JP2004183378A - Blades for steel pipe pile, and the steel pipe pile employing the same - Google Patents

Blades for steel pipe pile, and the steel pipe pile employing the same Download PDF

Info

Publication number
JP2004183378A
JP2004183378A JP2002353305A JP2002353305A JP2004183378A JP 2004183378 A JP2004183378 A JP 2004183378A JP 2002353305 A JP2002353305 A JP 2002353305A JP 2002353305 A JP2002353305 A JP 2002353305A JP 2004183378 A JP2004183378 A JP 2004183378A
Authority
JP
Japan
Prior art keywords
steel pipe
blade
pipe pile
blades
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353305A
Other languages
Japanese (ja)
Inventor
Koji Yamashita
功治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENCHO CO Ltd
SOIENSU KK
Original Assignee
KENCHO CO Ltd
SOIENSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENCHO CO Ltd, SOIENSU KK filed Critical KENCHO CO Ltd
Priority to JP2002353305A priority Critical patent/JP2004183378A/en
Publication of JP2004183378A publication Critical patent/JP2004183378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide blades for a steel pipe pile, which have sufficient contact strength with respect to the steel pipe, and to provide the steel pipe pile employing the blades. <P>SOLUTION: The blades 21, 31 each have an intimate contact structure which allows an inner peripheral edge thereof to make intimate contact with an outer peripheral surface of the steel pipe. Specifically the inner peripheral edge of the blade 21 has slant surfaces 26a, 26b, and the inner peripheral edge of the blade 31 has slant surfaces 36a, 36b. Then an inclined angle of each of the slant surfaces 26a, 26b, 36a, 36b is set to a predetermined value so that each of the slant surfaces 26a, 26b, 36a, 36b makes intimate contact with the outer peripheral surface of the steel pipe when the blades 21, 31 are mounted on the same. Therefore even if the thickness of the blades 21, 31 is made larger, the inner peripheral edges of the respective blades 21, 31 make intimate contact with the outer peripheral surface of the steel pipe, to thereby ensure the sufficient contact strength of the blades with respect to the steel pipe. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建設物の基礎として使用されるねじ込み式の鋼管杭用羽根及びそれを使用した鋼管杭に関するものである。
【0002】
【従来の技術】
従来より、次のような鋼管杭が知られている。即ち、図9(a)に示すように、鋼管杭51は鋼管52及び当該鋼管52の先端部付近の外周面に所定の角度で傾斜するように固定された一対の羽根53a,53bを備えている。そして、地上に設置した施工装置(図示略)により鋼管杭51に回転力及びねじ込み方向への押圧力を与えると、当該鋼管杭51は羽根53a,53bのねじ作用により地中にねじ込まれる(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平10−292370号公報
【0004】
【発明が解決しようとする課題】
ところが、前記従来の鋼管杭には次のような問題があった。即ち、図9(b)に示すように、鋼管杭51の地盤へのねじ込みに伴って、羽根53a,53bは地盤からの反力(地盤反力)を受け、当該羽根53a,53bには上方への曲げモーメントが作用する。この結果、羽根53a,53bは上向きに反り返り、当該鋼管杭51の地盤支持力が低下する。
【0005】
この問題を解決するために羽根53a,53bの肉厚tを大きくすることが考えられる。このようにすれば羽根53a,53bの剛性が高められて変形しにくくなるものの、図10に示すように、肉厚tを大きくするほど鋼管52と羽根53a,53bの内周縁(特に上部)との間の隙間gが拡大する。このため、羽根53a,53bの内周縁と鋼管52の外周面との間にはがたつきが発生し、当該羽根53a,53bの内周縁と鋼管52の外周面との間を仮に溶接により強引に固着したとしても当該羽根53a,53bの鋼管52に対する接合強度が確保できないおそれがあった。
【0006】
本発明は上記問題点を解決するためになされたものであって、その目的は、鋼管に対する接合強度を確保することができる鋼管杭用羽根及びそれを使用した鋼管杭を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、鋼管の下部外周面に当該鋼管の中心軸に直交する平面に対して所定の取付角度をなすように且つ地盤へのねじ込みの際の鋼管の回転方向へ下方傾斜するように取付けるようにした鋼管杭用羽根において、鋼管杭用羽根の内周縁には当該内周縁を鋼管の外周面に密接させる密接構造を設けるようにしたことを要旨とする。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、前記密接構造は、鋼管杭用羽根の内周縁が鋼管の外周面に密接するように当該内周縁に形成された傾斜面であることを要旨とする。
【0009】
請求項3に記載の発明は、請求項2に記載の発明において、前記鋼管の外周面に対する鋼管杭用羽根の取付角度をθ(θ<90度)としたとき、鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度(90度−θ)をなすように前記傾斜面を形成したことを要旨とする。
【0010】
請求項4に記載の発明は、請求項1〜請求項3のうちいずれか一項に記載の発明において、鋼管杭用羽根の始端縁及び終端縁のうち少なくとも始端縁には当該鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度をなす傾斜面を形成するようにしたことを要旨とする。
【0011】
請求項5に記載の発明は、鋼管の下部に取付けた複数の羽根を利用して地盤にねじ込むようにした鋼管杭において、請求項1〜請求項4のうちいずれか一項に記載の鋼管杭用羽根を使用したことを要旨とする。
【0012】
(作用)
請求項1に記載の発明によれば、鋼管の外周面に所定の取付角度で鋼管杭用羽根を取付けたとき、当該鋼管杭用羽根の内周縁は鋼管の外周面に密接する。このため、鋼管杭用羽根の内周縁と鋼管の外周面との間のがたつきの発生が抑制される。
【0013】
請求項2に記載の発明は、請求項1に記載の発明の作用に加えて、鋼管杭用羽根はその内周縁に形成された傾斜面を介して鋼管の外周面に密接する。
請求項3に記載の発明によれば、請求項2に記載の発明の作用に加えて、鋼管杭用羽根の内周縁に形成された傾斜面は鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度(90度−θ)をなす。このため、鋼管杭用羽根を鋼管杭の外周面に対して取付角度がθで取付けたとき、当該鋼管杭用羽根の内周縁に形成された傾斜面は鋼管杭の外周面に密接する。
【0014】
請求項4に記載の発明は、請求項1〜請求項3のうちいずれか一項に記載の発明の作用に加えて、鋼管杭用羽根の始端縁及び終端縁のうち少なくとも始端縁には当該鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度をなす傾斜面が形成される。このため、鋼管杭用羽根に加わる地盤の抵抗が軽減される。
【0015】
請求項5に記載の発明によれば、鋼管杭には請求項1〜請求項4のうちいずれか一項に記載の鋼管杭用羽根が使用される。
【0016】
【発明の実施の形態】
以下、本発明を例えば建設物の基礎として使用されるねじ込み式の鋼管杭に具体化した一実施形態を図1〜図7に従って説明する。
【0017】
(全体の構成)
図1、図2及び図7に示すように、鋼管杭11は両端が開口した筒状の鋼管12、この鋼管12の下端開口部を閉塞する板状の閉塞部材13、この閉塞部材13の下面、即ち鋼管12の先端面に設けられた先端ビット14、及び同じく鋼管12の下部外周面に設けられた一対の羽根21,31を備えている。
【0018】
(閉塞部材)
前記閉塞部材13は鋼管12の下端開口部に溶接により固定されている。この閉塞部材13は鋼管杭11を地中にねじ込む際には当該鋼管杭11の下端側の土砂や砂礫を当該鋼管杭11の外周側に押し出し、ねじ込み完了後には地盤からの反力(以下、「地盤反力」という。)を受けて地盤支持力を発揮する。
【0019】
(先端ビット)
前記先端ビット14(掘削刃)は板材により五角形状に形成されている。この先端ビット14は、閉塞部材13下面の中心に向かうほど当該閉塞部材13下面からの突出高さが高くなり、同じく外周縁に向かうほど当該閉塞部材13下面からの突出高さが低くなるように当該閉塞部材13の下面に直交するように固定されている。鋼管杭11を地盤にねじ込む際、先端ビット14は当該鋼管杭11の下端側(先端側)の土砂や砂礫を掘削軟化すると共に当該鋼管杭11の地盤へのねじ込みを案内する掘削ガイドとして機能する。
【0020】
(羽根)
次に、羽根21,31について図4に従って詳細に説明する。図4は後述するレーザ光Lにより1枚の板材から切り出した状態の羽根21,31を示すものであり、鋼管12へ取付けた状態を示すものではない。図4において、羽根21は紙面手前側が下面となり、羽根31は紙面手前側が上面となっている。本実施形態において、上面及び下面とは羽根21,31を鋼管12の外周面に取付けた状態における上側の面及び下側の面をいう。
【0021】
図4に示すように、羽根21,31は、外径が鋼管12の外径よりも大きく且つ内径が鋼管12の外径とほぼ同じとされたドーナツ形の板材を中心で2分割することにより扇形に形成されている。そして、羽根21,31はそれぞれの内周縁において鋼管12の先端外周面に溶接により固定されている。羽根21,31はそれぞれ鋼管12の中心軸に直交する平面S1(図1参照)に対して同一の取付角度θで且つ地盤へのねじ込みの際の鋼管12の回転方向(図1及び図2に示す矢印A方向)へ下方傾斜するように鋼管12の外周面に取付けられている。
【0022】
羽根21,31の取付角度θの採り得る範囲は0度を超え、かつ15度以下とされており、本実施形態では15度に設定されている。取付角度θが15度を超えると羽根21,31による地盤支持力が確保できず、鋼管杭11が沈下するおそれがある。また、取付角度θを0度とした場合には、鋼管杭11の地盤へのねじ込みが円滑に行われないおそれがある。
【0023】
羽根21,31の始端部22a,32aは同じく終端部22b,32bよりも鋼管12の下端側(図1における下方)に位置している。羽根21,31の始端部22a,32aとは当該羽根21,31における鋼管杭51の回転方向A側の端部をいい、同じく終端部22b,32bとは当該羽根21,31における鋼管杭51の回転方向Aとは反対側の端部をいう。
【0024】
(外周縁)
(羽根21の外周縁)
図3、図4及び図5(c)に示すように、羽根21の外周縁において、始端部22a側の半分にはその上面側が鋭角にカットされることにより傾斜面23aが形成され、同じく終端部22b側の半分にはその下面側が鋭角にカットされることにより傾斜面23bが形成されている。傾斜面23aと傾斜面23bとは羽根21の外周縁中央を境に相互に連続している。
【0025】
即ち、図4に示すように、羽根21を下面側又は上面側から見たとき、傾斜面23aの幅は羽根21の始端縁24aにおいて最大となっており、当該羽根21の外周縁中央へ向かうにつれて傾斜面23aの幅は徐々に小さくなり当該外周縁中央において傾斜面23aの幅は0(ゼロ)となっている。そして、当該外周縁中央から羽根21の終端部22bへ向かうにつれて傾斜面23bの幅が徐々に大きくなり当該羽根21の終端縁24bにおいて最大となっている。
【0026】
(羽根31の外周縁)
図3、図4及び図5(d)に示すように、羽根31の外周縁において、始端部32a側の半分にはその上面側が鋭角にカットされることにより傾斜面33aが形成され、同じく終端部32b側の半分にはその下面側が鋭角にカットされることにより傾斜面33bが形成されている。傾斜面33aと傾斜面33bとは羽根21の外周縁中央を境に相互に連続している。
【0027】
即ち、図4に示すように、羽根31を下面側又は上面側から見たとき、傾斜面33aの幅は羽根31の始端縁24aにおいて最大となっており、当該羽根31の外周縁中央へ向かうにつれて傾斜面33aの幅は徐々に小さくなり当該外周縁中央において傾斜面33aの幅は0(ゼロ)となっている。そして、当該外周縁中央から羽根31の終端部32bへ向かうにつれて傾斜面33bの幅が徐々に大きくなり当該羽根31の終端縁34bにおいて最大となっている。
【0028】
図3及び図5(c)に示すように、傾斜面23a,23bはそれぞれ羽根21の外周縁において当該羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ2をなすように形成されている。また、図3及び図5(d)に示すように、傾斜面33a,33bはそれぞれ羽根31の外周縁において当該羽根31の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ2をなすように形成されている。傾斜角度θ2は羽根21,31の取付角度θに応じて設定されており、当該傾斜角度θ2は(90−θ)度とされている。本実施形態では、取付角度θ=15度としているので、θ2=75度とされている。
【0029】
従って、羽根21,31を鋼管12の外周面に所定の取付角度θで取付けた状態において、羽根21,31の外周縁、即ち傾斜面23a,33bを含む平面及び傾斜面33a,23bを含む平面はそれぞれ鋼管12の中心軸に直交する平面S1に直交する。
【0030】
(始端縁・終端縁)
図4及び図5(a)に示すように、羽根21の始端縁24aにはその上面側が鋭角にカットされることにより傾斜面25aが形成されている。図4及び図5(b)に示すように、羽根21の終端縁24bにはその上面が鋭角にカットされることにより傾斜面25bが形成されている。また、図4及び図5(a)に示すように、羽根31の終端縁34bにはその上面側が鋭角にカットされることにより傾斜面35bが形成されている。図4及び図5(b)に示すように、羽根31の始端縁34aにはその上面側が鋭角にカットされることにより傾斜面35aが形成されている。
【0031】
傾斜面25a,25bはそれぞれ羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ3をなすように形成されている。また、傾斜面35a,35bはそれぞれ羽根31の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ3をなすように形成されている。 傾斜角度θ3の採り得る範囲は20度以上90度未満、望ましい範囲は30〜60度、最適な範囲は35〜90度であり、本実実施形態では45度とされている。この範囲を超えると、傾斜面25a,25b,35a,35bの加工が困難となる。これは、後述するレーザ加工装置41のテーブル42の傾斜可能範囲を超えるためである。この範囲を下回ると、羽根21,31の強度不足となる。
【0032】
(内周縁)
(羽根21の内周縁)
図4及び図5(c)に示すように、羽根21の内周縁における始端部22a側の半分にはその下面側が鋭角にカットされることにより傾斜面26aが形成され、同じく終端部22b側の半分にはその上面側が鋭角にカットされることにより傾斜面26bが形成されている。傾斜面26aと傾斜面26bとは羽根21の内周縁中央を境に相互に連続している。
【0033】
即ち、図4に示すように、羽根21を下面側又は上面側から見たとき、傾斜面26aの幅は羽根21の始端縁24aにおいて最大となっており、当該羽根21の内周縁中央へ向かうにつれて傾斜面26aの幅は徐々に小さくなり当該外周縁中央において傾斜面26aの幅は0(ゼロ)となっている。そして、当該内周縁中央から羽根21の終端部22bへ向かうにつれて傾斜面26bの幅が徐々に大きくなり当該羽根21の終端縁24bにおいて最大となっている。
【0034】
(羽根31の内周縁)
図4及び図5(c)に示すように、羽根31の内周縁における始端部32a側の半分にはその下面側が鋭角にカットされることにより傾斜面36aが形成され、同じく終端部32b側の半分にはその上面側が鋭角にカットされることにより傾斜面36bが形成されている。傾斜面36aと傾斜面36bとは羽根31の内周縁中央を境に相互に連続している。
【0035】
即ち、図4に示すように、羽根31を下面側又は上面側から見たとき、傾斜面36aの幅は羽根31の終端縁34bにおいて最大となっており、当該羽根31の内周縁中央へ向かうにつれて傾斜面36aの幅は徐々に小さくなり当該外周縁中央において傾斜面36aの幅は0(ゼロ)となっている。そして、当該内周縁中央から羽根31の始端部22aへ向かうにつれて傾斜面36bの幅が徐々に大きくなり当該羽根31の始端縁24aにおいて最大となっている。
【0036】
傾斜面26a,26bはそれぞれ羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ4をなすように形成されている。また、傾斜面36a,36bはそれぞれ羽根31の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ4をなすように形成されている。傾斜角度θ4は羽根21,31の取付角度θに応じて設定されており、当該傾斜角度θ4は(90−θ)度とされている。本実施形態では、取付角度θ=15度としているので、θ4=75度とされている。
【0037】
従って、羽根21,31を鋼管12の外周面に所定の取付角度θで取付けた状態において、羽根21,31の内周縁、即ち傾斜面26a,26b及び傾斜面36a,36bはそれぞれ鋼管12の外周面に密接する。
【0038】
さて、鋼管杭11を地盤にねじ込む際、鋼管杭11の回転により羽根21,31は当該鋼管杭11の外周側の未掘削地盤(土砂や砂礫)に食込み、この羽根21,31の上部には土砂や砂礫の耐力が反力として作用する。このため、鋼管杭11にはねじ込み方向の推進力が作用する。鋼管杭11のねじ込み完了後は前記閉塞部材13と共に地盤反力を受けて地盤支持力を発揮する。
【0039】
(羽根の製造方法)
次に、羽根21,31の製造方法について説明する。本実施形態では、平板状のワークをレーザ加工装置のノズルから照射されたレーザ光により所定形状(例えばドーナツ形)に切り抜き、この所定形状の板部材をその中心で半分に切断することにより羽根21,31を形成する。
【0040】
即ち、図6に示すように、まず平板状のワークWをレーザ加工装置41のテーブル42に載置し、ワーク固定治具( 図示略) によりワークWをテーブル42に対して移動不能に固定する。
【0041】
ここで、テーブル42はテーブル駆動機構( 図示略) の作動により軸43を中心に図6における左右方向に揺動可能とされている。また、レーザ加工装置41は移動自在とされた加工ヘッド44を備えており、この加工ヘッド44にはレーザ光Lを照射するノズル45が設けられている。このノズル45から照射されたレーザ光Lが水平面Shに直交するように当該ノズル45は加工ヘッド44に設けられている。
【0042】
次に、前記テーブル駆動機構を作動させ、テーブル42を水平面Shに対して所定のテーブル傾斜角度θtだけ傾斜させる。このとき、テーブル傾斜角度θtは所望の切り口の傾斜角度(例えば傾斜角度θ2,θ3,θ4)に応じて設定される。この状態でレーザ加工装置41のノズル45からレーザ光LをワークWに照射しながら、当該ノズル45を加工形状に合わせて移動させる(例えば円運動や直線運動をさせる)。この結果、ワークWの切り口の傾斜角度は前記仮想平面S2に対して(90−θt)度となる。
【0043】
具体的に説明すると、羽根21,31の外周縁を形成する際には、テーブル傾斜角度θt=15度とする。この状態で前記水平面Shに対して直交するようにレーザ光LをワークWに照射しながらノズル45を円を描くように移動させる。すると、図4に示すように、ワークWから円形の板部材が切り出され、その外周縁(羽根21,31の外周縁に相当する。)には、前記仮想平面S2に対して75度をなす傾斜面が形成される。即ち、傾斜角度θ2=75度の傾斜面23a,23b及び傾斜面33a,33bがそれぞれ一括して形成される(第1工程)。
【0044】
次に、羽根21,31の内周縁を形成する際には、前述した外周縁を形成する場合とは反対側にテーブル42を傾斜させ、テーブル傾斜角度θt=15度とする。この状態で前記水平面Shに対して直交するようにレーザ光LをワークWに照射しながらノズル45を円を描くように移動させる。すると、図4に示すように、ドーナツ形の板部材が切り出され、その内周縁(羽根21,31の内周縁に相当する。)には、前記仮想平面S2に対して75度をなす傾斜面が形成される。即ち、傾斜角度θ4=75度の傾斜面26a,26b及び傾斜面36a,36bがそれぞれ一括して形成される(第2工程)。
【0045】
最後に、羽根21,31の始端縁及び終端縁を形成する際には、テーブル傾斜角度θt=45度とする。この状態で前記水平面Shに対して直交するようにドーナツ形の板部材をその中心で半分に切断する。すると、図4に示すように、その切断縁(始端縁24a,34a及び終端縁24b,34bに相当する。)には、前記仮想平面S2に対して45度をなす傾斜面が形成される。即ち、傾斜角度θ3=45度の傾斜面25a,25b及び傾斜面35a,35bがそれぞれ一括して形成される(第3工程)。
【0046】
以上で羽根21,31の製造が完了となる。このように、羽根21,31の形成と共に各傾斜面が形成されるので、各傾斜面を別々に形成するようにした場合や鋼管12に羽根21,31を固定した後に各傾斜面を形成するようにした場合に比べて、羽根21,31の製造が簡単になる。また、羽根21,31の製造工数を低減可能となる。
【0047】
(実施形態の作用)
次に、前述のように構成した鋼管杭の施工時の作用について説明する。
鋼管杭11を地中に埋設する際には、地上に設置した施工装置(図示略)により鋼管杭11を埋設しようとする地面に起立させ、この状態で鋼管杭11に回転力及びねじ込み方向への押圧力を与える。すると、鋼管杭11は先端ビット14により地盤を掘削軟化しながら羽根21,31のねじ作用により地盤(地中)にねじ込まれる。即ち、羽根21,31は鋼管杭11の外周側の地盤に食い込み、当該羽根21,31の上面に作用する土砂や砂礫の耐力を反力として鋼管杭11を地中に回転推進させる。鋼管杭11の下端側の土砂や砂礫は鋼管杭11のねじ込みに伴って当該鋼管杭11の外周側に押し出される。鋼管杭11の下端(先端)が所定の支持層( 図示略) に達すると、鋼管杭11の地盤へのねじ込み作業は完了となる。
【0048】
(実施形態の効果)
従って、本実施形態によれば、以下の効果を得ることができる。
(1)羽根21,31の内周縁には当該内周縁を鋼管12の外周面に密接させる密接構造を設けるようにした。具体的には、羽根21の内周縁には傾斜面26a,26bを連続して形成し、羽根31の内周縁には傾斜面36a,36bを連続して形成するようにした。そして、羽根21,31を鋼管12の外周面にとりつけたとき、当該外周面に傾斜面26a,26b及び傾斜面36a,36bがそれぞれ密接するように傾斜面26a,26b及び傾斜面36a,36bの傾斜角度θ4を設定するようにした。
【0049】
このため、鋼管杭11の地盤へのねじ込みに伴う羽根21,31の変形を抑制するために当該羽根21,31の肉厚tを大きくしても、当該羽根21,31の内周縁は鋼管12の外周面に密接し、羽根21,31の内周縁と鋼管12の外周面との間にがたつきが発生することは無い。従って、羽根21,31の鋼管12の外周面に対する接合強度(溶接強度)を確保することができる。また、肉厚tを厚くするほど羽根21,31の剛性が高められ、鋼管杭11の地盤へのねじ込みに伴う羽根21,31の上方への反り返りが抑制される。ひいては、羽根21,31による地盤支持力を確保することができ、当該羽根21,31の外径d(図2参照)を小さくすることができる。
【0050】
(2)鋼管12の外周面に対する羽根21,31の取付角度をθ(θ<90度)としたとき、傾斜面26a,26b及び傾斜面36a,36bは、羽根21,31の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度(90度−θ)をなすように形成した。このため、羽根21,31の鋼管12の外周面に対する取付角度θに応じて、当該羽根21,31の内周縁を鋼管12の外周縁に密接させることができる。
【0051】
(3)羽根21の始端縁24a及び終端縁24bにはそれぞれ当該羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ3をなす傾斜面25a及び傾斜面25bを形成するようにした。また、羽根31の始端縁34a及び終端縁34bにはそれぞれ当該羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ3をなす傾斜面35a及び傾斜面35bを形成するようにした。このため、鋼管杭11を地盤にねじ込む際、羽根21の始端縁24a,終端縁24b及び羽根31の始端縁34a,終端縁34bに加わる地盤の抵抗が軽減される。従って、鋼管杭11を地盤にねじ込む際に必要なトルクが低減し、当該鋼管杭11を地盤にねじ込みやすくすることができる。
【0052】
(4)羽根21の外周縁には当該羽根21の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ2をなす傾斜面23a,23bを連続して形成するようにした。また、羽根31の外周縁には当該羽根31の表面及び裏面に平行をなす仮想平面S2に対して所定の傾斜角度θ2をなす傾斜面33a,33bを連続して形成するようにした。このため、鋼管杭11の外周側の地盤からの抵抗が軽減され、当該地盤に羽根21,31が食い込みやすくなる。従って、鋼管杭11の地盤へのねじ込み時、当該鋼管杭11の回転をより円滑にすることができる。
【0053】
(5)レーザ光Lにより板状のワークWからドーナツ形の板部材を切り出し、この板部材をその中心で半分に切断することにより羽根21,31を形成するようにした。この際、ワークWを水平面Shに対して所定のテーブル傾斜角度θtだけ傾斜させた状態で当該ワークWにレーザ光Lを水平面Shに直交するように照射して加工するようにした。テーブル傾斜角度θtは羽根21,31における加工部位に応じて変更するようにした。
【0054】
このため、羽根21,31の形成と同時に各傾斜面23a,23b,33a,33b,25a,25b,35a,35b,26a,26b,36a,36bがそれぞれ形成される。従って、羽根21,31の製造が簡単になる。また、羽根21,31の製造工数を低減させ、当該羽根21,31の製造効率を向上させることができる。ひいては、鋼管杭11の製造工数を低減させ、当該鋼管杭11の製造効率を向上させることができる。
【0055】
(別例)
尚、前記実施形態は以下のような別例に変更して実施してもよい。
・本実施形態では、羽根21の始端縁24a及び終端縁24bにはそれぞれ傾斜面25a及び傾斜面25bを形成し、羽根31の始端縁34a及び終端縁34bにはそれぞれ傾斜面35a及び傾斜面35bを形成するようにしたが次のようにしてもよい。即ち、羽根21,31の始端縁24a,34aにのみ傾斜面25a,35aを形成するようにしてもよい。換言すれば、終端縁24b,34bの傾斜面25b,35bを形成しないようにする。
【0056】
・本実施形態では、羽根21の始端縁24a及び終端縁24bにはそれぞれ傾斜面25a及び傾斜面25bを形成し、羽根31の始端縁34a及び終端縁34bにはそれぞれ傾斜面35a及び傾斜面35bを形成するようにしたが次のようにしてもよい。即ち、各傾斜面25a,25b,35a,35bを形成しないようにする。
【0057】
・本実施形態では、羽根21の外周縁には傾斜面23a,23bを形成し、羽根31の外周縁には傾斜面33a,33bを形成するようにしたが、各傾斜面23a,23b,33a,33bを形成しないようにしてもよい。この場合、例えば羽根21,31の外周縁をそれぞれ前記仮想平面S2に対して直交するように形成する。
【0058】
・本実施形態では、羽根21,31の外周縁を形成してから、当該羽根21,31の内周縁を形成するようにしたが、逆の順番で形成するようにしてもよい。即ち、羽根21,31の内周縁を形成してから、当該羽根21,31の外周縁を形成する。
【0059】
・本実施形態では、羽根21,31の製造時、ワークWを水平面Shに対して所定のテーブル傾斜角度θtだけ傾斜させ、この状態でレーザ光Lを前記水平面Shに対して直交するように照射して前記ワークWを加工するようにしたが、次のようにしてもよい。即ち、図8に示すように、ノズル45を水平面Shに対して所定角度だけ傾斜させた状態でワークWを加工するようにしてもよい。
【0060】
(付記)
次に前記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)鋼管の下部外周面に対して当該鋼管の中心軸に直交する平面に対して所定の取付角度で且つ地盤へのねじ込みの際の鋼管の回転方向へ下方傾斜するように取付けるようにした鋼管杭用羽根の製造方法において、板状のワークを水平面に対して所定角度だけ傾斜させ、この状態でレーザ光を前記水平面に対して直交するように照射して前記ワークを加工するようにした鋼管杭用羽根の製造方法。この構成によれば、鋼管杭用羽根の形成と共に傾斜面が形成される。
【0061】
(ロ)前記レーザ光によりワークから所定形状の板部材を切り出し、この板部材をその中心で半分に切断することにより鋼管杭用羽根を形成するようにし、前記所定形状はドーナツ形とし、その外周縁及び内周縁のうち少なくとも内周縁を形成する際には前記ワークを前記水平面に対して所定の傾斜角度(θt)だけ傾斜させるようにした前記(イ)項に記載の鋼管杭用羽根の製造方法。この構成によれば、鋼管杭用羽根の形成と共に少なくとも内周縁には傾斜面が形成される。
【0062】
(ハ)前記ドーナツ形の板部材をその中心で半分に切断する際にも前記ワークを水平面に対して所定の傾斜角度(θt)だけ傾斜させるようにした鋼管杭用羽根の製造方法。この構成によれば、複数の鋼管杭用羽根の形成と共に各鋼管杭用羽根の始端縁及び終端縁にはそれぞれ傾斜面が形成される。
【0063】
(ニ)前記ワークから所定形状の板部材を切り出す際にも当該ワークを前記水平面に対して所定の傾斜角度(θt)だけ傾斜させるようにした前記(イ)〜)(ハ)項のうちいずれか一項に記載の鋼管杭用羽根の製造方法。この構成によれば、鋼管杭用羽根の形成と共に当該鋼管杭用羽根の外周縁には傾斜面が形成される。
【0064】
(ホ)前記始端縁における傾斜面の傾斜角度は20度以上90度未満の範囲において設定するようにした請求項4に記載の鋼管杭用羽根。
(ヘ)鋼管杭用羽根の外周縁には鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度をなす傾斜面を連続して形成するようにした請求項1〜請求項4のうちいずれか一項に記載の鋼管杭用羽根。この構成によれば、鋼管杭の外周側の地盤の抵抗が軽減され、当該地盤に鋼管杭用羽根が食い込みやすくなる。
【0065】
【発明の効果】
本発明によれば、鋼管杭用羽根の内周縁が鋼管の外周面に密接することにより、当該鋼管杭用羽根の鋼管に対する接合強度を確保することができる。
【図面の簡単な説明】
【図1】本実施形態における鋼管杭の正面図。
【図2】本実施形態における鋼管杭の下面図。
【図3】本実施形態における鋼管杭の要部正断面図。
【図4】本実施形態における鋼管杭用羽根の加工時の正面図。
【図5】(a)は図4における1−1線断面図、
(b)は図4における2−2線断面図、
(c)は図4における3−3線断面図、
(d)は図4における4−4線断面図。
【図6】本実施形態における鋼管杭用羽根の加工状態を示すレーザ加工装置の概略構成図。
【図7】本実施形態における鋼管杭の側面図。
【図8】本実施形態における鋼管杭用羽根の加工状態を示す別のレーザ加工装置の概略構成図。
【図9】(a)は、従来の鋼管杭の要部正面図、
(b)は、従来の鋼管杭用羽根の反り返りを示す要部正面図。
【図10】従来の鋼管杭の要部拡大正断面図。
【符号の説明】
11…鋼管杭、12…鋼管、21,31…羽根(鋼管杭用羽根)、
23a,23b…鋼管杭用羽根の外周縁に形成された傾斜面、
24a,34a…鋼管杭用羽根の始端縁、
24b,34b…鋼管杭用羽根の終端縁、
25a,35a…羽根の始端縁に形成された傾斜面、
25b,35b…羽根の終端縁に形成された傾斜面、
26a,26b…密接構造を構成する傾斜面、
33a,33b…鋼管杭用羽根の外周縁に形成された傾斜面、
36a,36b…密接構造を構成する傾斜面、
A…鋼管の回転方向、L…レーザ光、S1…鋼管の中心軸に直交する平面、
S2…羽根の表面及び裏面に平行をなす仮想平面、
Sh…水平面、W…ワーク、θ…鋼管杭用羽根の取付角度、
θ2…鋼管杭用羽根の外周縁に形成された傾斜面の傾斜角度、
θ3…羽根の始端縁に形成された傾斜面の傾斜角度、
θ4…羽根の内周縁に形成された傾斜面の傾斜角度、
θt…テーブル傾斜角度。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a screw-type blade for a steel pipe pile used as a foundation of a building and a steel pipe pile using the same.
[0002]
[Prior art]
Conventionally, the following steel pipe piles are known. That is, as shown in FIG. 9A, the steel pipe pile 51 includes a steel pipe 52 and a pair of blades 53a and 53b fixed to the outer peripheral surface near the tip of the steel pipe 52 so as to be inclined at a predetermined angle. I have. When a rotational force and a pressing force in the screwing direction are applied to the steel pipe pile 51 by a construction device (not shown) installed on the ground, the steel pipe pile 51 is screwed into the ground by the screw action of the blades 53a and 53b (for example, And Patent Document 1.).
[0003]
[Patent Document 1]
JP-A-10-292370
[0004]
[Problems to be solved by the invention]
However, the conventional steel pipe pile has the following problems. That is, as shown in FIG. 9 (b), the blades 53a and 53b receive a reaction force (ground reaction force) from the ground as the steel pipe pile 51 is screwed into the ground, and the blades 53a and 53b Bending moment is applied. As a result, the blades 53a and 53b warp upward, and the ground supporting force of the steel pipe pile 51 is reduced.
[0005]
To solve this problem, it is conceivable to increase the thickness t of the blades 53a and 53b. By doing so, the rigidity of the blades 53a, 53b is increased, and the blades 53a, 53b are less likely to be deformed. However, as shown in FIG. Is increased. For this reason, rattling occurs between the inner peripheral edges of the blades 53a and 53b and the outer peripheral surface of the steel pipe 52, and the gap between the inner peripheral edges of the blades 53a and 53b and the outer peripheral surface of the steel pipe 52 is temporarily forcibly welded. Even if the blades 53a and 53b are fixed to the steel pipe 52, there is a possibility that the joining strength of the blades 53a and 53b to the steel pipe 52 cannot be secured.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a steel pipe pile blade capable of securing joint strength to a steel pipe and a steel pipe pile using the same.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the lower outer peripheral surface of the steel pipe is inclined downward at a predetermined mounting angle with respect to a plane perpendicular to the central axis of the steel pipe and in the rotation direction of the steel pipe when screwed into the ground. The gist of the present invention is to provide a blade for a steel pipe pile which is mounted so as to be provided with a close-contact structure on an inner peripheral edge of the blade for a steel pipe pile so as to closely contact the inner peripheral edge with an outer peripheral surface of the steel pipe.
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the close structure includes an inclined surface formed on the inner peripheral edge of the steel pipe pile so that an inner peripheral edge of the blade is closely contacted with an outer peripheral surface of the steel pipe. The gist is that there is.
[0009]
According to a third aspect of the present invention, in the second aspect of the present invention, when the mounting angle of the steel pipe pile blade to the outer peripheral surface of the steel pipe is θ (θ <90 degrees), the surface of the steel pipe pile blade and The gist is that the inclined surface is formed so as to form a predetermined inclination angle (90 degrees-θ) with respect to an imaginary plane parallel to the back surface.
[0010]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, at least the starting end edge of the steel pipe pile blade is provided at the starting end edge and the steel pipe pile blade. The gist is that an inclined plane having a predetermined inclination angle with respect to a virtual plane parallel to the front surface and the back surface is formed.
[0011]
The invention according to claim 5 is a steel pipe pile according to any one of claims 1 to 4, wherein the steel pipe pile is screwed into the ground using a plurality of blades attached to a lower part of the steel pipe. The gist is that the wings are used.
[0012]
(Action)
According to the first aspect of the invention, when the steel pipe pile blade is attached to the outer peripheral surface of the steel pipe at a predetermined mounting angle, the inner peripheral edge of the steel pipe pile blade comes into close contact with the outer peripheral surface of the steel pipe. For this reason, rattling between the inner peripheral edge of the steel pipe pile blade and the outer peripheral surface of the steel pipe is suppressed.
[0013]
According to a second aspect of the present invention, in addition to the operation of the first aspect, the blade for a steel pipe pile comes into close contact with the outer peripheral surface of the steel pipe via an inclined surface formed on an inner peripheral edge thereof.
According to the invention described in claim 3, in addition to the effect of the invention described in claim 2, the inclined surface formed on the inner peripheral edge of the steel pipe pile blade is parallel to the front and back surfaces of the steel pipe pile blade. Make a predetermined inclination angle (90 degrees-θ) with respect to the virtual plane. For this reason, when the blade for steel pipe piles is mounted at an angle of θ with respect to the outer peripheral surface of the steel pipe pile, the inclined surface formed on the inner peripheral edge of the blade for steel pipe piles comes into close contact with the outer peripheral surface of the steel pipe pile.
[0014]
The invention according to claim 4 provides, in addition to the function of the invention according to any one of claims 1 to 3, at least the starting edge of the starting edge and the terminating edge of the steel pipe pile blade. An inclined surface that forms a predetermined inclination angle with respect to an imaginary plane that is parallel to the front surface and the back surface of the steel pipe pile blade is formed. For this reason, the resistance of the ground applied to the steel pipe pile blade is reduced.
[0015]
According to the invention as set forth in claim 5, the blade for steel pipe pile according to any one of claims 1 to 4 is used for the steel pipe pile.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a screw-in type steel pipe pile used as a foundation of a building, for example, will be described with reference to FIGS.
[0017]
(Overall configuration)
As shown in FIGS. 1, 2 and 7, the steel pipe pile 11 is a tubular steel pipe 12 having both ends opened, a plate-shaped closing member 13 for closing the lower end opening of the steel pipe 12, and a lower surface of the closing member 13. That is, it has a tip bit 14 provided on the tip face of the steel pipe 12 and a pair of blades 21 and 31 also provided on the lower peripheral face of the steel pipe 12.
[0018]
(Occlusion member)
The closing member 13 is fixed to the lower end opening of the steel pipe 12 by welding. When the steel pipe pile 11 is screwed into the ground, the closing member 13 pushes out the earth and sand or gravel on the lower end side of the steel pipe pile 11 to the outer peripheral side of the steel pipe pile 11, and after the screwing is completed, a reaction force from the ground (hereinafter, referred to as “the ground”). In response to "ground reaction force."
[0019]
(Tip bit)
The tip bit 14 (digging blade) is formed in a pentagonal shape by a plate material. The height of the tip bit 14 from the lower surface of the closing member 13 becomes higher toward the center of the lower surface of the closing member 13, and the height of the protrusion from the lower surface of the closing member 13 becomes lower toward the outer peripheral edge. It is fixed to be orthogonal to the lower surface of the closing member 13. When the steel pipe pile 11 is screwed into the ground, the tip bit 14 functions as an excavation guide that excavates and softens soil and gravel on the lower end side (tip side) of the steel pipe pile 11 and guides the screwing of the steel pipe pile 11 into the ground. .
[0020]
(Feather)
Next, the blades 21 and 31 will be described in detail with reference to FIG. FIG. 4 shows the blades 21 and 31 in a state cut out from one plate material by a laser beam L described later, and does not show a state where the blades 21 and 31 are attached to the steel pipe 12. In FIG. 4, the blade 21 has a lower surface on the near side of the drawing, and the blade 31 has an upper surface on the near side of the drawing. In the present embodiment, the upper surface and the lower surface refer to the upper surface and the lower surface when the blades 21 and 31 are attached to the outer peripheral surface of the steel pipe 12.
[0021]
As shown in FIG. 4, the blades 21 and 31 are formed by dividing a donut-shaped plate having an outer diameter larger than the outer diameter of the steel pipe 12 and having an inner diameter substantially equal to the outer diameter of the steel pipe 12 into two parts. It is formed in a fan shape. The blades 21 and 31 are fixed to the outer peripheral surface of the distal end of the steel pipe 12 at the respective inner peripheral edges by welding. The blades 21 and 31 have the same mounting angle θ with respect to a plane S1 (see FIG. 1) orthogonal to the central axis of the steel pipe 12, and rotate the steel pipe 12 when screwing it into the ground (see FIGS. 1 and 2). It is attached to the outer peripheral surface of the steel pipe 12 so as to incline downward in the direction indicated by arrow A).
[0022]
The range in which the mounting angle θ of the blades 21 and 31 can be taken is more than 0 degree and 15 degrees or less, and is set to 15 degrees in the present embodiment. If the mounting angle θ exceeds 15 degrees, the ground support force of the blades 21 and 31 cannot be secured, and the steel pipe pile 11 may sink. When the mounting angle θ is set to 0 °, the screwing of the steel pipe pile 11 into the ground may not be performed smoothly.
[0023]
The start ends 22a and 32a of the blades 21 and 31 are also located on the lower end side (downward in FIG. 1) of the steel pipe 12 with respect to the end parts 22b and 32b. The starting ends 22a and 32a of the blades 21 and 31 refer to the ends of the blades 21 and 31 on the rotation direction A side of the steel pipe pile 51, and the terminating ends 22b and 32b similarly indicate the ends of the steel pipe pile 51 of the blades 21 and 31. The end opposite to the rotation direction A is referred to.
[0024]
(Outer edge)
(Outer peripheral edge of the blade 21)
As shown in FIG. 3, FIG. 4 and FIG. 5 (c), on the outer peripheral edge of the blade 21, an inclined surface 23a is formed in the half on the side of the starting end 22a by cutting the upper surface thereof at an acute angle, and similarly the terminal end. An inclined surface 23b is formed in a half of the portion 22b by cutting the lower surface thereof at an acute angle. The inclined surface 23a and the inclined surface 23b are continuous with each other at the center of the outer peripheral edge of the blade 21.
[0025]
That is, as shown in FIG. 4, when the blade 21 is viewed from the lower surface side or the upper surface side, the width of the inclined surface 23 a is the maximum at the starting end edge 24 a of the blade 21 and goes toward the center of the outer peripheral edge of the blade 21. As the width of the inclined surface 23a gradually decreases, the width of the inclined surface 23a becomes 0 (zero) at the center of the outer peripheral edge. The width of the inclined surface 23b gradually increases from the center of the outer peripheral edge toward the terminal end portion 22b of the blade 21 and becomes maximum at the terminal end edge 24b of the blade 21.
[0026]
(Outer peripheral edge of the blade 31)
As shown in FIG. 3, FIG. 4 and FIG. 5 (d), on the outer peripheral edge of the blade 31, the inclined surface 33a is formed in the half on the side of the starting end 32a by cutting the upper surface thereof at an acute angle, and similarly the terminal end. An inclined surface 33b is formed in a half of the portion 32b by cutting the lower surface thereof at an acute angle. The inclined surface 33a and the inclined surface 33b are mutually continuous at the center of the outer peripheral edge of the blade 21.
[0027]
That is, as shown in FIG. 4, when the blade 31 is viewed from the lower surface side or the upper surface side, the width of the inclined surface 33 a is the maximum at the starting edge 24 a of the blade 31 and goes toward the center of the outer peripheral edge of the blade 31. As the width of the inclined surface 33a gradually decreases, the width of the inclined surface 33a becomes 0 (zero) at the center of the outer peripheral edge. Then, the width of the inclined surface 33b gradually increases from the center of the outer peripheral edge toward the terminal end portion 32b of the blade 31, and becomes maximum at the terminal edge 34b of the blade 31.
[0028]
As shown in FIGS. 3 and 5C, the inclined surfaces 23a and 23b form a predetermined inclination angle θ2 at the outer peripheral edge of the blade 21 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 21. It is formed as follows. Also, as shown in FIGS. 3 and 5D, the inclined surfaces 33a and 33b each have a predetermined inclination angle θ2 at the outer peripheral edge of the blade 31 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 31. Is formed. The inclination angle θ2 is set in accordance with the mounting angle θ of the blades 21 and 31, and the inclination angle θ2 is (90−θ) degrees. In the present embodiment, since the attachment angle θ is set to 15 degrees, θ2 is set to 75 degrees.
[0029]
Therefore, when the blades 21 and 31 are mounted on the outer peripheral surface of the steel pipe 12 at a predetermined mounting angle θ, the outer peripheral edges of the blades 21 and 31, that is, the plane including the inclined surfaces 23 a and 33 b and the plane including the inclined surfaces 33 a and 23 b. Are perpendicular to a plane S1 perpendicular to the central axis of the steel pipe 12, respectively.
[0030]
(Starting edge / ending edge)
As shown in FIG. 4 and FIG. 5A, an inclined surface 25a is formed at the starting end 24a of the blade 21 by cutting the upper surface thereof at an acute angle. As shown in FIG. 4 and FIG. 5B, an inclined surface 25b is formed at the terminal edge 24b of the blade 21 by cutting the upper surface thereof at an acute angle. Further, as shown in FIGS. 4 and 5A, an inclined surface 35b is formed at the terminal edge 34b of the blade 31 by cutting the upper surface thereof at an acute angle. As shown in FIG. 4 and FIG. 5B, an inclined surface 35a is formed at the starting edge 34a of the blade 31 by cutting the upper surface thereof at an acute angle.
[0031]
The inclined surfaces 25a and 25b are formed so as to form a predetermined inclination angle θ3 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 21, respectively. The inclined surfaces 35a and 35b are formed so as to form a predetermined inclined angle θ3 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 31, respectively. The range that the inclination angle θ3 can take is 20 degrees or more and less than 90 degrees, a desirable range is 30 to 60 degrees, and an optimal range is 35 to 90 degrees, and is 45 degrees in the present embodiment. Exceeding this range makes it difficult to machine the inclined surfaces 25a, 25b, 35a, 35b. This is because it exceeds the tiltable range of the table 42 of the laser processing device 41 described later. Below this range, the blades 21 and 31 will have insufficient strength.
[0032]
(Inner periphery)
(Inner periphery of the blade 21)
As shown in FIG. 4 and FIG. 5 (c), an inclined surface 26a is formed by cutting the lower surface side of the half of the inner peripheral edge of the blade 21 on the side of the start end 22a at an acute angle, and similarly, on the side of the end 22b. An inclined surface 26b is formed in the half by cutting the upper surface thereof at an acute angle. The inclined surfaces 26a and 26b are continuous with each other with the center of the inner peripheral edge of the blade 21 as a boundary.
[0033]
That is, as shown in FIG. 4, when the blade 21 is viewed from the lower surface side or the upper surface side, the width of the inclined surface 26 a is the largest at the starting edge 24 a of the blade 21 and goes toward the center of the inner peripheral edge of the blade 21. As the width of the inclined surface 26a gradually decreases, the width of the inclined surface 26a becomes 0 (zero) at the center of the outer peripheral edge. The width of the inclined surface 26b gradually increases from the center of the inner peripheral edge toward the terminal end portion 22b of the blade 21 and becomes maximum at the terminal edge 24b of the blade 21.
[0034]
(Inner edge of blade 31)
As shown in FIGS. 4 and 5 (c), an inclined surface 36a is formed by cutting the lower surface side of the half of the inner peripheral edge of the blade 31 at the start end portion 32a at an acute angle, and similarly at the end portion 32b side. An inclined surface 36b is formed in the half by cutting the upper surface thereof at an acute angle. The inclined surface 36a and the inclined surface 36b are continuous with each other at the center of the inner peripheral edge of the blade 31.
[0035]
That is, as shown in FIG. 4, when the blade 31 is viewed from the lower surface side or the upper surface side, the width of the inclined surface 36 a is maximum at the terminal edge 34 b of the blade 31 and goes toward the center of the inner peripheral edge of the blade 31. As a result, the width of the inclined surface 36a gradually decreases, and the width of the inclined surface 36a becomes 0 (zero) at the center of the outer peripheral edge. Then, the width of the inclined surface 36b gradually increases from the center of the inner peripheral edge toward the start end portion 22a of the blade 31 and becomes maximum at the start end edge 24a of the blade 31.
[0036]
The inclined surfaces 26a and 26b are formed so as to form a predetermined inclination angle θ4 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 21, respectively. The inclined surfaces 36a and 36b are formed so as to form a predetermined inclination angle θ4 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 31, respectively. The inclination angle θ4 is set according to the mounting angle θ of the blades 21 and 31, and the inclination angle θ4 is (90−θ) degrees. In the present embodiment, since the mounting angle θ is set to 15 degrees, θ4 is set to 75 degrees.
[0037]
Therefore, when the blades 21 and 31 are mounted on the outer peripheral surface of the steel pipe 12 at a predetermined mounting angle θ, the inner peripheral edges of the blades 21 and 31, that is, the inclined surfaces 26 a and 26 b and the inclined surfaces 36 a and 36 b, Close to the surface.
[0038]
Now, when screwing the steel pipe pile 11 into the ground, the blades 21 and 31 bite into the unexcavated ground (soil and sand and gravel) on the outer peripheral side of the steel pipe pile 11 due to the rotation of the steel pipe pile 11. The strength of earth and sand and gravel acts as a reaction force. Therefore, a driving force in the screwing direction acts on the steel pipe pile 11. After the screwing of the steel pipe pile 11 is completed, the steel pipe pile 11 receives the ground reaction force together with the closing member 13 to exhibit the ground supporting force.
[0039]
(Production method of feather)
Next, a method of manufacturing the blades 21 and 31 will be described. In the present embodiment, the flat plate-shaped workpiece is cut out into a predetermined shape (for example, a donut shape) by a laser beam irradiated from a nozzle of a laser processing apparatus, and the plate member having the predetermined shape is cut in half at the center thereof, thereby making the blade 21 , 31 are formed.
[0040]
That is, as shown in FIG. 6, first, a flat work W is placed on a table 42 of a laser processing apparatus 41, and the work W is immovably fixed to the table 42 by a work fixing jig (not shown). .
[0041]
Here, the table 42 is swingable in the left-right direction in FIG. 6 around the shaft 43 by the operation of a table driving mechanism (not shown). Further, the laser processing device 41 includes a movable processing head 44, and the processing head 44 is provided with a nozzle 45 for irradiating the laser beam L. The nozzle 45 is provided on the processing head 44 such that the laser beam L emitted from the nozzle 45 is orthogonal to the horizontal plane Sh.
[0042]
Next, the table drive mechanism is operated to tilt the table 42 by a predetermined table tilt angle θt with respect to the horizontal plane Sh. At this time, the table inclination angle θt is set according to the desired inclination angle of the cut edge (for example, the inclination angles θ2, θ3, θ4). In this state, while irradiating the workpiece W with the laser beam L from the nozzle 45 of the laser processing device 41, the nozzle 45 is moved in accordance with the processing shape (for example, a circular motion or a linear motion is performed). As a result, the inclination angle of the cut edge of the work W is (90-θt) degrees with respect to the virtual plane S2.
[0043]
More specifically, when forming the outer peripheral edges of the blades 21 and 31, the table inclination angle θt is set to 15 degrees. In this state, the nozzle 45 is moved so as to draw a circle while irradiating the work W with the laser beam L so as to be orthogonal to the horizontal plane Sh. Then, as shown in FIG. 4, a circular plate member is cut out from the work W, and its outer peripheral edge (corresponding to the outer peripheral edges of the blades 21 and 31) forms an angle of 75 degrees with the virtual plane S2. An inclined surface is formed. That is, the inclined surfaces 23a and 23b and the inclined surfaces 33a and 33b having the inclination angle θ2 = 75 degrees are formed collectively (first step).
[0044]
Next, when forming the inner peripheral edges of the blades 21 and 31, the table 42 is inclined to the side opposite to the case where the outer peripheral edge is formed, and the table inclination angle θt is set to 15 degrees. In this state, the nozzle 45 is moved so as to draw a circle while irradiating the work W with the laser beam L so as to be orthogonal to the horizontal plane Sh. Then, as shown in FIG. 4, a donut-shaped plate member is cut out, and its inner peripheral edge (corresponding to the inner peripheral edge of the blades 21 and 31) has an inclined surface forming 75 degrees with respect to the virtual plane S <b> 2. Is formed. That is, the inclined surfaces 26a and 26b and the inclined surfaces 36a and 36b having the inclination angle θ4 = 75 degrees are formed collectively (second step).
[0045]
Finally, when forming the start edge and the end edge of the blades 21 and 31, the table inclination angle θt is set to 45 degrees. In this state, the donut-shaped plate member is cut in half at its center so as to be orthogonal to the horizontal plane Sh. Then, as shown in FIG. 4, an inclined surface that forms 45 degrees with respect to the virtual plane S2 is formed on the cut edges (corresponding to the start edges 24a and 34a and the end edges 24b and 34b). That is, the inclined surfaces 25a and 25b and the inclined surfaces 35a and 35b having the inclination angle θ3 = 45 degrees are formed collectively (third step).
[0046]
Thus, the manufacture of the blades 21 and 31 is completed. As described above, since the respective inclined surfaces are formed together with the formation of the blades 21 and 31, the respective inclined surfaces are formed when the respective inclined surfaces are separately formed or after the blades 21 and 31 are fixed to the steel pipe 12. The manufacture of the blades 21 and 31 is simpler than in the case where the above-described case is adopted. Further, the number of manufacturing steps for the blades 21 and 31 can be reduced.
[0047]
(Operation of the embodiment)
Next, an operation at the time of construction of the steel pipe pile configured as described above will be described.
When the steel pipe pile 11 is buried in the ground, the steel pipe pile 11 is erected on the ground where the steel pipe pile 11 is to be buried by a construction device (not shown) installed on the ground, and in this state, the steel pipe pile 11 is turned in the rotational direction and the screwing direction. Of pressing force. Then, the steel pipe pile 11 is screwed into the ground (underground) by the screw action of the blades 21 and 31 while excavating and softening the ground with the tip bit 14. That is, the blades 21 and 31 bite into the ground on the outer peripheral side of the steel pipe pile 11, and rotate and propel the steel pipe pile 11 into the ground as a reaction force with the strength of the earth and sand or gravel acting on the upper surfaces of the blades 21 and 31. The earth and sand and gravel on the lower end side of the steel pipe pile 11 are pushed out to the outer peripheral side of the steel pipe pile 11 as the steel pipe pile 11 is screwed. When the lower end (tip) of the steel pipe pile 11 reaches a predetermined support layer (not shown), the screwing of the steel pipe pile 11 into the ground is completed.
[0048]
(Effects of the embodiment)
Therefore, according to the present embodiment, the following effects can be obtained.
(1) The inner peripheral edges of the blades 21 and 31 are provided with a close contact structure for bringing the inner peripheral edge into close contact with the outer peripheral surface of the steel pipe 12. Specifically, the inclined surfaces 26a and 26b are continuously formed on the inner peripheral edge of the blade 21, and the inclined surfaces 36a and 36b are continuously formed on the inner peripheral edge of the blade 31. When the blades 21 and 31 are attached to the outer peripheral surface of the steel pipe 12, the inclined surfaces 26a and 26b and the inclined surfaces 36a and 36b are so closely contacted with the inclined surfaces 26a and 26b and the inclined surfaces 36a and 36b, respectively. The inclination angle θ4 is set.
[0049]
For this reason, even if the thickness t of the blades 21, 31 is increased in order to suppress the deformation of the blades 21, 31 due to the screwing of the steel pipe pile 11 into the ground, the inner peripheral edges of the blades 21, 31 are formed by the steel pipe 12. And the rattle does not occur between the inner peripheral edges of the blades 21 and 31 and the outer peripheral surface of the steel pipe 12. Therefore, the joining strength (welding strength) of the blades 21 and 31 to the outer peripheral surface of the steel pipe 12 can be ensured. In addition, the rigidity of the blades 21 and 31 is increased as the thickness t increases, and the upward curling of the blades 21 and 31 due to the screwing of the steel pipe pile 11 into the ground is suppressed. As a result, the ground support force of the blades 21 and 31 can be secured, and the outer diameter d (see FIG. 2) of the blades 21 and 31 can be reduced.
[0050]
(2) Assuming that the angle of attachment of the blades 21 and 31 to the outer peripheral surface of the steel pipe 12 is θ (θ <90 degrees), the inclined surfaces 26a and 26b and the inclined surfaces 36a and 36b are formed on the front and back surfaces of the blades 21 and 31. It was formed so as to form a predetermined inclination angle (90 degrees-θ) with respect to the parallel virtual plane S2. Therefore, the inner peripheral edges of the blades 21 and 31 can be brought into close contact with the outer peripheral edge of the steel pipe 12 in accordance with the mounting angle θ of the blades 21 and 31 with respect to the outer peripheral surface of the steel pipe 12.
[0051]
(3) On the start edge 24a and the end edge 24b of the blade 21, an inclined surface 25a and an inclined surface 25b are respectively formed at a predetermined inclination angle θ3 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 21. I did it. In addition, inclined surfaces 35a and 35b that form a predetermined inclination angle θ3 with respect to a virtual plane S2 that is parallel to the front surface and the back surface of the blade 21 are formed on the start edge 34a and the end edge 34b of the blade 31, respectively. I made it. For this reason, when the steel pipe pile 11 is screwed into the ground, the resistance of the ground applied to the start edge 24a and the end edge 24b of the blade 21 and the start edge 34a and the end edge 34b of the blade 31 is reduced. Therefore, the torque required when screwing the steel pipe pile 11 into the ground is reduced, and the steel pipe pile 11 can be easily screwed into the ground.
[0052]
(4) On the outer peripheral edge of the blade 21, inclined surfaces 23a and 23b forming a predetermined inclined angle θ2 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 21 are formed continuously. Further, on the outer peripheral edge of the blade 31, inclined surfaces 33a, 33b are formed continuously at a predetermined inclination angle θ2 with respect to a virtual plane S2 parallel to the front surface and the back surface of the blade 31. For this reason, the resistance from the ground on the outer peripheral side of the steel pipe pile 11 is reduced, and the blades 21 and 31 can easily bite into the ground. Therefore, when the steel pipe pile 11 is screwed into the ground, the rotation of the steel pipe pile 11 can be made smoother.
[0053]
(5) The doughnut-shaped plate member is cut out from the plate-shaped work W by the laser beam L, and the plate member is cut in half at the center thereof to form the blades 21 and 31. At this time, the work W is irradiated with the laser beam L so as to be orthogonal to the horizontal plane Sh while the work W is inclined with respect to the horizontal plane Sh by a predetermined table inclination angle θt. The table tilt angle θt is changed in accordance with the processing part on the blades 21 and 31.
[0054]
Therefore, simultaneously with the formation of the blades 21 and 31, the respective inclined surfaces 23a, 23b, 33a, 33b, 25a, 25b, 35a, 35b, 26a, 26b, 36a, and 36b are respectively formed. Therefore, the manufacture of the blades 21 and 31 is simplified. Further, the number of manufacturing steps of the blades 21 and 31 can be reduced, and the manufacturing efficiency of the blades 21 and 31 can be improved. As a result, the man-hour for manufacturing the steel pipe pile 11 can be reduced, and the manufacturing efficiency of the steel pipe pile 11 can be improved.
[0055]
(Another example)
The above-described embodiment may be modified and implemented as follows.
In the present embodiment, the slopes 25a and 25b are formed at the start edge 24a and the end edge 24b of the blade 21, respectively, and the slopes 35a and 35b are respectively formed at the start edge 34a and the end edge 34b of the blade 31. Is formed, but may be formed as follows. That is, the inclined surfaces 25a and 35a may be formed only on the starting edges 24a and 34a of the blades 21 and 31. In other words, the inclined surfaces 25b, 35b of the terminal edges 24b, 34b are not formed.
[0056]
In the present embodiment, the slopes 25a and 25b are formed at the start edge 24a and the end edge 24b of the blade 21, respectively, and the slopes 35a and 35b are respectively formed at the start edge 34a and the end edge 34b of the blade 31. Is formed, but may be formed as follows. That is, the inclined surfaces 25a, 25b, 35a, 35b are not formed.
[0057]
In the present embodiment, the inclined surfaces 23a and 23b are formed on the outer peripheral edge of the blade 21 and the inclined surfaces 33a and 33b are formed on the outer peripheral edge of the blade 31. However, each of the inclined surfaces 23a, 23b and 33a is formed. , 33b may not be formed. In this case, for example, the outer peripheral edges of the blades 21 and 31 are formed so as to be orthogonal to the virtual plane S2.
[0058]
In the present embodiment, the outer peripheral edges of the blades 21 and 31 are formed, and then the inner peripheral edges of the blades 21 and 31 are formed. However, they may be formed in the reverse order. That is, after the inner peripheral edges of the blades 21 and 31 are formed, the outer peripheral edges of the blades 21 and 31 are formed.
[0059]
In the present embodiment, at the time of manufacturing the blades 21 and 31, the work W is inclined with respect to the horizontal plane Sh by a predetermined table inclination angle θt, and in this state, the laser beam L is irradiated so as to be orthogonal to the horizontal plane Sh. Then, the work W is processed, but the following may be performed. That is, as shown in FIG. 8, the workpiece W may be processed in a state where the nozzle 45 is inclined by a predetermined angle with respect to the horizontal plane Sh.
[0060]
(Note)
Next, technical ideas that can be grasped from the embodiment and other examples will be additionally described below.
(A) The steel pipe is mounted so as to be inclined downward at a predetermined mounting angle with respect to a plane perpendicular to the central axis of the steel pipe with respect to a lower outer peripheral surface of the steel pipe in a rotation direction of the steel pipe when screwed into the ground. In the method of manufacturing a blade for a steel pipe pile, a plate-shaped work is inclined by a predetermined angle with respect to a horizontal plane, and in this state, the work is processed by irradiating a laser beam orthogonally to the horizontal plane. A method for manufacturing blades for steel pipe piles. According to this configuration, the inclined surface is formed together with the formation of the blade for the steel pipe pile.
[0061]
(B) A plate member having a predetermined shape is cut out from the work by the laser beam, and the plate member is cut in half at the center thereof to form a blade for a steel pipe pile. The predetermined shape is a donut shape. The manufacturing of the steel pipe pile blade according to the above item (a), wherein the work is inclined by a predetermined inclination angle (θt) with respect to the horizontal plane when forming at least the inner peripheral edge of the peripheral edge and the inner peripheral edge. Method. According to this configuration, an inclined surface is formed at least on the inner peripheral edge together with the formation of the steel pipe pile blade.
[0062]
(C) A method of manufacturing a blade for steel pipe piles, wherein the work is inclined at a predetermined inclination angle (θt) with respect to a horizontal plane even when the donut-shaped plate member is cut in half at its center. According to this configuration, together with the formation of the plurality of blades for steel pipe piles, the inclined surfaces are respectively formed at the start edge and the end edge of each blade for steel pipe piles.
[0063]
(D) any one of the above (a) to (c), wherein the work is inclined by a predetermined inclination angle (θt) with respect to the horizontal plane even when cutting a plate member of a predetermined shape from the work. The method for producing a blade for a steel pipe pile according to any one of the preceding claims. According to this configuration, the inclined surface is formed on the outer peripheral edge of the steel pipe pile blade together with the formation of the steel pipe pile blade.
[0064]
(E) The blade for a steel pipe pile according to claim 4, wherein the inclination angle of the inclined surface at the starting end is set in a range of 20 degrees or more and less than 90 degrees.
(F) An inclined surface having a predetermined inclination angle with respect to an imaginary plane parallel to the front surface and the back surface of the steel pipe pile blade is continuously formed on the outer peripheral edge of the steel pipe pile blade. The blade for a steel pipe pile according to claim 4. According to this configuration, the resistance of the ground on the outer peripheral side of the steel pipe pile is reduced, and the blades for the steel pipe pile can easily bite into the ground.
[0065]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the joining intensity | strength with respect to a steel pipe of the said blade for steel pipe piles can be ensured by the inner peripheral edge of the blade for steel pipe piles being close to the outer peripheral surface of a steel pipe.
[Brief description of the drawings]
FIG. 1 is a front view of a steel pipe pile according to an embodiment.
FIG. 2 is a bottom view of the steel pipe pile according to the embodiment.
FIG. 3 is a front sectional view of a main part of the steel pipe pile according to the embodiment.
FIG. 4 is a front view at the time of processing the blade for the steel pipe pile according to the embodiment.
FIG. 5A is a sectional view taken along line 1-1 in FIG. 4;
(B) is a sectional view taken along line 2-2 in FIG.
(C) is a sectional view taken along line 3-3 in FIG.
(D) is a sectional view taken along line 4-4 in FIG.
FIG. 6 is a schematic configuration diagram of a laser processing apparatus showing a processing state of a blade for a steel pipe pile according to the present embodiment.
FIG. 7 is a side view of the steel pipe pile according to the embodiment.
FIG. 8 is a schematic configuration diagram of another laser processing apparatus showing a processing state of a steel pipe pile blade in the present embodiment.
FIG. 9A is a front view of a main part of a conventional steel pipe pile,
(B) is a principal part front view which shows the curvature of the conventional blade for steel pipe piles.
FIG. 10 is an enlarged front sectional view of a main part of a conventional steel pipe pile.
[Explanation of symbols]
11 ... steel pipe pile, 12 ... steel pipe, 21, 31 ... blade (blade for steel pipe pile),
23a, 23b: inclined surfaces formed on the outer peripheral edge of the steel pipe pile blade,
24a, 34a: Starting edge of blade for steel pipe pile,
24b, 34b: terminal edge of blade for steel pipe pile,
25a, 35a: inclined surface formed at the starting edge of the blade;
25b, 35b ... inclined surface formed at the terminal edge of the blade,
26a, 26b: inclined surfaces forming a close structure,
33a, 33b: inclined surfaces formed on the outer peripheral edge of the steel pipe pile blade,
36a, 36b: inclined surfaces forming a close structure;
A: rotating direction of steel pipe, L: laser beam, S1: plane perpendicular to the central axis of steel pipe,
S2: an imaginary plane parallel to the front and back surfaces of the blade,
Sh: horizontal plane, W: workpiece, θ: mounting angle of blade for steel pipe pile,
θ2: the inclination angle of the inclined surface formed on the outer peripheral edge of the steel pipe pile blade,
θ3: the inclination angle of the inclined surface formed at the starting edge of the blade,
θ4: the inclination angle of the inclined surface formed on the inner peripheral edge of the blade,
θt: Table tilt angle.

Claims (5)

鋼管の下部外周面に当該鋼管の中心軸に直交する平面に対して所定の取付角度をなすように且つ地盤へのねじ込みの際の鋼管の回転方向へ下方傾斜するように取付けるようにした鋼管杭用羽根において、
鋼管杭用羽根の内周縁には当該内周縁を鋼管の外周面に密接させる密接構造を設けるようにした鋼管杭用羽根。
A steel pipe pile mounted on a lower outer peripheral surface of a steel pipe so as to form a predetermined mounting angle with respect to a plane orthogonal to a central axis of the steel pipe and to incline downward in a rotation direction of the steel pipe when screwed into the ground. In the wings,
A blade for a steel pipe pile, wherein an inner peripheral edge of the blade for a steel pipe pile is provided with a close structure for closely contacting the inner peripheral edge with an outer peripheral surface of the steel pipe.
前記密接構造は、鋼管杭用羽根の内周縁が鋼管の外周面に密接するように当該内周縁に形成された傾斜面である請求項1に記載の鋼管杭用羽根。The blade for a steel pipe pile according to claim 1, wherein the close contact structure is an inclined surface formed on the inner peripheral edge of the steel pipe pile so that the inner peripheral edge of the blade closely contacts the outer peripheral surface of the steel pipe. 前記鋼管の外周面に対する鋼管杭用羽根の取付角度をθ(θ<90度)としたとき、鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度(90度−θ)をなすように前記傾斜面を形成した請求項2に記載の鋼管杭用羽根。When the attachment angle of the steel pipe pile blade to the outer peripheral surface of the steel pipe is θ (θ <90 °), a predetermined inclination angle (90 ° − The blade for a steel pipe pile according to claim 2, wherein the inclined surface is formed so as to satisfy θ). 鋼管杭用羽根の始端縁及び終端縁のうち少なくとも始端縁には当該鋼管杭用羽根の表面及び裏面に平行をなす仮想平面に対して所定の傾斜角度をなす傾斜面を形成するようにした請求項1〜請求項3のうちいずれか一項に記載の鋼管杭用羽根。At least the starting edge of the starting edge and the terminating edge of the steel pipe pile blade has a slope formed at a predetermined angle with respect to an imaginary plane parallel to the front and back surfaces of the steel pipe pile blade. The blade for steel pipe piles according to any one of claims 1 to 3. 鋼管の下部に取付けた複数の羽根を利用して地盤にねじ込むようにした鋼管杭において、
請求項1〜請求項4のうちいずれか一項に記載の鋼管杭用羽根を使用した鋼管杭。
In a steel pipe pile that was screwed into the ground using multiple blades attached to the bottom of the steel pipe,
A steel pipe pile using the steel pipe pile blade according to any one of claims 1 to 4.
JP2002353305A 2002-12-05 2002-12-05 Blades for steel pipe pile, and the steel pipe pile employing the same Pending JP2004183378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353305A JP2004183378A (en) 2002-12-05 2002-12-05 Blades for steel pipe pile, and the steel pipe pile employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353305A JP2004183378A (en) 2002-12-05 2002-12-05 Blades for steel pipe pile, and the steel pipe pile employing the same

Publications (1)

Publication Number Publication Date
JP2004183378A true JP2004183378A (en) 2004-07-02

Family

ID=32754616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353305A Pending JP2004183378A (en) 2002-12-05 2002-12-05 Blades for steel pipe pile, and the steel pipe pile employing the same

Country Status (1)

Country Link
JP (1) JP2004183378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111883A (en) * 2012-11-06 2014-06-19 Haruoka Foundation Co Ltd Pile
WO2016063910A1 (en) * 2014-10-21 2016-04-28 新日鉄住金エンジニアリング株式会社 Rotary press-in steel pipe pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111883A (en) * 2012-11-06 2014-06-19 Haruoka Foundation Co Ltd Pile
WO2016063910A1 (en) * 2014-10-21 2016-04-28 新日鉄住金エンジニアリング株式会社 Rotary press-in steel pipe pile
US10174475B2 (en) 2014-10-21 2019-01-08 Nippon Steel & Sumikin Metal Products Co., Ltd. Rotary press-in steel pipe pile

Similar Documents

Publication Publication Date Title
JP2009138487A (en) Steel pipe pile
JP6627007B2 (en) Pile
JP2004183378A (en) Blades for steel pipe pile, and the steel pipe pile employing the same
JP2000246728A (en) Bit for flash panel constitutional body
JP5260459B2 (en) Rotating buried pile
JP2021063356A (en) Manufacturing method of rotary penetration steel pipe pile with tip blade
JP4085492B2 (en) Winged screw pile
JP6182365B2 (en) Casing bit and casing pipe
JPH11247183A (en) Screwing type steel pipe pile with wing and its execution
WO2020021771A1 (en) Core cutter and cutting method using same
JP3677645B2 (en) Construction method of screwed pile
JP3224526U (en) Rotary penetration steel pipe pile with tip wing
JP3093046U (en) Steel pipe foundation pile
JP3168500B2 (en) Steel pipe pile and method of manufacturing the same
JP2019044475A (en) Steel pipe pile
JP3264910B2 (en) Steel pipe pile
JPH11269875A (en) Rotation embedding open end pile
JP2003176534A (en) Steel pipe pile and its construction method
JP2005048590A (en) Work execution method for screwed pile and screwed pile used therefor
JP6762449B1 (en) Manufacturing method of steel pipe pile
JP3758161B2 (en) Steel pipe foundation pile
JP2020172821A (en) Steel pipe pile and construction method for steel pipe pile
JP2003293365A (en) Rotary press-in steel pipe pile
JP2004257075A (en) Tip member of rotary buried pile and rotary buried pile connected/fixed with tip member
JPH04209287A (en) Cutter for casing pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108