JP2004182208A - Active heat absorbing/radiating apparatus - Google Patents

Active heat absorbing/radiating apparatus Download PDF

Info

Publication number
JP2004182208A
JP2004182208A JP2002382881A JP2002382881A JP2004182208A JP 2004182208 A JP2004182208 A JP 2004182208A JP 2002382881 A JP2002382881 A JP 2002382881A JP 2002382881 A JP2002382881 A JP 2002382881A JP 2004182208 A JP2004182208 A JP 2004182208A
Authority
JP
Japan
Prior art keywords
radiating
lightweight
fin
thermal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002382881A
Other languages
Japanese (ja)
Inventor
Akira Onishi
晃 大西
Hosei Nagano
方星 長野
Yuji Nagasaka
雄次 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Co Ltd
Original Assignee
Koei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Co Ltd filed Critical Koei Co Ltd
Priority to JP2002382881A priority Critical patent/JP2004182208A/en
Publication of JP2004182208A publication Critical patent/JP2004182208A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active heat absorbing/radiating apparatus by utilizing a material having three properties, i.e., lightweight, flexible, and high thermal conductivity properties. <P>SOLUTION: This active heat absorbing/radiating apparatus is particularly suitable for thermal control of instruments loaded onto spacecrafts such as artificial satellites and aerospace vehicles, has such a structure that a thermal doubler in the loaded instrument is provided integrally with a radiating fin, which faces an aerospace. The surface of the fin is formed of a material which has high emissivity and low sunlight absorption. The backside of the fin is formed of a material which has low emissivity and high sunlight absorption. The radiating fin is opened/closed depending upon the temperature of the instrument to function as a heat radiating or absorbing apparatus. This heat absorbing/radiating apparatus is a single heat controller which functions simultaneously as a development radiator, a thermal louver, and a heater controller and thus can realize small power consumption, small size, and lightweight. Further, the mechanically movable part does not have any controlling electronic equipment and thus can realize electric energy reduction, lightweight, high reliability, and prolonged service life. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、熱制御方法及びその装置に係わり、特に、人工衛星や宇宙船等の宇宙機の搭載機器の熱制御に適した熱制御方法及びその装置に関する。
【0002】
【従来の技術】字宙空間を飛翔する宇宙機の温度は宇宙機内部の発熱及び太陽光の入射と宇宙機自身から宇宙空間に熱放射される量で決まる。従来の宇宙機熱制御技術にサーマルルーバや展開ラジエータがある。サーマルルーバは機器の温度に応じてブレードを開閉することにより機器の温度を適切に保つことができる。展開ラジエータは打上げ時は放熱面を収納し,軌道上で展開することで実効放熱面積を増やすことが可能で,内部発熱の大きい場合の放熱に用いられている。
【0003】サーマルルーバは放熱面積を宇宙機構造体よりも大きくすることができないため放熱量に限界がある。展開ラジエータは展開が一方向的で,温度に応じて実効放熱面積を調整することができない。また,両者とも低温時にはヒータによる熱制御が必要となるため電力リソースが必要である。また装置重量も構造的に重い等の欠点がある。
【0004】
【発明が解決しようとする課題】本発明機器はラジエータ面を可逆的に展開・収納することにより高発熱・低発熱の両方に対応できる。また,太陽光吸熱機能を有しているため,機器の温度が低い場合はヒータ用の電力リソースを用いることなく機器を温めることができる。従って、上記した従来の熱制御機器の欠点を改良し、特に、高温・低温の厳しい環境下でも対応して動作し、しかも、構造が単純で製造が容易である宇宙機の搭載機器に好適な熱制御装置を提供するものである。本発明の他の目的は、軽量、フレキシブルで電力を必要としないため、信頼性の高い熱制御装置を提供するものである。
【0005】
【課題を解決するための手段】本発明は上記した目的を達成するため、基本的には、以下に記載されたような技術構成を採用するものである。即ち、本発明に係わる熱制御装置の第1態様は、搭載機器の温度に応じて放熱フィンの開閉により、吸・放熱し、熱制御するものであり、又、第2の態様は、軽量でフレキシブル、かつ高熱伝導性という3つの性質をもつ材料であることを特徴とするものであり、又、第3態様は、フィンの表面は放射率が高く、太陽光吸収率の低い材料を、裏面には放射率が低く、太陽光吸収率の高い材料とするもので、又、第4の態様は、放熱フィンを開閉する回転アクチュエータは形状記憶合金と捩りコイルバネを組合せて構成され、軽量で電力を必要としない受動型であり、又、第5の態様は、前記対象物は人工衛星や宇宙船等の宇宙機であることを特徴とするものである。
【0006】
【発明の効果】本発明は上術のように構成したので、展開ラジエータやサーマルルーバ及び、ヒータ制御の機能を兼ね添えた一の熱制御装置であるため、小電力化、小型、軽量である。又、機械的な可動部分も制御用電子機器を持たないことから電力量の削減と軽量となり、信頼性が高く、寿命が長い。
【図面の簡単な説明】
【図1】本発明の実施形態を示す
【符号の説明】
1 放熱フィン
2 放熱フィン表面
3 放熱フィン裏面
4 回転アクチュエータ
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal control method and apparatus, and more particularly to a thermal control method and apparatus suitable for thermal control of equipment mounted on a spacecraft such as an artificial satellite or a spacecraft.
[0002]
2. Description of the Related Art The temperature of a spacecraft flying in a space is determined by the heat generated inside the spacecraft, the incidence of sunlight, and the amount of heat radiated from the spacecraft itself into space. Conventional spacecraft thermal control technologies include thermal louvers and deployment radiators. The thermal louver can appropriately maintain the temperature of the device by opening and closing the blade according to the temperature of the device. The deployable radiator accommodates the heat radiation surface during launch and can be deployed on orbit to increase the effective heat radiation area, and is used for heat radiation when internal heat generation is large.
[0003] The thermal louver cannot limit the heat radiation area to that of the spacecraft structure, so that the heat radiation amount is limited. The deployment radiator is unidirectional in deployment and cannot adjust the effective heat radiation area according to the temperature. In addition, both require heat control by a heater at a low temperature, which requires power resources. Further, there is a disadvantage that the weight of the apparatus is structurally heavy.
[0004]
The device of the present invention can cope with both high heat generation and low heat generation by reversibly expanding and storing the radiator surface. In addition, since the device has a solar heat absorbing function, when the temperature of the device is low, the device can be warmed without using power resources for the heater. Therefore, it is possible to improve the above-mentioned disadvantages of the conventional thermal control device, and particularly to operate in a severe environment of high temperature and low temperature, and to be suitable for a spacecraft mounted device having a simple structure and easy manufacture. A heat control device is provided. Another object of the present invention is to provide a highly reliable thermal control device because it is lightweight, flexible and does not require power.
[0005]
SUMMARY OF THE INVENTION The present invention basically employs the following technical configuration in order to achieve the above object. That is, the first mode of the heat control device according to the present invention is to control heat absorption and heat release by opening and closing a radiation fin in accordance with the temperature of the mounted device, and the second mode is light in weight. The third aspect is characterized in that the fin has a high emissivity and a low solar absorptivity on the back surface. In the fourth aspect, a rotary actuator that opens and closes a radiation fin is configured by combining a shape memory alloy and a torsion coil spring, and is lightweight and has a low power consumption. In a fifth mode, the object is a spacecraft such as an artificial satellite or a spacecraft.
[0006]
Since the present invention is constructed as described above, it is a thermal control device that also has functions of a deployable radiator, a thermal louver, and a heater control. Therefore, power consumption, size, and weight are reduced. . Further, since the mechanically movable parts do not have control electronic devices, the amount of power is reduced and the weight is reduced, the reliability is high, and the life is long.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Heat radiation fin 2 Heat radiation fin surface 3 Heat radiation fin back surface 4 Rotary actuator

Claims (5)

軽量でフレキシブル、かつ高熱伝導性という3つの性質をもつ材料を活用した能動型吸・放熱器。An active heat sink / radiator utilizing materials with three properties: lightweight, flexible, and high thermal conductivity. 搭載機器のサーマルダブラーと宇宙空間に面した放熱フィンが一体となった構造。A structure in which the thermal doubler of the onboard equipment and the radiation fins facing the outer space are integrated. 機器の温度に対応して放熱フィンが開閉することにより、放熱あるいは吸熱として機能する。When the radiating fins open and close according to the temperature of the device, they function as heat radiation or heat absorption. フィンの表面は放射率が高く、太陽光吸収率の低い材料を、裏面には放射率が低く、太陽光吸収率の高い材料とする。A material having a high emissivity on the surface of the fin and a low solar absorptivity is used as a material having a low emissivity and a high solar absorptivity on the back surface. 放熱フィン開閉用の回転アクチュエータは、受動型と能動型の両方に対応することが可能である。受動型は形状記憶合金と捩りコイルバネの組合せで構成し、軽量で電力を必要としない。又、能動型は駆動用モータを用いて、制御温度の精度を高める。The rotary actuator for opening and closing the radiating fins can correspond to both a passive type and an active type. The passive type is composed of a combination of a shape memory alloy and a torsion coil spring, and is lightweight and does not require electric power. The active type uses a drive motor to increase the accuracy of the control temperature.
JP2002382881A 2002-12-03 2002-12-03 Active heat absorbing/radiating apparatus Pending JP2004182208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382881A JP2004182208A (en) 2002-12-03 2002-12-03 Active heat absorbing/radiating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382881A JP2004182208A (en) 2002-12-03 2002-12-03 Active heat absorbing/radiating apparatus

Publications (1)

Publication Number Publication Date
JP2004182208A true JP2004182208A (en) 2004-07-02

Family

ID=32766750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382881A Pending JP2004182208A (en) 2002-12-03 2002-12-03 Active heat absorbing/radiating apparatus

Country Status (1)

Country Link
JP (1) JP2004182208A (en)

Similar Documents

Publication Publication Date Title
JP6643224B2 (en) Spacecraft and thermal control system and thermal control panel
US11215407B2 (en) Radiative cooling with solar spectrum reflection
US20080257525A1 (en) Thermal control apparatus
US10793297B2 (en) Passive thermal system comprising combined heat pipe and phase change material and satellites incorporating same
KR20180114933A (en) Heat dissipation device using heat pipe panel
JP5126854B2 (en) Space exploration equipment
JPH1191699A (en) High power spacecraft using whole surface thereof
Nagano et al. Simple deployable radiator with autonomous thermal control function
JP2004182208A (en) Active heat absorbing/radiating apparatus
US6511021B1 (en) Thermal control system for controlling temperature in spacecraft
JPH03114999A (en) Heat control device for space navigation body
JP2973996B2 (en) Spacecraft power recovery structure
JPH11171100A (en) Passive temperature control device for artificial satellite-mounted equipment
JP2974016B1 (en) Thermal louver
Nagano et al. Development of a flexible thermal control device with high-thermal-conductivity graphite sheets
JP6736332B2 (en) Onboard equipment for artificial satellites
Nagano et al. Heat rejection/retention characteristics of a re-deployable radiator for venus exploration mission
JP2000211599A (en) Thermal louver
JP5943674B2 (en) Spacecraft
RU2317924C2 (en) Satellite temperature control system
Moses FLTSATCOM thermal test and flight experience
JPS60206159A (en) Solar-cell panel device
Tsuyuki et al. Mars exploration rover: Thermal design is a system engineering activity
Walker et al. The impact of the lunar thermal environment on the design of telescopes for lunar surface operation
JP2005059770A (en) Ventilation duct