ultrasonic flaw detection
JPH09257766A (en) * 1996-03-22 1997-10-03 Hihakai Kensa Kk Method and apparatus for evaluating degree of embrittlement of metal material
JPH10111281A (en) * 1996-10-03 1998-04-28 Nkk Corp Ultrasonic flaw detection and ultrasonic probe
JPH10123106A (en) * 1996-10-23 1998-05-15 Non Destructive Inspection Co Ltd Method and device for evaluating degree of deterioration of test body by surface wave
JPH10153585A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Surface layer evaluating method and apparatus therefor
JPH10293124A (en) * 1997-04-17 1998-11-04 Hitachi Constr Mach Co Ltd Inspecting equipment of depth of quench hardened layer
JP3288254B2 (en) * 1997-04-30 2002-06-04 株式会社日立製作所 Surface wave sound velocity measuring method and surface wave sound velocity measuring device
JPH11211699A (en) * 1998-01-21 1999-08-06 Toshiba Tungaloy Co Ltd Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP2000088818A (en) * 1998-09-17 2000-03-31 Toyota Motor Corp Quality evaluating method for surface modified layer
JP2000180415A (en) * 1998-12-17 2000-06-30 Osaka Bearing Co Ltd Apparatus for judging deterioration of surface material quality and method for its judgement
JP2000275122A (en) * 1999-03-23 2000-10-06 Nsk Ltd Method and device for detecting amount of pre-load of rolling bearing
JP2000304710A (en) * 1999-04-16 2000-11-02 Koyo Seiko Co Ltd Method for measuring degree of fatigue due to rolling fatigue
JP2001249118A (en) * 2000-03-06 2001-09-14 Masahiro Nishikawa Method for ultrasonically detecting degradation of metal
JP2002116191A (en) * 2000-05-18 2002-04-19 Torrington Co:The Method and apparatus to provide dynamic ultrasonic measurement of rolling element bearing parameter
JP2003329657A (en) * 2002-05-15 2003-11-19 Koyo Seiko Co Ltd Fatigue measuring method of metal material
JP3831292B2 (en) * 2002-05-15 2006-10-11 株式会社ジェイテクト Fatigue measurement method for inner ring of cylindrical roller bearing
JP2004151077A (en) * 2002-09-03 2004-05-27 Koyo Seiko Co Ltd Ultrasonic propagation velocity measuring method and solid surface measuring method using the same
JP2004184258A (en) * 2002-12-04 2004-07-02 Koyo Seiko Co Ltd Metallic member surface layer part inspecting method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
小熊規泰、三上剛: ""表面SH波による軸受疲労度解析"", 日本トライボロジー学会トライボロジー会議予稿集, vol. 2002−10、1C3, JPN4007008198, 13 September 2002 (2002-09-13), JP, pages 73 - 74, ISSN: 0000849557 *
小熊規泰、三上剛: ""表面SH波による軸受疲労度解析"", 日本トライボロジー学会トライボロジー会議予稿集, vol. 2002−10、1C3, JPN6008006268, 13 September 2002 (2002-09-13), JP, pages 73 - 74, ISSN: 0000978115 *
小熊規泰、三上剛: ""軸受の残存疲労寿命予測 第2報:表面SH波の適用"", KOYO ENGINEERING JOURNAL, vol. 第162号, JPN4007008197, October 2002 (2002-10-01), JP, pages 38 - 42, ISSN: 0000849556 *
小熊規泰、三上剛: ""軸受の残存疲労寿命予測 第2報:表面SH波の適用"", KOYO ENGINEERING JOURNAL, vol. 第162号, JPN6008006267, October 2002 (2002-10-01), JP, pages 38 - 42, ISSN: 0000978114 *

Also Published As

Publication number Publication date
JP4093039B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
CN103808805A (en) Ultrasonic non-destructive testing method for residual stress of inner and outer roller paths of roller bearing
EP3361247A1 (en) Non-destructive inspection device and method for producing bearing
JPH11337530A (en) Ultrasonic testing method of bearing ring
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP2004184378A (en) Inspection method of decarbonization or burn mark of steel component
US9784717B2 (en) Acoustic testing of sapphire components for electronic devices
US5648611A (en) Process for measuring the case depth of case-carburized steel
JP5862328B2 (en) Steel cleanliness evaluation method
JP4066795B2 (en) Inspection method for surface layer of metal parts
JP2019163941A (en) Standard specimen for ultrasonic flaw detection testing, ultrasonic flaw detection testing method and bearing component manufacturing method
JP4244725B2 (en) Bearing inner ring fatigue measurement method using SH wave
EP1270999A1 (en) Toroidal type stepless speed changer slide rotation body and method of evaluating the same
McGovern et al. Non-destructive evaluation and characterisation of high-temperature hydrogen attack in carbon steel pressure vessels
Matlack et al. Nonlinear Rayleigh waves to detect initial damage leading to stress corrosion cracking in carbon steel
JP6235839B2 (en) Method for inspecting micro crack on inner surface of tube and apparatus for inspecting micro crack on inner surface of tube
JP4186694B2 (en) Ultrasonic propagation velocity measuring method and solid surface layer state measuring method using the same
Tiitto et al. Detection of heat treat defects and grinding burns by measurement of barkhausen noise
KR20100034283A (en) Laser ultrasonic inspecting method using thermoelastic effect of laser pulse
JP4023211B2 (en) Method for measuring fatigue of metal materials
Hu et al. Multiple frequency ultrasonic detection of subsurface near-race inclusions for improved fatigue life performance
Gorski et al. Experimental investigation of modulation transfer technique for damage detection of structures
Abd Halim et al. Microhardness and sound velocity characterization of heat treated AISI 1050 carbon steel
Li et al. An Experimental Study of Crack Detection in Annular Components by Ultrasonic Guided Waves
JPH07174736A (en) Correcting method for angle of propagation of ultrasonic wave of electromagnetic equipment angle-beam ultrasonic flaw detection
JPH11337537A (en) Ultrasonic manual inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees