JP2004184352A - Agent and method for detecting deterioration of concrete - Google Patents

Agent and method for detecting deterioration of concrete Download PDF

Info

Publication number
JP2004184352A
JP2004184352A JP2002354557A JP2002354557A JP2004184352A JP 2004184352 A JP2004184352 A JP 2004184352A JP 2002354557 A JP2002354557 A JP 2002354557A JP 2002354557 A JP2002354557 A JP 2002354557A JP 2004184352 A JP2004184352 A JP 2004184352A
Authority
JP
Japan
Prior art keywords
concrete
neutralization
deterioration
inspection
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354557A
Other languages
Japanese (ja)
Inventor
Yutaka Nakajima
裕 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2002354557A priority Critical patent/JP2004184352A/en
Publication of JP2004184352A publication Critical patent/JP2004184352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce damage to a structure to be inspected at deterioration diagnosis inspection on neutralization of concrete, to easily conduct inspection and grasp the results on the side of the installation or the construction of the structure, without requiring a special type of inspection apparatus or proficient skill, and to diagnose the neutralization with high inspection efficiency with high reliability. <P>SOLUTION: This concrete degradation detecting agent is constituted of a nonalkali latent hydraulic powder or a pozzolan reactive powder containing 0.1-2 wt.% of S<SP>2-</SP>, in terms of amorphous sulfur. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリートの劣化、とりわけ中性化による劣化を診断するための劣化検知剤およびこの劣化検知剤を使用したコンクリートの劣化検知方法に関する。
【0002】
【従来の技術とその問題点】
一般に、コンクリートの劣化診断は、様々な性状ごとの検査結果から総合的に判断される。コンクリート構造物では鉄筋を内包するものが殆どであり、コンクリートの主要構成成分である水酸化カルシウムは、セメントの水和反応で生成する強アルカリ(pH>約12)性物質であるが、空気中の二酸化炭素等の影響でコンクリート表面から徐々に炭酸カルシウム(pH=約7)に変化し、最終的にはコンクリート内包の鉄筋表面のpHが7程度になると酸化保護層が破壊され、鉄筋腐食が生じてコンクリート構造物の劣化が起こる。従ってコンクリートが中性化しているか否かを知ることは、構造物としての劣化を予測・診断する上で重要である。コンクリート中性化に関する代表的な検査方法は、はつりによる方法とコンクリートから切出したコアを調べる方法が挙げられる。(例えば、非特許文献1参照)。前者は、電動ピックやエアーピック等を用い、内包鉄筋が露呈する部分までコンクリートをはつりし、はつり面にフェノールフタレインを噴霧して赤紫色に呈した部分の深さを測定するか、深さに方向に一定間隔で採取されたコンクリート粉末を示差熱重量分析や粉末X線回折等によって炭酸カルシウム転換率を定量分析する。後者は、コンクリート中の粗骨材最大直径の3倍以上の直径のコアを採取し、これを割裂し、割裂面にフェノールフタレインを噴霧して赤紫色に呈した部分の長さを測定する。何れの方法も多大な手間と時間がかかる他、コンクリート構造物に対し検査時に多大な負荷を与えたり比較的規模の大きい損傷を残すため、構造物によっては適応が困難であったり、検査位置が限定されたり、更には診断後に検査箇所を補修する必要すらあった。
【0003】
このため、規模をできるだけ小さくした損傷とすべく、且つ労力を軽減できる中性化診断方法が検討されてきた。ドリル法と称される方法は、直径10mmの小削孔を携帯型電動ドリルで検査対象のコンクリート表面から空け、削孔時に排出される削粉末をフェノールフタレイン等を予め塗布含浸させた湿性の検査紙上に深さ毎に採取落下させ、落下粉末の呈色変化の有無から中性化深さを調べる簡易で破壊規模が少ない中性化診断方法である。(例えば、非特許文献2参照)また、ドリル削孔機に前記検査紙を貼付けた回転板を搭載させ、削孔時に排出される削粉末を回転板に受けながら中性化を判定する改良方法も提案されている。(例えば、特許文献1参照)。しかしながら、この方法では破壊後の削り粉を一旦採取して採取物を中性化の反応検査に処するため、採取状況に大きく左右され、厳密な中性化領域の確認は容易でない。また、削孔後に検査を行って初めて中性化の有無が判断されるので、中性化のバラツキが多いコンクリートでは、削孔箇所によって中性化検査結果に顕著な差が生じ易く、削孔箇所を増やさないと信頼性の高い劣化診断が行えない。削孔箇所を増やすと、構造物に及ぼすトータルダメージは増大し、また診断作業に要する時間や労力も増える。このように従来の中性化診断方法では、的確な削孔箇所を事前予測し、できるだけ少ない削孔によって信頼性の高い診断を行なうことは困難であった。
【0004】
【非特許文献1】「コンクリート診断技術’01−基礎編−」社団法人日本コンクリート工学協会、平成13年3月、p.146−148
【非特許文献2】笠井、松井、湯浅「簡易な試験による構造体コンクリートの品質評価の試み」社団法人セメント協会、平成5年9月、第559号、p.20−28
【特許文献1】特開2001−145917号公報
【0005】
【発明が解決しようとする課題】
本発明は、コンクリートの中性化に関わる劣化診断の検査に際し、検査対象となる構造物へのダメージを低減し、また特殊な検査装置の類や習熟した技術を要すことなく、構造物が設置又は構築されたその場で検査実施並びに結果把握が容易にでき、検査効率が良く信頼性の高い中性化診断を行なうためのコンクリート劣化検知剤及びこれを用いた簡易なコンクリートの劣化検知方法の提供を課題とする。
【0006】
【課題を解決するための手段】
本発明者は前記課題の解決策を得るべく鋭意検討した結果、一般にコンクリートの中性化は表面から起ること、コンクリートには微細な開口気孔が多数存在し、該気孔はコンクリート内部で互いに連通する可能性が高いこと等を鑑み、予め中性化を検知するための化学反応的な処置を特定の薬剤で非破壊的に行ない、中性化が起っている箇所を外観的に感知した上で、該当箇所をできるだけ小径孔となるよう穿孔や削孔することで特別な装置や技術等無くして中性化深さも正確に検出でき、コンクリートの劣化診断を極めて容易に行えたことから本発明を完成するに至った。
【0007】
即ち、本発明は次の(1)〜(3)で表されるコンクリート劣化検知剤及び(4)で表されるコンクリートの劣化検知方法である。(1)S2−を無定形硫黄換算で0.1〜2重量%含む非アルカリ性の潜在水硬性又はポゾラン反応性粉末からなるコンクリート劣化検知剤。(2)潜在水硬性又はポゾラン反応性粉末がブレーン比表面積3000cm/g以上である前記(1)のコンクリート劣化検知剤。(3)潜在水硬性粉末が高炉スラグである前記(1)又は(2)のコンクリート劣化検知剤。(4)前記(1)〜(3)の何れかのコンクリート劣化検知剤100重量部と水20〜100重量部を混合してなるペーストをコンクリート表面に塗布することを特徴とするコンクリートの劣化検知方法。
【0008】
【発明の実施の形態】
本発明のコンクリート劣化検知剤は、S2−を無定形硫黄換算で0.1〜2重量%含む非アルカリ性の潜在水硬性又はポゾラン反応性粉末からなる。本発明のコンクリート劣化検知剤(以下、本検知剤と称す。)によるコンクリート劣化検知の機構は、コンクリートの中性化に対しては、本検知剤は非アルカリ性の潜在水硬性又はポゾラン反応性の粉末からなるため、本検知剤を水性ペーストとして診断対象のコンクリート表面に塗布すると、中性化が進み、既にアルカリ性を喪失しているコンクリートの場合は、ペーストは表面からの開口空隙を通じてコンクリート深部にまで浸透する。一方、診断対象のコンクリートが、pH12程度のアルカリ性を十分保っている場合は、本検知剤の水性ペーストをコンクリート表面に塗布しても、本検知剤の潜在的水硬作用がコンクリートのアルカリ成分であるCa(OH)の刺激によって顕在化し、又はCa(OH)とのポゾラン反応が進行し、コンクリート表面乃至表面極近傍の空隙内で急速に硬化し、コンクリート内部にまでは浸透しない。以上の中性化検知機構を確実に発現させるために、本検知剤は非アルカリ性粉末とし、少量であってもアルカリ成分を含まないことが望ましい。アルカリ成分が含まれると、水を加えると水和硬化し、水性ペースト化が困難となったり、中性化したコンクリートに浸透しない等、コンクリートの中性化を正確に把握できないので好ましくない。尚、本発明のコンクリート劣化検知剤は潜在水硬性粉末とポゾラン反応性粉末の併用を排除するものでは無い。
【0009】
本検知剤はコンクリート内部に浸透した水性ペーストの浸透範囲を明確かつ簡単に識別する上で、S2−を無定形硫黄換算で0.1〜2重量%含むものとする。S2−は、本検知剤を構成する潜在水硬性成分又はポゾラン反応性成分が水和反応を起こすと、恐らくは硫化物の重合体を生成する事由から、色彩が白色乃至灰白色から緑色に変化する。本検知剤によるコンクリート中性化検査は、この緑色化した部分のコンクリート表面からの深さを把握する。S2−を無定形硫黄換算で0.1重量%未満の含有率では、目視確認できるほど十分緑色化しないため好ましくなく、また2重量%を超える含有率では膨張によってコンクリート構造物に過剰なストレスを及ぼすことがあるため好ましくない。尚、本検知剤に使用されるS2−は、硬化性状に影響を及ぼさず、且つ呈色一定時間経過後は酸化されてほぼ無色化するため構築物にその痕跡を殆ど残さず、また構築物に残存しても劣化を進行させたり、生体有害成分を溶出することはない。
【0010】
また、本検知剤はブレーン比表面積3000cm/g以上からなる粉末であることが好ましい。ブレーン比表面積3000cm/g未満の粉末では、通常のコンクリートで見られる開口空隙を浸透するには粒子が粗過ぎるため浸透性が低下するので好ましくない。
【0011】
また、本検知剤の潜在水硬性粉末又はポゾラン反応性粉末は、非アルカリ性のものであれば特に限定されず、例えば潜在水硬性粉末としては各種スラグ微粉末、またポゾラン反応性粉末としてはシリカフューム、フライアッシュやメタカオリン等の微粉末を挙げることができる。この中でも特に、潜在水硬性粉末の高炉スラグ微粉末が製造源由来のS2−を適度に含有しているため、改めて添加配合する必要がないこと、更にアルカリ反応促進作用が他の粉末よりも著しく高いので好ましい。従来、高炉スラグは、コンクリートの細孔溶液中では移動が極めて困難と考えられてきたが、本発明者は、低アルカリ環境下で且つ空隙量が比較的多い場合、コンクリート中を数センチメートル単位で十分移動できることを見出し、中性化が進行したコンクリートに使用するには特段問題ないことから前記利点を考慮し、本発明では使用を推奨するものとした。
【0012】
本検知剤を用いたコンクリートの劣化検知方法は、本検知剤100重量部に水20〜100重量部を加え、任意の方法で混練し、水性ペーストにしたものを診断検査対象とするコンクリートの表面に塗布し、コンクリート内部への浸透状況を確認する。水の配合量が20重量部未満ではペースト状になり難く、また塗布しても浸透性が低下するので好ましくなく、100重量部を超えると液垂れを起し易いので好ましくない。該ペーストのコンクリート表面に塗布方法は刷毛又は鏝等によって行い、塗布面積は特に限定されないが検査箇所一カ所に付、通常は概ね20〜200cm程度で良い。塗り厚は1mm以上とし、1mm未満ではコンクリート内部に十分浸透可能なペースト量を確保し難く、また浸透が殆ど進まないうちに乾燥することがあるので好ましくない。本ペーストは中性化が進んだコンクリートに塗布しても、内部に浸透するには、コンクリート表面から連通する開口空隙の状況に多分に作用されるため、概して緻密度が高いコンクリートほどペーストが浸透するには時間を要す。このため、塗布後は塗布表面を非透明のビニール等で覆い、ペーストの急速な乾燥を防ぐことが望ましい。
【0013】
本検知剤水性ペーストによるコンクリート表層部中性化の確認は、該ペースト塗布から少なくとも24時間後、好ましくは1週間後に塗布表面が緑色になったか否かを目視で確認する。目視確認に際しては、表面塗布硬化物を約0.1mm程度薄く削って内部色で確認することが推奨される。中性化が殆ど進んでいないコンクリートでは緑色を呈さず概ね灰色となる。一方、中性化が進んだコンクリートは緑色なる。このような目視観測で少なくともコンクリート表層部の中性化の有無は判定できる。より正確に中性化の程度を把握するにはコンクリート表面からのペーストの浸透深さを測定する。即ち、コンクリート内部における緑色化領域の先端点とコンクリート表面との距離を測り、この距離が長いものほど中性化が進んだものと判断する。浸透深さの測定には塗布表面が緑色化した部分からコンクリートをコアドリル等で穿孔し、採取したコアの緑色部の長さを測定するのが正確さの点から好適であるが、他の方法、例えば携帯型振動ドリル等で削孔し、緑色の削孔粉が排出されなくなった時点でのドリル刃の削孔深さから求めたものであっても良い。尚、コアドリル使用の際の穿孔径は特に限定されないが、コンクリート基体へのダメージ軽減等を考慮して小径であるほど良い。
【0014】
【実施例】
以下、実施例により本発明を具体的に説明する。
[非中性化試験体(A)の作製] 普通ポルトランドセメント(太平洋セメント株式会社製、以下同様。)、細骨材としてJIS標準砂(JIS R 5201規定、以下同様。)及び水道水を用い、水重量/セメント重量=0.7及び細骨材重量/セメント重量=3.0の条件となるよう配合したものをホバートミキサーで混練した。該混練物を内径5cm、高さ10cmの円筒型枠に流し込み、28日間養生させた円柱状の非中性化試験体Aを作製した。
【0015】
[中性化試験体(B〜D)の作製] 普通ポルトランドセメントを水槽中で20倍重量の水と共に24時間撹拌し、アルカリ成分を水中に溶出させた。水槽中の懸濁化した液をフィルタープレス機を使用し、アルカリ成分が溶出した水分を絞り出し、固型残分を恒量となるまで105℃で乾燥した。得られた乾燥セメント、細骨材としてJIS標準砂及び水道水を用い、水重量/乾燥セメント重量=0.6及び細骨材重量/セメント重量=3.0の条件となるよう配合したものをホバートミキサーで混練した。該混練物を内径5cm、高さ10cmの円筒型枠に流し込み、28日間養生させて円柱状の中性化試験体Bを作製した。また、同様に調整した乾燥セメントを用い、水重量/乾燥セメント重量=0.7及び細骨材重量/セメント重量=3.0の条件となるよう配合した混練物から前記と同じ方法で円柱状の中性化試験体Cを作製した。更に、同様に調整した乾燥セメントを用い、水重量/乾燥セメント重量=0.8及び細骨材重量/セメント重量=3.0の条件となるよう配合した混練物から前記と同じ方法で円柱状の中性化試験体Dも作製した。
【0016】
[水性ペーストの作製] S2−を0.8%含むブレーン比表面積4000cm/gの高炉スラグ粉末(商品名「セラメント」、第一セメント株式会社製)1Kgに水400gを加え、ホバートミキサーで混練し、水性ペーストを作製した。
【0017】
[試験体の中性化診断検査] 非中性化試験体A及び中性化試験体B〜Dを何れも一方の円形面が底面となるようそれぞれ縦置きし、各試験体の上面全部に前記水性ペーストを塗厚約10mm±5mmとなるように鏝塗りした。水性ペースト塗布直後の各試験体は黒色ビニール袋で密封し、約20℃の環境下に1週間放置した。1週間経過後、ビニール袋から各試験体を取り出し、上面から縦割りした。次いで、試験体塗布面から試験体内部の緑色に発色した領域の先端部までの長さを測定した。
【0018】
[中性化診断検査の測定結果] 前記方法によって測定した各試験体の塗布表面から試験体内部の緑色に発色した領域の先端部までの長さは、非中性化試験体Aでは緑色に呈した部分が見られず、またコンクリート表面に塗布された塗装物表面を約0.1mm削った塗装物自体の緑色化も見られなかった。これに対し、中性化試験体Bでは、コンクリート表面の塗装面が緑色化し、また表面から試験体内部の緑色に発色した領域の先端部までの長さは15mmであった。同様に中性化試験体Cでは20mm、中性化試験体Dでは25mmの長さが確認され、何れもコンクリート表面での塗装面の緑色化も見られた。
【0019】
【発明の効果】
本発明によるコンクリート劣化検知剤及びこれを用いたコンクリート劣化検知方法は、コンクリート表層部の中性化検査に対しては、コンクリートに全く損傷を与えることなく、また検査装置類を必要とせずにその場で極めて簡単に行なうことができる。また、コンクリート深部の中性化検査や中性化の進行度合の把握も、特別な装置や習熟した検査技術等を必要とせずに比較的簡単にかつ高精度に行なうことができ、この場合、検査箇所もコンクリート表層部の検査で変色した箇所から的確に選定できるため、穿孔や削孔箇所を少なくしても精度の高い中性化診断を行なうことができ、コンクリートに及ぼす検査負荷や損傷等並びに診断労力は従来の中性化検査方法と比べると格段に軽減される。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a deterioration detecting agent for diagnosing deterioration of concrete, particularly deterioration due to neutralization, and a method for detecting deterioration of concrete using the deterioration detecting agent.
[0002]
[Conventional technology and its problems]
In general, concrete deterioration diagnosis is comprehensively determined from inspection results for various properties. Most concrete structures contain rebar. Calcium hydroxide, a major component of concrete, is a strongly alkaline (pH> about 12) substance produced by the hydration reaction of cement. Gradually changes from the concrete surface to calcium carbonate (pH = about 7) due to the influence of carbon dioxide and the like. Finally, when the pH of the reinforcing steel surface of the concrete inclusion reaches about 7, the oxidation protective layer is destroyed, and corrosion of the reinforcing steel occurs. This causes deterioration of the concrete structure. Therefore, it is important to know whether concrete is neutralized in order to predict and diagnose deterioration as a structure. Representative inspection methods for concrete neutralization include a method using a drop and a method for inspecting a core cut from concrete. (For example, see Non-Patent Document 1). For the former, use an electric pick or air pick, etc., and grind concrete to the part where the internal rebar is exposed, spray phenolphthalein on the hanging surface and measure the depth of the purple-red part, or measure the depth Concrete powder sampled at regular intervals in the direction is quantitatively analyzed for calcium carbonate conversion by differential thermogravimetry, powder X-ray diffraction or the like. For the latter, a core with a diameter of at least three times the maximum diameter of coarse aggregate in concrete is sampled, split, and the length of the reddish purple part is measured by spraying phenolphthalein on the split surface. . All of these methods require a great deal of labor and time, and also place a large load on the concrete structure during inspection and leave relatively large damages. It was limited or even needed to repair the inspection site after diagnosis.
[0003]
For this reason, a neutralization diagnostic method has been studied in order to reduce the size of the damage as much as possible and to reduce the labor. A method called drilling is a method in which a small drilled hole with a diameter of 10 mm is opened from the surface of the concrete to be inspected with a portable electric drill, and the powdered powder discharged during drilling is previously impregnated with phenolphthalein or the like. This is a simple and small-scale neutralization diagnosis method in which the sample is dropped on a test paper at every depth and the neutralization depth is checked based on the presence or absence of color change of the falling powder. (See, for example, Non-Patent Document 2) Further, an improved method for mounting a rotary plate on which the above-described test paper is attached to a drilling machine and determining neutralization while receiving the powdered powder discharged during drilling on the rotary plate. Has also been proposed. (For example, see Patent Document 1). However, in this method, since the shavings after destruction are once collected and the collected material is subjected to a reaction test for neutralization, it is greatly affected by the state of collection, and it is not easy to confirm a strictly neutralized region. In addition, since the presence or absence of neutralization is determined only after an inspection is performed after drilling, in the case of concrete with a large variation in neutralization, the difference in the neutralization inspection result tends to be significant depending on the drilling location, Unless the number of locations is increased, highly reliable deterioration diagnosis cannot be performed. Increasing the number of drilled holes increases the total damage to the structure, and also increases the time and labor required for the diagnostic work. As described above, in the conventional neutralization diagnosis method, it is difficult to accurately predict a drilling location in advance and to perform a highly reliable diagnosis with as few drillings as possible.
[0004]
[Non-Patent Document 1] "Concrete Diagnosis Technology '01-Basic Edition-" Japan Concrete Institute, March 2001, p. 146-148
[Non-patent document 2] Kasai, Matsui, Yuasa "A trial of quality evaluation of structural concrete by simple test" Cement Association, September 1993, No. 559, p. 20-28
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-145917
[Problems to be solved by the invention]
The present invention reduces the damage to the structure to be inspected when inspecting the deterioration diagnosis related to the neutralization of concrete, and allows the structure to be inspected without the need for special inspection equipment or specialized skills. A concrete deterioration detecting agent for performing a neutralization diagnosis with high inspection efficiency and high reliability, which makes it easy to carry out inspection and grasp the results on the spot where it is installed or constructed, and a simple concrete deterioration detection method using the same The task is to provide
[0006]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to obtain a solution to the above-mentioned problem. As a result, the neutralization of concrete generally occurs from the surface, and concrete has many fine open pores, and the pores communicate with each other inside the concrete. In consideration of the possibility that the neutralization is likely, etc., a chemical reaction treatment for detecting neutralization was previously performed nondestructively with a specific drug, and the place where neutralization occurred was visually detected. By drilling or drilling the relevant part as small as possible, the neutralization depth can be accurately detected without special equipment or technology, and the deterioration of concrete can be diagnosed very easily. The invention has been completed.
[0007]
That is, the present invention is a concrete deterioration detecting agent represented by the following (1) to (3) and a concrete deterioration detecting method represented by (4). (1) A concrete deterioration detecting agent comprising a non-alkali latent hydraulic or pozzolan-reactive powder containing 0.1 to 2 % by weight of S2- in terms of amorphous sulfur. (2) The concrete deterioration detecting agent according to the above (1), wherein the latent hydraulic or pozzolan-reactive powder has a Blaine specific surface area of 3,000 cm 2 / g or more. (3) The concrete deterioration detecting agent according to (1) or (2), wherein the latent hydraulic powder is blast furnace slag. (4) Concrete deterioration detection characterized by applying a paste obtained by mixing 100 parts by weight of the concrete deterioration detecting agent of any of the above (1) to (3) and 20 to 100 parts by weight of water to the concrete surface. Method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The concrete deterioration detecting agent of the present invention comprises a non-alkali latent hydraulic or pozzolan-reactive powder containing 0.1 to 2 % by weight of S2- in terms of amorphous sulfur. The mechanism of concrete deterioration detection by the concrete deterioration detecting agent of the present invention (hereinafter, referred to as the present detecting agent) is as follows. For the neutralization of concrete, the present detecting agent has a non-alkali latent hydraulic property or a pozzolanic reactivity. Since this detection agent is applied as an aqueous paste to the surface of the concrete to be diagnosed as an aqueous paste, the neutralization proceeds, and in the case of concrete that has already lost alkalinity, the paste is applied deep into the concrete through open pores from the surface. Penetrate up to. On the other hand, if the concrete to be diagnosed has sufficient alkalinity of about pH 12, even if an aqueous paste of the present detection agent is applied to the concrete surface, the potential hydraulic effect of the present detection agent is an alkaline component of the concrete. Certain Ca (OH) 2 stimulates the surface, or the Pozzolanic reaction with Ca (OH) 2 progresses, rapidly hardens in the concrete surface or in the voids near the surface extremely, and does not penetrate into the concrete. In order to ensure the neutralization detection mechanism described above, it is desirable that the present detection agent is a non-alkali powder and does not contain an alkali component even in a small amount. When an alkali component is contained, hydration hardening occurs when water is added, and it becomes difficult to form an aqueous paste, and it does not penetrate into neutralized concrete. The concrete deterioration detecting agent of the present invention does not exclude the use of a combination of a latent hydraulic powder and a pozzolan-reactive powder.
[0009]
In order to clearly and easily identify the permeation range of the aqueous paste permeated into the concrete, the present detection agent contains S2- at 0.1 to 2 % by weight in terms of amorphous sulfur. S 2-, the latent hydraulic component or pozzolanic reactive components constituting the present detection agent when undergoing hydration, perhaps from grounds to produce a polymer of sulfide, the color changes to green from white to off-white . In the concrete neutralization test using the present detection agent, the depth of the green portion from the concrete surface is grasped. S The content of less than 0.1 wt% of 2-in amorphous terms of sulfur is not preferable because not enough green reduction can be confirmed visually, also excessive stress on the concrete structure by expansion at a content of more than 2 wt% Is not preferred because Incidentally, S 2-is used in this detecting agent, without adversely affecting the curing characteristics, almost left without its mark to construct to almost colorless been and after coloration certain time is oxidized also in the construct Even if they remain, they do not progress deterioration or elute biotoxic components.
[0010]
Further, the present detection agent is preferably a powder having a Blaine specific surface area of 3000 cm 2 / g or more. A powder having a brane specific surface area of less than 3000 cm 2 / g is not preferable because the particles are too coarse to penetrate the open pores found in ordinary concrete and the permeability is reduced.
[0011]
In addition, the latent hydraulic powder or pozzolan-reactive powder of the present detection agent is not particularly limited as long as it is non-alkali, for example, various slag fine powders as the latent hydraulic powder, and silica fume as the pozzolan-reactive powder, Examples include fine powder such as fly ash and metakaolin. Among them, particularly, since the blast furnace slag fine powder of the latent hydraulic powder contains S2 - moderately derived from the production source, it is not necessary to add and mix it again, and the alkali reaction accelerating action is higher than other powders. It is preferable because it is extremely high. Conventionally, blast furnace slag has been considered to be extremely difficult to move in a concrete pore solution.However, the present inventor has proposed that, in a low alkaline environment and a relatively large void volume, a few centimeters in concrete are used. It has been found that it is possible to move sufficiently in concrete, and there is no particular problem in using it for concrete that has been neutralized. Therefore, in view of the above advantages, use of the concrete is recommended in the present invention.
[0012]
A method for detecting deterioration of concrete using the present detection agent is to add 20 to 100 parts by weight of water to 100 parts by weight of the present detection agent, knead it by an arbitrary method, and convert the aqueous paste into a concrete surface to be subjected to a diagnostic inspection. And check the state of penetration into the concrete. If the amount of water is less than 20 parts by weight, it is difficult to form a paste, and even if it is applied, the permeability is unfavorably reduced. If it is more than 100 parts by weight, liquid dripping tends to occur, which is not preferable. The paste is applied to the concrete surface using a brush or a trowel, and the application area is not particularly limited. However, the paste may be applied to one inspection point, and generally about 20 to 200 cm 2 . The coating thickness is not less than 1 mm, and if it is less than 1 mm, it is difficult to secure a sufficient amount of paste that can penetrate into the concrete, and the paste may be dried before the penetration hardly proceeds. Even if this paste is applied to concrete that has become neutralized, its penetration is likely to be affected by the condition of the open pores that communicate with the concrete surface, so that the higher the density of the concrete, the greater the penetration of the paste. It takes time. For this reason, it is desirable to cover the application surface with non-transparent vinyl or the like after application to prevent rapid drying of the paste.
[0013]
The neutralization of the surface layer of the concrete with the aqueous paste of the present detection agent is confirmed by visually checking whether or not the applied surface has turned green at least 24 hours after the application of the paste, preferably one week after the application. For visual confirmation, it is recommended that the surface-applied cured product be shaved to a thickness of about 0.1 mm and confirmed with an internal color. Concrete that has hardly progressed to neutralization does not exhibit green color but generally turns gray. On the other hand, concrete that has been neutralized turns green. Such visual observation can determine at least the presence or absence of neutralization of the concrete surface layer. To more accurately grasp the degree of neutralization, measure the penetration depth of the paste from the concrete surface. That is, the distance between the tip point of the green area inside the concrete and the concrete surface is measured, and it is determined that the longer the distance, the more neutralized. To measure the penetration depth, it is preferable to drill concrete with a core drill etc. from the part where the coating surface turns green and measure the length of the green part of the collected core from the point of accuracy, but other methods are preferred. For example, a hole may be drilled with a portable vibrating drill or the like, and may be obtained from the drilling depth of the drill blade at the time when green drilling powder is no longer discharged. The diameter of the perforation when using the core drill is not particularly limited, but the smaller the diameter, the better in consideration of the reduction of damage to the concrete base and the like.
[0014]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[Preparation of Non-Neutralized Specimen (A)] Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., the same applies hereinafter), JIS standard sand (JIS R 5201, hereinafter the same) and tap water are used as fine aggregate. And water weight / cement weight = 0.7 and fine aggregate weight / cement weight = 3.0 were kneaded with a Hobart mixer. The kneaded material was poured into a cylindrical mold having an inner diameter of 5 cm and a height of 10 cm, and cured for 28 days to prepare a columnar non-neutralized test body A.
[0015]
[Preparation of Neutralized Test Specimens (BD)] Ordinary Portland cement was stirred for 24 hours in a water tank with 20 times the weight of water to elute alkaline components into water. Using a filter press, the suspended liquid in the water tank was squeezed out of the water from which the alkali component was eluted, and the solid residue was dried at 105 ° C. until it became a constant weight. The obtained dry cement, which was prepared by using JIS standard sand and tap water as fine aggregate, and blending such that water weight / dry cement weight = 0.6 and fine aggregate weight / cement weight = 3.0. Kneaded with a Hobart mixer. The kneaded material was poured into a cylindrical form having an inner diameter of 5 cm and a height of 10 cm, and cured for 28 days to prepare a columnar neutralized test body B. In addition, using the dry cement prepared in the same manner, a kneaded mixture blended so as to satisfy the conditions of water weight / dry cement weight = 0.7 and fine aggregate weight / cement weight = 3.0 was formed into a columnar shape in the same manner as described above. Was prepared. Further, using the dry cement prepared in the same manner, a kneaded material blended so as to satisfy the condition of water weight / dry cement weight = 0.8 and fine aggregate weight / cement weight = 3.0 was formed into a columnar shape in the same manner as described above. Was also prepared.
[0016]
[Preparation of Aqueous Paste] 400 g of water was added to 1 kg of blast furnace slag powder (trade name “Cerament”, manufactured by Daiichi Cement Co., Ltd.) containing 0.8% of S 2- and having a specific surface area of 4000 cm 2 / g, and the mixture was mixed with a Hobart mixer. The mixture was kneaded to produce an aqueous paste.
[0017]
[Neutralization diagnostic test of test specimens] Non-neutralized test specimens A and neutralized test specimens B to D are all placed vertically so that one of the circular surfaces is the bottom surface, and the entire upper surface of each test specimen is placed. The aqueous paste was troweled to a coating thickness of about 10 mm ± 5 mm. Each specimen immediately after the application of the aqueous paste was sealed with a black plastic bag, and allowed to stand at about 20 ° C. for one week. After one week, each specimen was taken out of the plastic bag and vertically divided from the upper surface. Next, the length from the application surface of the test piece to the tip of the green color region inside the test piece was measured.
[0018]
[Measurement Result of Neutralization Diagnosis Test] The length from the coated surface of each specimen measured by the above method to the tip of the green colored area inside the specimen is green in the non-neutralized specimen A. No exhibited portion was observed, and the painted product itself obtained by cutting the surface of the painted product applied to the concrete surface by about 0.1 mm did not show green color. On the other hand, in the neutralized test specimen B, the painted surface on the concrete surface turned green, and the length from the surface to the tip of the green color inside the test specimen was 15 mm. Similarly, the length of the neutralized test specimen C was 20 mm, and the length of the neutralized test specimen D was 25 mm. In each case, greening of the painted surface on the concrete surface was also observed.
[0019]
【The invention's effect】
INDUSTRIAL APPLICABILITY The concrete deterioration detecting agent and the concrete deterioration detecting method using the same according to the present invention can be used for the neutralization inspection of the concrete surface layer without damaging the concrete at all and without requiring any inspection equipment. It can be done very easily on site. In addition, the neutralization inspection and the degree of neutralization progress in the deep part of concrete can be relatively easily and accurately performed without the need for a special device or a skillful inspection technique. Inspection points can be accurately selected from those that have been discolored in the inspection of the concrete surface layer, making it possible to perform highly accurate neutralization diagnosis even if the number of drilled or drilled holes is reduced, and to provide an inspection load or damage to concrete. In addition, the diagnostic effort is significantly reduced as compared with conventional neutralization testing methods.

Claims (4)

2−を無定形硫黄換算で0.1〜2重量%含む非アルカリ性の潜在水硬性又はポゾラン反応性粉末からなるコンクリート劣化検知剤。A concrete deterioration detecting agent comprising a non-alkali latent hydraulic or pozzolan-reactive powder containing 0.1 to 2 % by weight of S2- in terms of amorphous sulfur. 潜在水硬性又はポゾラン反応性粉末がブレーン比表面積3000cm/g以上である請求項1記載のコンクリート劣化検知剤。The concrete deterioration detecting agent according to claim 1, wherein the latent hydraulic or pozzolan-reactive powder has a Blaine specific surface area of 3000 cm 2 / g or more. 潜在水硬性粉末が高炉スラグである請求項1又は2記載のコンクリート劣化検知剤。3. The concrete deterioration detecting agent according to claim 1, wherein the latent hydraulic powder is blast furnace slag. 請求項1〜3の何れか記載のコンクリート劣化検知剤100重量部と水20〜100重量部を混合してなるペーストをコンクリート表面に塗布することを特徴とするコンクリートの劣化検知方法。A method for detecting deterioration of concrete, comprising applying a paste obtained by mixing 100 parts by weight of the agent for detecting deterioration of concrete according to claim 1 and 20 to 100 parts by weight of water to the concrete surface.
JP2002354557A 2002-12-06 2002-12-06 Agent and method for detecting deterioration of concrete Pending JP2004184352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354557A JP2004184352A (en) 2002-12-06 2002-12-06 Agent and method for detecting deterioration of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354557A JP2004184352A (en) 2002-12-06 2002-12-06 Agent and method for detecting deterioration of concrete

Publications (1)

Publication Number Publication Date
JP2004184352A true JP2004184352A (en) 2004-07-02

Family

ID=32755508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354557A Pending JP2004184352A (en) 2002-12-06 2002-12-06 Agent and method for detecting deterioration of concrete

Country Status (1)

Country Link
JP (1) JP2004184352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077761A1 (en) * 2005-12-27 2007-07-12 Dvitec Co.Ltd. Seal for visual check of application of permeable inorganic concrete modifier, and method for visual check of permeable inorganic concrete modifier
JP2011158437A (en) * 2010-02-04 2011-08-18 East Nippon Expressway Co Ltd Method for quickly measuring chloride ion concentration in hardened concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077761A1 (en) * 2005-12-27 2007-07-12 Dvitec Co.Ltd. Seal for visual check of application of permeable inorganic concrete modifier, and method for visual check of permeable inorganic concrete modifier
JP2011158437A (en) * 2010-02-04 2011-08-18 East Nippon Expressway Co Ltd Method for quickly measuring chloride ion concentration in hardened concrete

Similar Documents

Publication Publication Date Title
Tennakoon et al. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests
Angst et al. Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values
McPolin et al. Obtaining progressive chloride profiles in cementitious materials
Moffatt et al. Durability of rapid-strength concrete produced with ettringite-based binders
Delucchi et al. Study of the physico-chemical properties oforganic coatings for concrete degradation control
Mi et al. The effect of carbonation on chloride redistribution and corrosion of steel reinforcement
Higgins et al. Pyrite oxidation, expansion of stabilised clay and the effect of ggbs
Al-Kadhimi et al. An accelerated carbonation procedure for studies on concrete
Yu et al. The Application of Various Indicators for the Estimation of Carbonation and p H of Cement Based Materials
Qiu et al. Carbonation Study of Cement-Based Material by Electrochemical Impedance Method.
Bernal et al. Durability and testing–degradation via mass transport
Asbridge et al. High performance metakaolin concrete: results of large scale trials in aggressive environments
JP2004184352A (en) Agent and method for detecting deterioration of concrete
Rath et al. Effects of Carbonation on Corrosion Rate of Reinforcing Steel in Different Concrete and Repair Materials
Thiel et al. On the determination of carbonation in cementitious materials
Ghahramani et al. Monitoring the carbonation-induced microcracking in alkali-activated slag (AAS) by nonlinear resonant acoustic spectroscopy (NRAS)
Trykoz et al. Non-destructive control method of the state of objects operating long time
Blight et al. Applying covercrete absorption test to in-situ tests on structures
Marlay Hardened concrete properties and durability assessment of high volume fly ash concrete
Hussain et al. Influence of curing duration on accelerated carbonation of concrete and the uncertainties in its measurement
Duchesne et al. Study of the deterioration of concrete incorporating sulfide-bearing aggregates
Khial et al. Assessment of the aggressive agents' penetration into concrete by non-destructive techniques
Boubitsas et al. Frost resistance of concrete–experience from long-term field exposure
KR102401974B1 (en) Measuring device for managing mixture proportion
Islam et al. Determination of Corrosion Initiation of Rebar in Concrete by Monitoring Half-Cell Potential