JP2004182029A - Gas spring device and car body inclining device - Google Patents

Gas spring device and car body inclining device Download PDF

Info

Publication number
JP2004182029A
JP2004182029A JP2002349165A JP2002349165A JP2004182029A JP 2004182029 A JP2004182029 A JP 2004182029A JP 2002349165 A JP2002349165 A JP 2002349165A JP 2002349165 A JP2002349165 A JP 2002349165A JP 2004182029 A JP2004182029 A JP 2004182029A
Authority
JP
Japan
Prior art keywords
gas
valve
gas spring
height adjustment
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002349165A
Other languages
Japanese (ja)
Other versions
JP4292792B2 (en
Inventor
Hisashi Negoro
尚志 根来
Osamu Goto
修 後藤
Toshiaki Matsui
敏明 松井
Jun Kosakata
潤 小坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002349165A priority Critical patent/JP4292792B2/en
Publication of JP2004182029A publication Critical patent/JP2004182029A/en
Application granted granted Critical
Publication of JP4292792B2 publication Critical patent/JP4292792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas spring device and a car body inclining device for dispensing with a cutoff valve for preventing operation of a height adjusting valve. <P>SOLUTION: This car body inclining device has gas springs 1 and 1 for supporting a car body 80, and increases a flow rate of gas supplied-exhausted to the gas springs 1 via an air supply valve 31 and a vent valve 32 than a flow rate of gas supplied-exhausted to the gas springs 1 by using the height adjusting valve 4 by enlarging a diameter of the air supply valve 31 and the vent valve 32. Thus, even if the height adjusting valve 4 operates, one of the gas springs 1 and 1 is extended, and the other is contracted by using the air supply valve 31 and the vent valve 32, and the car body 80 can be inclined, and thereby, dispenses with the conventionally requiring cutoff valve for cutting off a second gas pipe 5 for preventing operation of the height adjusting valve 4 when inclining the car body 80. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車体を支持し、車体の高さ及び傾斜を調整する気体ばね装置及び車体傾斜装置に関する。
【0002】
【従来の技術】
従来の鉄道車両においては、車輪を含む走行機構を備える台車と人員または貨物などを搭載する車体との間に空気を用いる気体ばねを備え、気体ばねにて車体を支持し、車体の高さ及び傾斜を調整する構成が取られている。図6は、車両の正面または背面から見た、気体ばね装置を用いた従来の車体傾斜装置を示す模式的断面図である。車体80と台車81との間に、空気を用いて上下に伸縮する気体ばね1が備えられ、車体80に、気体ばね1への空気の供給源であり、空気圧を発生する気体源2が備えられている。気体ばね1と気体源2とは、給気弁31を備えた第1気体管3にて、給気弁31を介して接続されており、給気弁31が開状態である場合に気体源2から気体ばね1へ第1気体管3を通って空気が供給される構成となっている。第1気体管3は、また、給気弁31と気体ばね1との間の配管部に排気弁32が接続され、排気弁32が開状態である場合に気体ばね1から空気が排気される構成となっている。更に、気体ばね1に対して空気を給排気して車体80の高さを調整する高さ調整弁4が備えられている。高さ調整弁4と気体ばね1との間は、締切弁51を途中に介した第2気体管5にて接続されており、高さ調整弁4と気体源2との間は、第3気体管6にて接続されている。高さ調整弁4は、機械的に動作し、気体ばね1が所定範囲よりも縮んで車体80の高さが低い場合に、第3気体管6及び第2気体管5を通して空気を気体源2から気体ばね1へ供給し、気体ばね1が所定範囲よりも伸びて車体80の高さが高い場合に、第2気体管5を通して気体ばね1から空気を排気する。気体ばね1は、気体源2から空気を供給されることにより伸びて車体の高さを高くし、空気が排気されることにより縮んで車体の高さを低くする。高さ調整弁4が機械的に気体ばね1に対して給排気を行うことにより、車体80の高さが所定範囲内に保たれる。車体80、台車81及び気体源2以外の前述のその他の構成は、対になって構成されており、気体ばね1,1の夫々が車体80の左右を下から支持している。また、気体ばね1,1は、差圧弁71及び締切弁72を介して第4気体管7にて接続されており、差圧弁71は、気体ばね1,1内の空気圧の差を所定範囲内に保つべく作用する。
【0003】
鉄道車両では、カーブの部分を通過するとき等に横向きの加速度が作用し、乗客の乗り心地が悪くなる。カーブの部分での乗り心地を向上させるため、特に高速車両の場合に、加速度を相殺する方向に車体を傾斜させることが行われている。車体を傾斜させる方法として、前述の如き車体傾斜装置を用いて車体を傾斜させる方法が用いられている。例えば車体80を左に傾斜させる場合は、車体80の左側を支持する気体ばね装置において、給気弁31を閉状態、排気弁32を開状態として気体ばね1から空気を排気し、車体80の右側を支持する気体ばね装置において、給気弁31を開状態、排気弁32を閉状態として気体源2から気体ばね1へ空気を供給することによって、車体80の左側の高さが低くなって右側の高さが高くなり、車体80が左に傾斜される。このとき、高さ調整弁4は、車体80の左側の高さを高くし右側の高さを低くしようとして、車体80の傾きを元に戻す方向に働くため、車体80を傾斜させる場合は、高さ調整弁4が動作しないように締切弁51を閉状態として、確実に車体80を傾斜させる。また、差圧弁71も同様に車体80の傾きを元に戻す方向へ働くため、締切弁72をも閉状態とする場合もある。
【0004】
【特許文献1】
特開平7−81558号公報
【特許文献2】
特許第2822839号公報
【特許文献3】
特開2001−287642号公報
【0005】
【発明が解決しようとする課題】
気体ばね装置を用いた従来の車体傾斜装置では、前述の如く、車体80を傾斜させる機能を持たせるために、気体ばね1と高さ調整弁4との間の空気の流路をなす第2気体管5を締め切る締切弁51が必須となっている。このような車体傾斜装置では、締切弁51が故障した場合、高さ調整弁4による高さ調整の機能、又は車体80を傾斜させる機能が働かなくなり、安全・快適な車両の走行が不可能となる。このため、安全性向上のために、第2気体管5及び締切弁51を2重化する等の対策が必要となり、車体傾斜装置の構造が複雑となっていた。また、構造が複雑な車体傾斜装置のメンテナンスが困難となり、メンテナンスのコストが高いという問題がある。
【0006】
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、車体を傾斜させるために気体ばねに対して給排気する気体の流量を、高さ調整弁が給排気する気体の流量よりも大きくすることにより、第2気体管を締め切る締切弁を不要にした気体ばね装置及び車体傾斜装置を提供することにある。
【0007】
【課題を解決するための手段】
第1発明に係る気体ばね装置は、気体ばねと、該気体ばねへの気体の供給源である気体源と、給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす第1気体管と、前記気体ばねから気体を排気する排気弁と、前記気体ばねに対して気体を給排気できる給気口及び排気口を有する高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす第2気体管と、前記気体源から前記高さ調整弁への気体の流路をなす第3気体管とを備え、前記給気弁のポート径及び/又は前記排気弁のポート径は、前記高さ調整弁の排気口径及び/又は前記高さ調整弁の給気口径よりも大きいことを特徴とする。
【0008】
第1発明においては、気体源から気体ばねへ気体を供給する給気弁のポート径、及び/又は気体ばねから気体を排気する排気弁のポート径を、高さ調整弁の排気口径及び/又は高さ調整弁の給気口径に比べて大きくする。ここで、高さ調整弁の給気口は、気体ばねの高さが所定範囲よりも低い場合に、第2気体管および第3気体管を通って気体源から気体ばねへ供給される気体を通し、高さ調整弁の排気口は、気体ばねの高さが所定範囲よりも高い場合に、第2気体管を通って気体ばねから排気される気体を通す構造となっている。給気弁および排気弁を用いて気体ばねに対して気体を給排気するときには、給気弁および排気弁により給排気される気体の流量が、高さ調整弁で給排気される気体の流量に比べて大きくなるため、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させることが可能となる。なお、気体は取扱い易さから空気であることが望ましい。
【0009】
ここで、給気弁および排気弁のポートとは、気体が出入りする開口部であり、ポート径とは、気体の流量を制限するために給気弁および排気弁に設けられた円形状のポートの直径または半径である。なお、気体の流入側と流出側とにポートを備えて合って、流入側のポート径と流出側のポート径とが異なっている場合には、狭い方のポートにて気体の流量が制限されるため、本発明に係るポート径とは、狭い方のポート径を指している。また、給気弁、排気弁、高さ調整弁、高さ調整弁が有する給気口および排気口、第1気体管、第2気体管、並びに第3気体管は、夫々が複数設けられてあっても良く、少なくとも一組の給気弁及び/又は排気弁と排気口及び/又は給気口との関係が本発明の関係になっていれば良い。
【0010】
第2発明に係る気体ばね装置は、気体ばねと、該気体ばねへの気体の供給源である気体源と、給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす第1気体管と、該第1気体管に繋がり前記気体ばねから気体を排気する排気弁と、前記気体ばねに対して気体を給排気できる給気口及び排気口を有する高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす第2気体管と、前記気体源から前記高さ調整弁の前記給気口への気体の流路をなす第3気体管とを備え、第1気体管の径は、第2気体管の径及び/又は第3気体管の径よりも大きいことを特徴とする。
【0011】
第2発明においては、気体源から気体ばねへ供給される気体を給気弁を介して通し、また気体ばねから気体を排気する排気弁が繋がった第1気体管の径を、高さ調整弁が気体ばねに対して給排気する気体が通る第2気体管の径、及び/又は、気体源から高さ調整弁へ供給される気体が通る第3気体管の径に比べて大きくすることにより、給気弁および排気弁が気体ばねに対して給排気する気体の流量が、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくなるため、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させることが可能となる。なお、給気弁、排気弁、高さ調整弁、高さ調整弁が有する給気口および排気口、第1気体管、第2気体管、並びに第3気体管は、夫々が複数設けられてあっても良く、少なくとも一組の第1気体管と第2気体管及び/又は第3気体管との関係が本発明の関係になっていれば良い。
【0012】
第3発明に係る気体ばね装置は、気体ばねと、該気体ばねへの気体の供給源である気体源と、少なくとも一つの給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす少なくとも一つの第1気体管と、前記気体ばねから気体を排気する少なくとも一つの排気弁と、前記気体源から前記気体ばねへ供給される気体が通過する給気口及び前記気体ばねから排気される気体が通過する排気口を夫々1個以上有する少なくとも一つの高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす少なくとも一つの第2気体管と、前記気体源から前記高さ調整弁への気体の流路をなす少なくとも一つの第3気体管とを備え、前記給気弁のポートの合計開口面積及び/又は前記排気弁のポートの合計開口面積が、前記高さ調整弁の排気口の合計開口面積及び/又は前記高さ調整弁の給気口の合計開口面積よりも大きいことを特徴とする。
【0013】
第3発明においては、気体源から気体ばねへ気体を供給する給気弁のポートの開口面積の合計、及び/又は気体ばねから気体を排気する排気弁のポートの開口面積の合計を、高さ調整弁の排気口の開口面積の合計、及び/又は高さ調整弁の給気口の開口面積の合計に比べて大きくすることにより、給気弁および排気弁が気体ばねに対して給排気する気体の流量が、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくなるため、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させることが可能となる。ここで、開口面積とは、給気口、排気口、及び各ポートにおいて、気体が流れる方向に対する垂直断面の面積である。
【0014】
第4発明に係る気体ばね装置は、気体ばねと、該気体ばねへの気体の供給源である気体源と、少なくとも一つの給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす少なくとも一つの第1気体管と、該第1気体管に繋り前記気体ばねから気体を排気する少なくとも一つの排気弁と、前記気体源から前記気体ばねへ供給される気体が通過する給気口及び前記気体ばねから排気される気体が通過する排気口を夫々1個以上有する少なくとも一つの高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす少なくとも一つの第2気体管と、前記気体源から前記高さ調整弁の前記給気口への気体の流路をなす少なくとも一つの第3気体管とを備え、第1気体管の合計断面積は、第2気体管の合計断面積及び/又は第3気体管の合計断面積よりも大きいことを特徴とする。
【0015】
第4発明においては、気体源から気体ばねへ供給される気体を給気弁を介して通し、また気体ばねから気体を排気する排気弁が繋がった第1気体管の合計断面積を、高さ調整弁が気体ばねに対して給排気する気体が通る第2気体管の合計断面積、及び/又は、気体源から高さ調整弁へ供給される気体が通る第3気体管の合計断面積に比べて大きくすることにより、給気弁および排気弁が気体ばねに対して給排気する気体の流量が、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくなるため、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させることが可能となる。
【0016】
第5発明に係る気体ばね装置は、前記第2気体管は、気体の流れを締め切ることができる締切弁を介することなく、前記気体ばね及び前記高さ調整弁の間で気体が直接に流れる構成であることを特徴とする。
【0017】
第5発明においては、第2気体管は、気体の流れを締め切ることができる締切弁を備えていないため、気体ばね装置の構造が簡素化される。
【0018】
第6発明に係る気体ばね装置は、前記気体ばね、前記給気弁、前記第1気体管、前記排気弁、前記高さ調整弁、前記第2気体管、及び前記第3気体管の組み合わせは、対になっていることを特徴とする。
【0019】
第6発明においては、車体の左右の夫々を下から支持する対になった気体ばねを備え、給気弁および排気弁が気体ばねに対して給排気する気体の流量を、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくすることにより、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させて車体を傾斜させることが可能となる。
【0020】
第7発明に係る車体傾斜装置は、鉄道台車と、車体と、該車体を支持する空気ばね装置とを備える車体傾斜装置であって、前記空気ばね装置は、第1乃至第6発明のいずれかに係る気体ばね装置であることを特徴とする。
【0021】
第7発明においては、第1乃至第6発明のいずれかに係る気体ばね装置を用いて、鉄道台車と車体との間に気体ばねを介在させて車体を支持する構成とすることにより、第2気体管に締切弁を備える必要がない簡素な構造の車体傾斜装置が構成される。
【0022】
【発明の実施の形態】
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施の形態1)
図1は、車両の正面または背面から見た、本発明の気体ばね装置の一例を用いて構成した本発明の車両傾斜装置の例を示す模式的断面図である。なお、本実施の形態では、気体ばね装置で利用する気体として空気を用いた例を示す。鉄道車両において、人員または貨物などを搭載する車体80と車輪を含む走行機構を備える台車81(鉄道台車)との間に、台車81に対して車体80を接離させる方向に伸縮する気体ばね1が備えられ、車体80内に、気体ばね1への空気の供給源である空気圧源としての気体源2が備えられている。気体ばね1と気体源2とは、開閉可能な給気弁31を介して第1気体管3にて接続されており、給気弁31が開状態である場合に気体源2から気体ばね1へ第1気体管3を通って空気が供給される構成となっている。第1気体管3には、また、給気弁31と気体ばね1との間の位置に開閉可能な排気弁32が接続され、排気弁32が開状態である場合に気体ばね1から空気が排気される構成となっている。更に、気体ばね1に対して機械的に空気を給排気して車体80の高さを調整する高さ調整弁4が備えられている。高さ調整弁4と気体ばね1との間は、第2気体管5にて直接的に接続されており、高さ調整弁4と気体源2との間は、第3気体管6にて接続されている。高さ調整弁4は、車体80の高さに対応して傾きを変化させるレバー41を備えており、レバー41の傾きに追従して機械的に気体ばね1に対して空気を給排気する構成となっている。気体ばね1は、気体源2から空気を供給されることにより伸長して車体80の高さを高くし、空気が排気されることにより縮んで車体80の高さを低くする。車体80、台車81及び気体源2以外の前述のその他の構成は、対になって構成されており、気体ばね1,1の夫々が車体80の左右を下から支持している。また、気体ばね1,1は、差圧弁71及び開閉可能な締切弁72を介して第4気体管7にて接続されている。差圧弁71は、気体ばね1,1内の空気圧の差を所定範囲内に保つべく、気体ばね1,1内の空気圧の差が所定範囲を超えた場合に、気体圧が高い側の気体ばね1から気体圧が低い側の気体ばね1へ第4気体管7に空気を通させる構成となっている。
【0023】
図2は、高さ調整弁4の内部の構造の例を示す模式的断面図である。高さ調整弁4は、内部に、レバー41の傾きに追従して図2(a)に示す白抜き矢印の方向(以下、上方向および下方向という)へ移動可能なピストン45と、上下方向に広がりがあるシリンダ44を備えている。シリンダ44の上下方向の略中央部には、給気および排気に使用される開口部46を備えており、開口部46に第2気体管5が接続され、開口部46を境にしてシリンダ44の内部と第2気体管5の内部とが繋がっている。シリンダ44は、第2気体管5よりも上方向に、給気に使用される開口部である給気口42を備えており、給気口42に第3気体管6が接続され、給気口42を境にして、シリンダ44の内部と第3気体管6の内部とが繋がっている。また、シリンダ44は、第2気体管5よりも下方向に、排気に使用される開口部である排気口43を備えており、排気口43を境にしてシリンダ44の内部は外気に繋がっている。ピストン45は、シリンダ44内で、開口部46の上方向および下方向を塞いでいる。
【0024】
車体80の高さが所定範囲内である場合は、レバー41は、略水平であり、図2(a)に示す如く、ピストン45は、シリンダ44内で、給気口42及び排気口43を塞いでおり、空気は流れない。車体80の高さが所定範囲内よりも低い場合は、レバー41は、斜め上がりに傾き、図2(b)に示す如く、ピストン45は、レバー41の傾きに追従して白抜き矢印で示す上方向へ引き上げられる。ピストン45が引き上げられたことによって、ピストン45の給気口42を塞いでいた部分が上方向へ移動して、給気口42が開状態となる。このとき、気体源2から第3気体管6内を通ってきた空気が、破線矢印で示す如く給気口42からシリンダ44内を通って第2気体管5へ流れ込み、第2気体管5へ流れ込んだ空気は気体ばね1へ供給される。空気が供給されたことによって気体ばね1は伸長し、車体80の高さは高くなり、車体80の高さが所定範囲内に収まったときにレバー41の傾きは略水平に戻る。また、車体80の高さが所定範囲内よりも高い場合は、レバー41は、斜め下がりに傾き、図2(c)に示す如く、ピストン45は、レバー41の傾きに追従して白抜き矢印で示す下方向へ引き下げられる。ピストン45が引き下げられたことによって、ピストン45の排気口43を塞いでいた部分が下方向へ移動して、排気口43が開状態となる。このとき、気体ばね1から第2気体管5内を通ってきた空気が、破線矢印で示す如く排気口43からシリンダ44内を通って外部へ排気される。空気が排気されたことによって気体ばね1は縮まり、車体80の高さは低くなり、車体80の高さが所定範囲内に収まったときにレバー41の傾きは略水平に戻る。
【0025】
高さ調整弁4,4は、以上の如く機械的に動作して、車体80の左右を下から支持する気体ばね1,1の夫々の伸縮状態を調整し、車体80の左右の高さが所定範囲内に入るように自動的に調整する。これにより、車体80の傾きは略水平に保たれ、また、車体80の高さは、車体80に搭載された人員または貨物などの荷重の大小に関わらず、駅のホームの高さ等に合うように所定範囲内に保たれる。なお、高さ調整弁4の構造は、車体80の高さが低い場合に気体ばね1へ給気して車体80の高さが低い場合に気体ばね1から排気する構造であれば、図2に示した例以外の構造であってもよい。
【0026】
本発明の車体傾斜装置は、給気弁31のポート径が、高さ調整弁4の排気口43の径に比べて大きく、また、排気弁32のポート径が、高さ調整弁4の給気口42の径に比べて大きくなっている。このため、給気弁31及び排気弁32を介して気体ばね1に対して給排気される空気の時間当たりの流量は、高さ調整弁4を用いて気体ばね1に対して給排気される空気の時間当たりの流量に比べて、大きくなっている。なお、給気弁31のポート径と排気口43の径との関係、及び排気弁32のポート径と給気口42の径との関係は、片方の関係のみが前述の如く成り立っている場合でも本発明は成立するが、本実施の形態では、両方の関係が成り立っている場合について説明する。
【0027】
本発明の車体傾斜装置では、鉄道車両がカーブの部分を通過する際に、給気弁31及び排気弁32を用いて気体ばね1に対して給排気し、車体80の左右の一方を支持する気体ばね1が縮み、他方を支持する気体ばね1が伸長して、カーブを通過することによる加速度を相殺する方向に、車体80を傾斜させる。図3は、車体80を傾斜させる際の車体傾斜装置の動作例を示す模式図であり、図1に示した図について向かって左側に車体80を傾斜させる場合の例を示す。車体傾斜装置では、左側の給気弁31を閉状態、左側の排気弁32を開状態として、排気弁32を介して左側の気体ばね1から空気を排気し、また、右側の給気弁31を開状態、右側の排気弁32を閉状態として、気体源2から給気弁31を介して第1気体管3を通って右側の気体ばね1へ空気を供給する。
【0028】
図3(a)は、車体傾斜装置の左側の部分を示している。気体ばね1内の空気が排気弁32から排気されることによって、気体ばね1が縮んで車体80の左側の高さが低くなる。このとき、高さ調整弁4が動作して、車体80の高さを高くすべく、第2気体管5及び第3気体管6を通って気体源2から気体ばね1内に空気が供給される。しかし、排気弁32のポート径が、高さ調整弁4の給気口42の径に比べて大きく、排気弁32から排気される空気の流量が、高さ調整弁4により供給される空気の流量に比べて大きいため、左側の気体ばね1は縮み続け、車体80の左側の高さは下がり続ける。
【0029】
また、図3(b)は、車体傾斜装置の右側の部分を示しており、給気弁31のポート径が、高さ調整弁4の排気口43の径に比べて大きく、給気弁31を介して気体ばね1へ供給される空気の流量が、高さ調整弁4により気体ばね1から排気される空気の流量に比べて大きいため、車体80の高さを低くすべく高さ調整弁4が動作しても、右側の気体ばね1は伸長し続け、車体80の右側の高さは上がり続ける。車体80の左側の高さが下がり、車体80の右側の高さが上がることによって、車体80は左側に傾斜する。鉄道車両がカーブの部分を通過し終わった後は、車体傾斜装置は、左側の給気弁31を開状態、左側の排気弁32を閉状態状態として、左側の気体ばね1へ空気を供給し、右側の給気弁31を閉状態、右側の排気弁32を開状態として、右側の気体ばね1から空気を排気するか、又は、給気弁31,31及び排気弁32,32を閉状態として、高さ調整弁4により気体ばね1に対して空気を給排気し、車体80の傾きを略水平に戻す。
【0030】
以上詳述した如く、本発明の気体ばね装置を用いた本発明の車体傾斜装置においては、給気弁31及び排気弁32を介して気体ばね1に対して給排気される空気の時間当たりの流量が、高さ調整弁4を用いて気体ばね1に対して給排気される空気の時間当たりの流量に比べて、大きくなっているため、高さ調整弁4が動作している場合でも、給気弁31及び排気弁32を用いて車体80を傾斜させることができる。これにより、従来必要であった、車体80を傾斜させる際に高さ調整弁4が動作しないように第2気体管5を締め切るための図6に示す締切弁51が、不必要となり、第2気体管5は、気体ばね1と高さ調整弁4との間で空気が直接に流れる構成とする事が可能となる。従って、本発明の車体傾斜装置においては、従来と同様の能力を保ちながら、第2気体管5を締め切るための締切弁を不必要とすることができ、車体傾斜装置の構造が簡素化され、車体傾斜装置のメンテナンスが容易となって、車体傾斜装置のメンテナンスのコストを抑制することができる。また、締切弁が故障して、高さ調整弁4による高さ調整の機能又は車体80を傾斜させる機能が働かなくなることがなく、安全・快適に鉄道車両を走行させるための車両傾斜装置の信頼性が向上する。
【0031】
なお、本実施の形態においては、給気弁31及び排気弁32のポート径を大きくすることで、給気弁31及び排気弁32により気体ばね1に対して給排気される空気の流量を大きくする形態としているが、これに限るものではなく、給気口42、排気口43及び各ポートの径を各気体管の径より大きくしておき、第1気体管3の径を第2気体管5及び第3気体管6の径に比べて大きくしている形態としても良い。この場合においても、第1気体管3を通って気体ばね1に給排気される空気の流量は、第2気体管5及び第3気体管6を通って気体ばね1に供給される空気の流量、及び第2気体管5を通って気体ばね1から排気される空気の流量に比べて大きくなり、本発明の車体傾斜装置が実現できる。
【0032】
また、本実施の形態においては、排気弁32を第1気体管3に備えた形態としているが、排気弁32を気体ばね1に直接に備えた形態としても良い。この場合においても、給気弁31の径または第1気体管3の径を大きくすることで、給気弁31を介して気体ばね1に供給される空気の流量が大きくなり、排気弁32の径を大きくすることで、排気弁32を介して気体ばね1から排気される空気の流量が大きくなり、本発明の車体傾斜装置が実現できる。
【0033】
更に、本実施の形態においては、給気弁31及び排気弁32により気体ばね1に対して給排気される空気の流量を、高さ調整弁4により気体ばね1に対して給排気される空気の流量に比べて大きくする形態としているが、給気弁31を介して気体ばね1へ供給される空気の流量を、高さ調整弁4により気体ばね1から排気される空気の流量に比べて大きくするのみの形態、又は、排気弁32を介して気体ばね1から排気される空気の流量を、高さ調整弁4により気体ばね1へ供給される空気の流量に比べて大きくするのみの形態であっても良い。この場合においては、車体80の高さは、高さ調整弁4の動作により所定範囲よりも低くはならないが給気弁31を介した給気により所定範囲よりも高くなることができるか、又は、高さ調整弁4の動作により所定範囲より高くはならないが排気弁32を介した排気により所定範囲よりも低くなることができるため、車体80を傾斜させることが可能となり、本発明の車体傾斜装置を実現することができる。
【0034】
(実施の形態2)
図4は、車両の正面または背面から見た、本発明の実施の形態2に係る気体ばね装置を用いて構成した車両傾斜装置の例を示す模式的断面図である。本実施の形態においては、気体ばね1と気体源2とは、開閉可能な複数の給気弁31,31,…の夫々を備えた複数の第1気体管3,3,…にて、給気弁31,31,…を介して接続されている。また、気体ばね1は、複数の排気弁32,32,…を備えている。給気弁31,31,…を開状態とすることにより、給気弁31,31,…を介して、第1気体管3,3,…を通って気体源2から気体ばね1へ空気が供給され、また、排気弁32,32,…を開状態とすることにより、排気弁32,32,…を介して気体ばね1から空気が排気される。車体傾斜装置のその他の構成は、実施の形態1と同様であり、対応する部分に同符号を付してその説明を省略する。また、高さ調整弁4の内部の構造も、図2に構造の例を示した実施の形態1と同様であり、高さ調整弁4は、第3気体管6が接続された給気口42と、外気に繋がった排気口43とを備えている。
【0035】
本実施の形態においては、給気弁31,31,…のポートの開口面積の合計が、高さ調整弁4の排気口43の開口面積に比べて大きく、また、排気弁32,32,…のポートの開口面積の合計が、高さ調整弁4の給気口42の開口面積に比べて大きくなっている。このため、本実施の形態においても、給気弁31,31,…及び排気弁32,32,…を介して気体ばね1に対して給排気される空気の時間当たりの流量は、高さ調整弁4を用いて気体ばね1に対して給排気される空気の時間当たりの流量に比べて、大きくなっており、高さ調整弁4が動作している場合でも、給気弁31,31,…及び排気弁32,32,…を用いて車体80を傾斜させることができる。従って、本実施の形態においても、従来必要であった第2気体管5を締め切るための締切弁が不必要となり、第2気体管5は、気体ばね1と高さ調整弁4との間で空気が直接に流れる構成とする事が可能となる。
【0036】
なお、給気弁31,31,…のポートの開口面積の合計と排気口43の開口面積との関係、及び排気弁32,32,…のポートの開口面積の合計と給気口42の開口面積との関係は、片方の関係のみが前述の如く成り立っている場合でも本発明は成立する。また、給気弁31,31,…及び排気弁32,32,…の全てを用いて給排気を行う必要はなく、開口面積の関係が満たされている範囲内で、選択した小数の給気弁31,31,…及び排気弁32,32,…のみを用いて給排気を行っても良い。
【0037】
図5は、実施の形態2に係る車体傾斜装置が車体80を傾斜させたときの車体80の傾きの変化を示した特性図である。図中の縦軸は車体80の傾斜角を示し、横軸は鉄道車両の走行時間を示している。図中には、鉄道車両が走行している間に、破線で示した目標に車体80の傾斜角を合わせようとして制御したときの、実際の傾斜角を太線で示している。また、従来の車体傾斜装置を用いて同様に制御したときの車体80の傾斜角を細線で示している。図中のデータは、3つの給気弁31,31,31のポートの直径が夫々3mm,4mm,5mmであり、3つの排気弁32,32,32のポートの直径が夫々3mm,4mm,5mmであり、高さ調整弁4の給気口42の直径が2mmであり、高さ調整弁4の排気口43の直径が3mmである車体傾斜装置について測定したデータである。車体80の傾斜角の制御に対して、従来の場合と同等程度に追従して車体80の傾斜が行われており、本発明の車体傾斜装置は、車体80を傾斜させる能力に関しては、従来とほぼ同等であることが明らかである。従って、本実施の形態においては、従来と同等の能力を保ちながら、第2気体管5を締め切るための締切弁を不必要として構造が簡素化された車体傾斜装置を実現することができる。
【0038】
なお、本実施の形態においては、高さ調整弁4、給気口42、排気口43、第2気体管5及び第3気体管6は、単数である形態を示したが、これに限るものではなく、これらを複数備えた形態であってもよい。この場合においても、給気弁31,31,…のポートの開口面積の合計が、高さ調整弁4の排気口43,43,…の合計開口面積に比べて大きいか、又は排気弁32,32,…のポートの開口面積の合計が、高さ調整弁4の給気口42,42,…の合計開口面積に比べて大きくすることによって、本発明を実現できる。
【0039】
また、本実施の形態においては、第1気体管3,3,…の合計断面積を、第2気体管5,5,…の合計断面積及び/又は第3気体管6,6,…の合計断面積に比べて大きくしている形態としても良い。更に、実施の形態1及び2においては、気体ばね装置に用いる気体が空気である形態を示しているが、空気以外の適宜の気体であっても本発明を実現することができるのは勿論である。
【0040】
【発明の効果】
本発明においては、給気弁および排気弁が気体ばねに対して給排気する気体の流量が、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくなり、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させることが可能となり、高さ調整弁と気体ばねとの間の気体の流れを締め切って高さ調整弁を動作させなくする締切弁が不必要となる。
【0041】
また、本発明においては、高さ調整弁と気体ばねとの間の気体の流れを締め切って高さ調整弁を動作させなくする締切弁を備えていないため、気体ばね装置の構造が簡素化され、メンテナンスが容易となって、気体ばね装置のメンテナンスのコストを抑制することができる。また、締切弁が故障して気体ばね装置の機能が損なわれることがなく、気体ばね装置の信頼性が向上する。
【0042】
更に、本発明においては、車体の左右の夫々を下から支持する対になった気体ばねにて、給気弁および排気弁が気体ばねに対して給排気する気体の流量を、高さ調整弁が気体ばねに対して給排気する気体の流量に比べて大きくすることにより、高さ調整弁が動作していても、高さ調整弁の動作に邪魔されることなく給気弁および排気弁を用いて気体ばねを伸縮させて車体を傾斜させることが可能となり、高さ調整弁と気体ばねとの間の気体の流れを締め切って高さ調整弁を動作させなくする締切弁を不必要として構造が簡素化された車体傾斜装置を構成することができるため、安全性を損なうことなく、より故障が少なくメンテナンスのコストが安い鉄道車両を得ることができる等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【図1】車両の正面または背面から見た、本発明の気体ばね装置の一例を用いて構成した本発明の車両傾斜装置の例を示す模式的断面図である。
【図2】高さ調整弁の内部の構造の例を示す模式的断面図である。
【図3】車体を傾斜させる際の車体傾斜装置の動作例を示す模式図である。
【図4】車両の正面または背面から見た、本発明の実施の形態2に係る気体ばね装置を用いて構成した車両傾斜装置の例を示す模式的断面図である。
【図5】実施の形態2に係る車体傾斜装置が車体を傾斜させたときの車体の傾きの変化を示した特性図である。
【図6】車両の正面または背面から見た、気体ばね装置を用いた従来の車体傾斜装置を示す模式的断面図である。
【符号の説明】
1 気体ばね
2 気体源
3 第1気体管
31 給気弁
32 排気弁
4 高さ調整弁
42 給気口
43 排気口
5 第2気体管
6 第3気体管
80 車体
81 台車(鉄道台車)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas spring device that supports a vehicle body and adjusts the height and inclination of the vehicle body, and a vehicle body inclination device.
[0002]
[Prior art]
In a conventional railway vehicle, a gas spring using air is provided between a bogie including a traveling mechanism including wheels and a vehicle body on which personnel or cargo is mounted, the vehicle body is supported by the gas spring, and the height of the vehicle body and A configuration for adjusting the inclination is adopted. FIG. 6 is a schematic cross-sectional view showing a conventional vehicle body tilting device using a gas spring device as viewed from the front or back of the vehicle. A gas spring 1 that expands and contracts vertically using air is provided between the vehicle body 80 and the bogie 81, and the vehicle body 80 includes a gas source 2 that is a supply source of air to the gas spring 1 and generates air pressure. Has been. The gas spring 1 and the gas source 2 are connected via a gas supply valve 31 by a first gas pipe 3 having a gas supply valve 31, and when the gas supply valve 31 is open, the gas source Air is supplied from the gas spring 2 to the gas spring 1 through the first gas pipe 3. In the first gas pipe 3, an exhaust valve 32 is connected to a pipe portion between the air supply valve 31 and the gas spring 1, and air is exhausted from the gas spring 1 when the exhaust valve 32 is open. It has a configuration. Further, a height adjustment valve 4 for adjusting the height of the vehicle body 80 by supplying and exhausting air to and from the gas spring 1 is provided. The height adjustment valve 4 and the gas spring 1 are connected by a second gas pipe 5 via a shutoff valve 51 in the middle, and the height adjustment valve 4 and the gas source 2 are connected by a third gas pipe 5. They are connected by a gas pipe 6. The height adjusting valve 4 operates mechanically, and when the gas spring 1 is contracted below a predetermined range and the height of the vehicle body 80 is low, air is passed through the third gas pipe 6 and the second gas pipe 5 to the gas source 2. From the gas spring 1 through the second gas pipe 5 when the gas spring 1 extends beyond a predetermined range and the height of the vehicle body 80 is high. The gas spring 1 expands by supplying air from the gas source 2 to increase the height of the vehicle body, and contracts by exhausting the air to reduce the height of the vehicle body. The height adjustment valve 4 mechanically supplies and exhausts gas to and from the gas spring 1, so that the height of the vehicle body 80 is maintained within a predetermined range. The other components described above other than the vehicle body 80, the trolley 81, and the gas source 2 are configured as a pair, and each of the gas springs 1, 1 supports the left and right sides of the vehicle body 80 from below. Further, the gas springs 1, 1 are connected by a fourth gas pipe 7 via a differential pressure valve 71 and a shutoff valve 72, and the differential pressure valve 71 controls a difference in air pressure in the gas springs 1, 1 within a predetermined range. Acts to keep.
[0003]
In a railway vehicle, a lateral acceleration acts when passing through a curved portion or the like, and passengers' riding comfort is deteriorated. In order to improve the riding comfort at a curved portion, in particular, in the case of a high-speed vehicle, the vehicle body is inclined in a direction to cancel the acceleration. As a method of inclining the vehicle body, a method of inclining the vehicle body using the above-described vehicle body inclining device is used. For example, when leaning the vehicle body 80 to the left, in a gas spring device that supports the left side of the vehicle body 80, the air supply valve 31 is closed and the exhaust valve 32 is opened to exhaust air from the gas spring 1 and In the gas spring device supporting the right side, the air supply valve 31 is opened and the exhaust valve 32 is closed to supply air from the gas source 2 to the gas spring 1, so that the height of the left side of the vehicle body 80 is reduced. The height on the right side increases, and the vehicle body 80 is tilted to the left. At this time, the height adjustment valve 4 works in the direction of returning the inclination of the vehicle body 80 to the original state in order to increase the height of the left side of the vehicle body 80 and decrease the height of the right side thereof. The shutoff valve 51 is closed so that the height adjustment valve 4 does not operate, and the vehicle body 80 is reliably tilted. Further, since the differential pressure valve 71 also works in the direction to return the inclination of the vehicle body 80 to the original state, the shutoff valve 72 may be closed.
[0004]
[Patent Document 1]
JP-A-7-81558
[Patent Document 2]
Japanese Patent No. 2822839
[Patent Document 3]
JP 2001-287642 A
[0005]
[Problems to be solved by the invention]
In the conventional body tilting device using the gas spring device, as described above, in order to have the function of tilting the vehicle body 80, the second body forming the air flow path between the gas spring 1 and the height adjustment valve 4 is formed. A shutoff valve 51 for shutting off the gas pipe 5 is essential. In such a vehicle body tilting device, when the shutoff valve 51 fails, the function of height adjustment by the height adjustment valve 4 or the function of tilting the vehicle body 80 does not work, and it is impossible to run a safe and comfortable vehicle. Become. For this reason, in order to improve safety, it is necessary to take measures such as doubling the second gas pipe 5 and the shut-off valve 51, and the structure of the vehicle body tilting device is complicated. In addition, there is a problem that maintenance of the body tilting device having a complicated structure becomes difficult, and the maintenance cost is high.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a height adjustment valve that controls the flow rate of gas supplied and exhausted to and from a gas spring to tilt a vehicle body. An object of the present invention is to provide a gas spring device and a vehicle body tilting device which do not require a shutoff valve for shutting off a second gas pipe by making the flow rate larger than a flow rate of a gas to be blown.
[0007]
[Means for Solving the Problems]
A gas spring device according to a first aspect of the present invention includes a gas spring, a gas source serving as a gas supply source to the gas spring, an air supply valve, and a gas supply source which is connected to the gas spring via the air supply valve. A first gas pipe forming a gas flow path, an exhaust valve for exhausting gas from the gas spring, a height adjustment valve having an intake port and an exhaust port for supplying and exhausting gas to and from the gas spring, A second gas pipe forming a gas flow path between a gas spring and the height adjustment valve; and a third gas pipe forming a gas flow path from the gas source to the height adjustment valve; The port diameter of the air valve and / or the port diameter of the exhaust valve may be larger than the exhaust port diameter of the height adjustment valve and / or the supply port diameter of the height adjustment valve.
[0008]
In the first invention, the port diameter of the air supply valve that supplies gas from the gas source to the gas spring and / or the port diameter of the exhaust valve that exhausts gas from the gas spring is changed to the exhaust diameter of the height adjustment valve and / or Make it larger than the supply diameter of the height adjustment valve. Here, when the height of the gas spring is lower than a predetermined range, the gas supply port of the height adjustment valve supplies gas supplied from the gas source to the gas spring through the second gas pipe and the third gas pipe. When the height of the gas spring is higher than a predetermined range, the exhaust port of the height adjustment valve is configured to pass gas exhausted from the gas spring through the second gas pipe. When supplying and exhausting gas to and from the gas spring using the supply valve and the exhaust valve, the flow rate of the gas supplied and exhausted by the supply valve and the exhaust valve is changed to the flow rate of the gas supplied and exhausted by the height adjustment valve. As a result, even if the height adjustment valve is operating, the gas spring can be expanded and contracted using the air supply valve and the exhaust valve without being disturbed by the operation of the height adjustment valve. The gas is desirably air for easy handling.
[0009]
Here, the ports of the supply valve and the exhaust valve are openings through which gas enters and exits, and the port diameter is a circular port provided on the supply valve and the exhaust valve to restrict the flow rate of the gas. Is the diameter or radius of In addition, when ports are provided on the inflow side and the outflow side of the gas and the port diameters of the inflow side and the outflow side are different, the flow rate of the gas is restricted by the narrower port. Therefore, the port diameter according to the present invention refers to the smaller port diameter. In addition, a plurality of intake and exhaust ports, a first gas pipe, a second gas pipe, and a third gas pipe each of which has a supply valve, an exhaust valve, a height adjustment valve, and a height adjustment valve are provided. The relationship between at least one pair of the supply valve and / or the exhaust valve and the exhaust port and / or the supply port may be the relationship of the present invention.
[0010]
A gas spring device according to a second aspect of the present invention includes a gas spring, a gas source that is a supply source of gas to the gas spring, an air supply valve, and a gas supply source that is connected to the gas spring via the air supply valve. A first gas pipe forming a gas flow path, an exhaust valve connected to the first gas pipe to exhaust gas from the gas spring, and an air supply port and an exhaust port capable of supplying and exhausting gas to and from the gas spring. A height adjustment valve, a second gas pipe forming a gas flow path between the gas spring and the height adjustment valve, and a gas flow path from the gas source to the supply port of the height adjustment valve. And a diameter of the first gas pipe is larger than a diameter of the second gas pipe and / or a diameter of the third gas pipe.
[0011]
In the second invention, the gas supplied from the gas source to the gas spring is passed through an air supply valve, and the diameter of the first gas pipe connected to the exhaust valve for exhausting the gas from the gas spring is adjusted to a height adjustment valve. Is larger than the diameter of the second gas pipe through which the gas supplied to and exhausted from the gas spring passes and / or the diameter of the third gas pipe through which the gas supplied from the gas source to the height adjustment valve passes. The height adjustment valve operates because the flow rate of gas supplied and exhausted by the supply valve and the exhaust valve to and from the gas spring is greater than the flow rate of gas supplied and exhausted by the height adjustment valve to and from the gas spring. Even if it does, it becomes possible to expand and contract the gas spring using the supply valve and the exhaust valve without being disturbed by the operation of the height adjustment valve. It should be noted that a plurality of intake and exhaust ports, a first gas pipe, a second gas pipe, and a third gas pipe provided in the air supply valve, the exhaust valve, the height adjustment valve, and the height adjustment valve are provided. The relationship between at least one set of the first gas pipe and the second gas pipe and / or the third gas pipe may be the relation of the present invention.
[0012]
The gas spring device according to a third aspect of the present invention includes a gas spring, a gas source that is a gas supply source to the gas spring, at least one air supply valve, and the gas source from the gas source via the air supply valve. At least one first gas pipe forming a flow path of gas to a spring, at least one exhaust valve for exhausting gas from the gas spring, and air supply through which gas supplied from the gas source to the gas spring passes At least one height adjusting valve having at least one port and at least one exhaust port through which gas exhausted from the gas spring passes, and at least one height adjusting valve forming a gas flow path between the gas spring and the height adjusting valve. Two gas pipes, and at least one third gas pipe forming a gas flow path from the gas source to the height adjustment valve, wherein a total opening area of a port of the air supply valve and / or the exhaust gas The total opening area of the valve port is Characterized in that the greater than the total open area of the air inlet of the total outlet opening area and / or the height adjustment valve regulator valve.
[0013]
In the third invention, the sum of the opening areas of the ports of the supply valve that supplies gas from the gas source to the gas spring and / or the sum of the opening areas of the ports of the exhaust valve that exhausts the gas from the gas spring is set to a height. The intake valve and the exhaust valve supply / exhaust air to / from the gas spring by increasing the sum of the opening area of the exhaust port of the regulating valve and / or the total area of the opening of the intake port of the height regulating valve. Since the flow rate of the gas is larger than the flow rate of the gas supplied and exhausted by the height adjustment valve to and from the gas spring, the operation of the height adjustment valve may be hindered even if the height adjustment valve is operating. Instead, the gas spring can be expanded and contracted using the supply valve and the exhaust valve. Here, the opening area is the area of a cross section perpendicular to the gas flowing direction at the air supply port, the air outlet, and each port.
[0014]
A gas spring device according to a fourth aspect of the present invention includes a gas spring, a gas source that is a supply source of gas to the gas spring, at least one air supply valve, and the gas from the gas source via the air supply valve. At least one first gas pipe forming a flow path of gas to the spring, at least one exhaust valve connected to the first gas pipe to exhaust gas from the gas spring, and supply from the gas source to the gas spring At least one height adjustment valve having at least one intake port through which the gas to be passed and one or more exhaust ports through which the gas exhausted from the gas spring passes, between the gas spring and the height adjustment valve. A first gas pipe comprising at least one second gas pipe forming a gas flow path, and at least one third gas pipe forming a gas flow path from the gas source to the air supply port of the height adjustment valve; The total cross-sectional area of the gas pipe is the total cross-sectional area of the second gas pipe and Or being larger than the total cross-sectional area of the third gas pipe.
[0015]
In the fourth invention, the gas supplied from the gas source to the gas spring is passed through an air supply valve, and the total cross-sectional area of the first gas pipe connected to the exhaust valve for exhausting the gas from the gas spring is defined as a height. The total cross-sectional area of the second gas pipe through which gas supplied and exhausted by the regulating valve to and from the gas spring and / or the total cross-sectional area of the third gas pipe through which gas supplied from the gas source to the height regulating valve passes By making it larger, the flow rate of gas supplied and exhausted by the supply valve and the exhaust valve to and from the gas spring becomes greater than the flow rate of gas supplied and exhausted by the height adjustment valve to and from the gas spring. Even when the height adjustment valve is operating, the gas spring can be expanded and contracted using the air supply valve and the exhaust valve without being disturbed by the operation of the height adjustment valve.
[0016]
In the gas spring device according to a fifth aspect, the second gas pipe is configured such that gas flows directly between the gas spring and the height adjustment valve without passing through a shutoff valve that can shut off the flow of gas. It is characterized by being.
[0017]
In the fifth aspect, since the second gas pipe does not include the shutoff valve that can shut off the gas flow, the structure of the gas spring device is simplified.
[0018]
A gas spring device according to a sixth aspect of the present invention is the gas spring, the air supply valve, the first gas pipe, the exhaust valve, the height adjustment valve, the second gas pipe, and the third gas pipe in combination. , Are paired.
[0019]
In the sixth invention, a pair of gas springs supporting the right and left sides of the vehicle body from below is provided, and the height adjustment valve controls the flow rate of gas supplied and exhausted by the air supply valve and the exhaust valve to and from the gas spring. By making the flow rate larger than the flow rate of gas to be supplied / exhausted to / from the gas spring, even if the height adjustment valve is operating, the air supply valve and the exhaust valve can be used without being disturbed by the operation of the height adjustment valve. The vehicle body can be inclined by expanding and contracting the gas spring.
[0020]
A vehicle leaning apparatus according to a seventh aspect of the present invention is a vehicle leaning apparatus including a railway bogie, a vehicle body, and an air spring device supporting the vehicle body, wherein the air spring device is any one of the first to sixth aspects. The gas spring device according to the above.
[0021]
In the seventh invention, the gas spring device according to any of the first to sixth inventions is used to support the vehicle body by interposing a gas spring between the railway bogie and the vehicle body, thereby providing a second structure. A vehicle body tilting device having a simple structure that does not need to include a shutoff valve in the gas pipe is configured.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments.
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing an example of a vehicle tilting device of the present invention configured using an example of the gas spring device of the present invention, as viewed from the front or back of the vehicle. In the present embodiment, an example is shown in which air is used as gas used in the gas spring device. In a railway vehicle, a gas spring 1 that expands and contracts in a direction of moving the vehicle body 80 toward and away from the vehicle 81 between a vehicle body 80 on which personnel or cargo is mounted and a vehicle 81 (railway vehicle) having a traveling mechanism including wheels. And a gas source 2 serving as an air pressure source, which is a supply source of air to the gas spring 1, is provided in the vehicle body 80. The gas spring 1 and the gas source 2 are connected by a first gas pipe 3 via an openable and closable air supply valve 31. When the air supply valve 31 is in an open state, the gas spring 2 is connected to the gas spring 1. The air is supplied through the first gas pipe 3 to the air. An exhaust valve 32 that can be opened and closed is connected to the first gas pipe 3 at a position between the air supply valve 31 and the gas spring 1. When the exhaust valve 32 is in an open state, air is released from the gas spring 1. It is configured to be exhausted. Further, a height adjustment valve 4 for adjusting the height of the vehicle body 80 by mechanically supplying and exhausting air to and from the gas spring 1 is provided. The height adjustment valve 4 and the gas spring 1 are directly connected by a second gas pipe 5, and the height adjustment valve 4 and the gas source 2 are connected by a third gas pipe 6. It is connected. The height adjustment valve 4 includes a lever 41 that changes the inclination in accordance with the height of the vehicle body 80, and mechanically supplies and exhausts air to and from the gas spring 1 following the inclination of the lever 41. It has become. The gas spring 1 expands by supplying air from the gas source 2 to increase the height of the vehicle body 80, and contracts by exhausting the air to reduce the height of the vehicle body 80. The other components described above other than the vehicle body 80, the trolley 81, and the gas source 2 are configured as a pair, and each of the gas springs 1, 1 supports the left and right sides of the vehicle body 80 from below. Further, the gas springs 1 and 1 are connected by a fourth gas pipe 7 via a differential pressure valve 71 and a shutoff valve 72 that can be opened and closed. The differential pressure valve 71 is used to maintain the difference between the air pressures in the gas springs 1 and 1 within a predetermined range when the difference between the air pressures in the gas springs 1 and 1 exceeds the predetermined range. Air is passed through the fourth gas pipe 7 from the gas spring 1 to the gas spring 1 on the lower gas pressure side.
[0023]
FIG. 2 is a schematic cross-sectional view illustrating an example of the internal structure of the height adjustment valve 4. The height adjustment valve 4 internally has a piston 45 that can move in the directions of the outline arrows (hereinafter, referred to as upward and downward) shown in FIG. Is provided with a cylinder 44 having a width. An opening 46 used for air supply and exhaust is provided at a substantially central portion in the vertical direction of the cylinder 44. The second gas pipe 5 is connected to the opening 46, and the cylinder 44 is separated by the opening 46. And the inside of the second gas pipe 5 are connected. The cylinder 44 has an air supply port 42, which is an opening used for air supply, above the second gas pipe 5, and the third gas pipe 6 is connected to the air supply port 42 to supply air. The inside of the cylinder 44 and the inside of the third gas pipe 6 are connected with the opening 42 as a boundary. Further, the cylinder 44 is provided with an exhaust port 43 which is an opening used for exhaust below the second gas pipe 5, and the inside of the cylinder 44 is connected to outside air with the exhaust port 43 as a boundary. I have. The piston 45 closes the opening 46 in the cylinder 44 in the upward direction and the downward direction.
[0024]
When the height of the vehicle body 80 is within a predetermined range, the lever 41 is substantially horizontal, and as shown in FIG. Blocked, no air flow. When the height of the vehicle body 80 is lower than the predetermined range, the lever 41 tilts obliquely upward, and as shown in FIG. 2B, the piston 45 follows the tilt of the lever 41 and is indicated by a white arrow. Raised upward. When the piston 45 is raised, the portion of the piston 45 that has closed the air supply port 42 moves upward, and the air supply port 42 is opened. At this time, the air that has passed through the third gas pipe 6 from the gas source 2 flows into the second gas pipe 5 from the air supply port 42 through the cylinder 44 as shown by the dashed arrow, and flows into the second gas pipe 5. The flowing air is supplied to the gas spring 1. When the air is supplied, the gas spring 1 extends, the height of the vehicle body 80 increases, and when the height of the vehicle body 80 falls within a predetermined range, the inclination of the lever 41 returns to substantially horizontal. When the height of the vehicle body 80 is higher than the predetermined range, the lever 41 tilts obliquely downward, and the piston 45 follows the tilt of the lever 41 as shown in FIG. It is pulled down as indicated by. Due to the lowering of the piston 45, the portion of the piston 45 that has blocked the exhaust port 43 moves downward, and the exhaust port 43 is opened. At this time, the air that has passed through the second gas pipe 5 from the gas spring 1 is exhausted to the outside through the exhaust port 43 through the inside of the cylinder 44 as indicated by the dashed arrow. As the air is exhausted, the gas spring 1 contracts, the height of the vehicle body 80 decreases, and the inclination of the lever 41 returns to substantially horizontal when the height of the vehicle body 80 falls within a predetermined range.
[0025]
The height adjustment valves 4 and 4 operate mechanically as described above to adjust the expansion and contraction states of the gas springs 1 and 1 that support the left and right sides of the vehicle body 80 from below, so that the left and right heights of the vehicle body 80 are reduced. It is automatically adjusted to fall within a predetermined range. Thereby, the inclination of the vehicle body 80 is kept substantially horizontal, and the height of the vehicle body 80 matches the height of the platform of the station, etc., regardless of the magnitude of the load of the personnel or cargo mounted on the vehicle body 80. As described above. Note that the structure of the height adjustment valve 4 may be any structure that supplies air to the gas spring 1 when the height of the vehicle body 80 is low and exhausts gas from the gas spring 1 when the height of the vehicle body 80 is low, as shown in FIG. Structures other than the example shown in FIG.
[0026]
In the vehicle body tilting device of the present invention, the port diameter of the supply valve 31 is larger than the diameter of the exhaust port 43 of the height adjustment valve 4, and the port diameter of the exhaust valve 32 is It is larger than the diameter of the air port 42. For this reason, the flow rate per hour of air supplied / exhausted to / from the gas spring 1 via the air supply valve 31 and the exhaust valve 32 is supplied / exhausted to / from the gas spring 1 using the height adjustment valve 4. It is larger than the air flow per hour. Note that the relationship between the port diameter of the air supply valve 31 and the diameter of the exhaust port 43 and the relationship between the port diameter of the exhaust valve 32 and the diameter of the air supply port 42 are such that only one of the relationships is established as described above. However, the present invention is established, but in the present embodiment, a case where both the relationships are established will be described.
[0027]
In the vehicle body inclination device of the present invention, when the railway vehicle passes through a curved portion, air is supplied to and exhausted from the gas spring 1 by using the air supply valve 31 and the exhaust valve 32 to support one of the left and right sides of the vehicle body 80. The gas spring 1 contracts, and the gas spring 1 supporting the other expands, thereby tilting the vehicle body 80 in a direction to offset the acceleration caused by passing through the curve. FIG. 3 is a schematic diagram illustrating an operation example of the vehicle body tilting device when the vehicle body 80 is tilted, and illustrates an example in which the vehicle body 80 is tilted to the left with respect to the diagram illustrated in FIG. 1. In the vehicle body tilting device, the left air supply valve 31 is closed, the left exhaust valve 32 is opened, air is exhausted from the left gas spring 1 through the exhaust valve 32, and the right air supply valve 31 is opened. Is opened, the right exhaust valve 32 is closed, and air is supplied from the gas source 2 to the right gas spring 1 through the first gas pipe 3 via the air supply valve 31.
[0028]
FIG. 3A shows a left portion of the vehicle body tilting device. When the air in the gas spring 1 is exhausted from the exhaust valve 32, the gas spring 1 contracts and the height of the left side of the vehicle body 80 decreases. At this time, the height adjustment valve 4 is operated, and air is supplied from the gas source 2 into the gas spring 1 through the second gas pipe 5 and the third gas pipe 6 in order to increase the height of the vehicle body 80. You. However, the port diameter of the exhaust valve 32 is larger than the diameter of the air supply port 42 of the height adjustment valve 4, and the flow rate of the air exhausted from the exhaust valve 32 Since it is larger than the flow rate, the left gas spring 1 keeps contracting, and the height of the left side of the vehicle body 80 keeps decreasing.
[0029]
FIG. 3B shows a right side portion of the vehicle body tilting device. The port diameter of the air supply valve 31 is larger than the diameter of the exhaust port 43 of the height adjustment valve 4. The flow rate of the air supplied to the gas spring 1 through the valve is larger than the flow rate of the air exhausted from the gas spring 1 by the height adjustment valve 4, so that the height adjustment valve is used to reduce the height of the vehicle body 80. Even if 4 operates, the right gas spring 1 continues to extend, and the height of the right side of the vehicle body 80 continues to rise. As the height of the left side of the vehicle body 80 decreases and the height of the right side of the vehicle body 80 increases, the vehicle body 80 leans to the left. After the railroad vehicle has passed the curved portion, the vehicle body tilting device supplies air to the left gas spring 1 with the left air supply valve 31 opened and the left exhaust valve 32 closed. The right air supply valve 31 is closed and the right exhaust valve 32 is opened to exhaust air from the right gas spring 1, or the air supply valves 31, 31 and the exhaust valves 32, 32 are closed. Air is supplied to and exhausted from the gas spring 1 by the height adjustment valve 4 to return the vehicle body 80 to a substantially horizontal inclination.
[0030]
As described above in detail, in the vehicle body tilting device of the present invention using the gas spring device of the present invention, the air supply / exhaust to / from the gas spring 1 via the air supply valve 31 and the exhaust valve 32 per hour is described. Since the flow rate is larger than the flow rate per hour of the air supplied and exhausted to and from the gas spring 1 using the height adjustment valve 4, even when the height adjustment valve 4 is operating, The vehicle body 80 can be inclined using the air supply valve 31 and the exhaust valve 32. Thereby, the shut-off valve 51 shown in FIG. 6 for shutting off the second gas pipe 5 so that the height adjusting valve 4 does not operate when the vehicle body 80 is tilted, which is conventionally required, becomes unnecessary. The gas pipe 5 can be configured so that air flows directly between the gas spring 1 and the height adjustment valve 4. Therefore, in the vehicle body tilting device of the present invention, the shutoff valve for closing off the second gas pipe 5 can be unnecessary while maintaining the same performance as the conventional one, and the structure of the vehicle body tilting device is simplified, Maintenance of the vehicle body tilting device becomes easy, and the maintenance cost of the vehicle body tilting device can be suppressed. Further, the shut-off valve does not break down and the function of height adjustment by the height adjustment valve 4 or the function of tilting the vehicle body 80 does not work, so that the reliability of the vehicle tilting device for safely and comfortably running the railway vehicle is reduced. The performance is improved.
[0031]
In the present embodiment, by increasing the port diameter of the supply valve 31 and the exhaust valve 32, the flow rate of air supplied and exhausted to and from the gas spring 1 by the supply valve 31 and the exhaust valve 32 is increased. However, the present invention is not limited to this. The diameters of the inlet port 42, the outlet port 43, and each port are set to be larger than the diameter of each gas pipe, and the diameter of the first gas pipe 3 is set to the second gas pipe. The diameter may be larger than the diameters of the fifth and third gas pipes 6. Also in this case, the flow rate of air supplied to and exhausted from the gas spring 1 through the first gas pipe 3 is equal to the flow rate of air supplied to the gas spring 1 through the second gas pipe 5 and the third gas pipe 6. , And the flow rate of air exhausted from the gas spring 1 through the second gas pipe 5 is increased, and the vehicle body tilting device of the present invention can be realized.
[0032]
In the present embodiment, the exhaust valve 32 is provided in the first gas pipe 3. However, the exhaust valve 32 may be provided directly in the gas spring 1. Also in this case, by increasing the diameter of the supply valve 31 or the diameter of the first gas pipe 3, the flow rate of the air supplied to the gas spring 1 via the supply valve 31 increases, and the exhaust valve 32 By increasing the diameter, the flow rate of the air exhausted from the gas spring 1 via the exhaust valve 32 increases, and the vehicle body tilt device of the present invention can be realized.
[0033]
Further, in the present embodiment, the flow rate of the air supplied and exhausted to and from the gas spring 1 by the air supply valve 31 and the exhaust valve 32 is changed by the air supplied and exhausted to and from the gas spring 1 by the height adjustment valve 4. However, the flow rate of air supplied to the gas spring 1 via the air supply valve 31 is compared with the flow rate of air exhausted from the gas spring 1 by the height adjustment valve 4. A mode in which the flow rate of air exhausted from the gas spring 1 via the exhaust valve 32 is increased only in comparison with a flow rate of air supplied to the gas spring 1 by the height adjustment valve 4. It may be. In this case, the height of the vehicle body 80 does not become lower than the predetermined range due to the operation of the height adjustment valve 4, but can be made higher than the predetermined range by air supply through the air supply valve 31, or Although the height does not become higher than the predetermined range due to the operation of the height adjustment valve 4, it can be made lower than the predetermined range by exhausting through the exhaust valve 32, so that the vehicle body 80 can be tilted. The device can be realized.
[0034]
(Embodiment 2)
FIG. 4 is a schematic cross-sectional view showing an example of a vehicle tilting device configured using the gas spring device according to Embodiment 2 of the present invention, as viewed from the front or back of the vehicle. In the present embodiment, the gas spring 1 and the gas source 2 are supplied by a plurality of first gas pipes 3, 3,... Each having a plurality of openable and closable supply valves 31, 31,. Are connected via air valves 31, 31,... The gas spring 1 includes a plurality of exhaust valves 32, 32,. By opening the air supply valves 31, 31,..., Air flows from the gas source 2 to the gas spring 1 through the first gas pipes 3, 3,. The air is exhausted from the gas spring 1 through the exhaust valves 32, 32,... By opening the exhaust valves 32, 32,. Other configurations of the vehicle body tilting apparatus are the same as those of the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof will be omitted. The internal structure of the height adjustment valve 4 is also the same as that of the first embodiment whose structure is shown in FIG. 2, and the height adjustment valve 4 has an air supply port to which the third gas pipe 6 is connected. 42 and an exhaust port 43 connected to the outside air.
[0035]
In the present embodiment, the total opening area of the ports of the air supply valves 31, 31,... Is larger than the opening area of the exhaust port 43 of the height adjustment valve 4, and the exhaust valves 32, 32,. Is larger than the opening area of the air supply port 42 of the height adjustment valve 4. Therefore, also in the present embodiment, the flow rate of air supplied / exhausted to / from the gas spring 1 via the air supply valves 31, 31,... And the exhaust valves 32, 32,. The flow rate of air supplied / exhausted to / from the gas spring 1 by using the valve 4 is larger than the flow rate per hour, and even when the height adjustment valve 4 is operated, the air supply valves 31, 31,. , And the exhaust valves 32, 32,... Therefore, also in the present embodiment, the conventionally required shutoff valve for shutting off the second gas pipe 5 becomes unnecessary, and the second gas pipe 5 is provided between the gas spring 1 and the height adjustment valve 4. It is possible to adopt a configuration in which air flows directly.
[0036]
The relationship between the sum of the opening areas of the ports of the supply valves 31, 31,... And the opening area of the exhaust port 43, and the sum of the opening areas of the ports of the exhaust valves 32, 32,. The present invention holds even when only one of the relations with the area is satisfied as described above. Further, it is not necessary to perform air supply and exhaust using all of the air supply valves 31, 31,... And the exhaust valves 32, 32,. .. And the exhaust valves 32, 32,.
[0037]
FIG. 5 is a characteristic diagram showing a change in the inclination of the vehicle body 80 when the vehicle body inclining device according to the second embodiment causes the vehicle body 80 to incline. The vertical axis in the figure indicates the inclination angle of the vehicle body 80, and the horizontal axis indicates the running time of the railway vehicle. In the drawing, the bold line indicates the actual inclination angle when control is performed to adjust the inclination angle of the vehicle body 80 to the target indicated by the broken line while the railway vehicle is running. In addition, the thin line indicates the inclination angle of the vehicle body 80 when the same control is performed using the conventional vehicle body inclination device. The data in the figure shows that the diameters of the ports of the three supply valves 31, 31, 31 are 3 mm, 4 mm, and 5 mm, respectively, and the diameters of the ports of the three exhaust valves 32, 32, 32 are 3 mm, 4 mm, and 5 mm, respectively. This is data measured for a vehicle body tilting device in which the diameter of the air supply port 42 of the height adjustment valve 4 is 2 mm and the diameter of the exhaust port 43 of the height adjustment valve 4 is 3 mm. The inclination of the vehicle body 80 is controlled to follow the control of the inclination angle of the vehicle body 80 to the same degree as in the conventional case. It is clear that they are almost equivalent. Therefore, in the present embodiment, it is possible to realize a vehicle body tilting apparatus having a simplified structure without a shutoff valve for shutting off the second gas pipe 5 while maintaining the same performance as the conventional one.
[0038]
In the present embodiment, the height adjustment valve 4, the air supply port 42, the exhaust port 43, the second gas pipe 5, and the third gas pipe 6 are shown as a single form, but are not limited thereto. Instead, a form having a plurality of them may be used. Also in this case, the sum of the opening areas of the ports of the supply valves 31, 31,... Is larger than the total opening area of the exhaust ports 43, 43,. The present invention can be realized by making the total opening area of the ports 32,... Larger than the total opening area of the air supply ports 42, 42,.
[0039]
Also, in the present embodiment, the total cross-sectional area of the first gas pipes 3, 3,..., The total cross-sectional area of the second gas pipes 5, 5,. It may be configured to be larger than the total cross-sectional area. Furthermore, in the first and second embodiments, the form in which the gas used for the gas spring device is air is shown, but it is needless to say that the present invention can be realized even with an appropriate gas other than air. is there.
[0040]
【The invention's effect】
In the present invention, the flow rate of the gas supplied and exhausted by the supply valve and the exhaust valve to and from the gas spring is greater than the flow rate of the gas supplied and exhausted by the height adjustment valve to and from the gas spring. Even when the valve is operating, the gas spring can be expanded and contracted by using the supply valve and the exhaust valve without being disturbed by the operation of the height adjustment valve, and the gap between the height adjustment valve and the gas spring can be increased. There is no need for a shutoff valve to shut off the gas flow and deactivate the height adjustment valve.
[0041]
Further, in the present invention, since there is no shutoff valve for shutting off the flow of gas between the height adjustment valve and the gas spring to stop the operation of the height adjustment valve, the structure of the gas spring device is simplified. In addition, the maintenance becomes easy, and the maintenance cost of the gas spring device can be suppressed. Further, the function of the gas spring device is not impaired due to the failure of the shut-off valve, and the reliability of the gas spring device is improved.
[0042]
Further, in the present invention, the pair of gas springs supporting the right and left sides of the vehicle body from below, the supply valve and the exhaust valve adjust the flow rate of gas supplied and exhausted to and from the gas spring by a height adjustment valve. By increasing the flow rate of the gas supplied to and exhausted from the gas spring, even if the height adjustment valve is operating, the air supply valve and the exhaust valve can be operated without being disturbed by the operation of the height adjustment valve. It is possible to expand and contract the gas spring to tilt the vehicle body, and to eliminate the need for a shut-off valve that shuts off the flow of gas between the height adjustment valve and the gas spring and disables the height adjustment valve. Thus, the present invention has excellent effects, such as a railway vehicle with fewer failures and lower maintenance costs can be obtained without sacrificing safety because a simplified vehicle body tilting device can be configured.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a vehicle tilting device of the present invention configured using an example of a gas spring device of the present invention, as viewed from the front or back of a vehicle.
FIG. 2 is a schematic cross-sectional view illustrating an example of an internal structure of a height adjustment valve.
FIG. 3 is a schematic view showing an operation example of the vehicle body tilting device when tilting the vehicle body.
FIG. 4 is a schematic cross-sectional view showing an example of a vehicle tilting device configured using a gas spring device according to a second embodiment of the present invention, as viewed from the front or back of the vehicle.
FIG. 5 is a characteristic diagram showing a change in the inclination of the vehicle body when the vehicle body inclination device according to the second embodiment tilts the vehicle body.
FIG. 6 is a schematic cross-sectional view showing a conventional vehicle body tilting device using a gas spring device as viewed from the front or back of the vehicle.
[Explanation of symbols]
1 Gas spring
2 Gas source
3 First gas pipe
31 Air supply valve
32 exhaust valve
4 Height adjustment valve
42 air supply port
43 Exhaust port
5 Second gas pipe
6 Third gas pipe
80 Body
81 bogies (railroad bogies)

Claims (7)

気体ばねと、該気体ばねへの気体の供給源である気体源と、給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす第1気体管と、前記気体ばねから気体を排気する排気弁と、前記気体ばねに対して気体を給排気できる給気口及び排気口を有する高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす第2気体管と、前記気体源から前記高さ調整弁への気体の流路をなす第3気体管とを備え、
前記給気弁のポート径及び/又は前記排気弁のポート径は、前記高さ調整弁の排気口径及び/又は前記高さ調整弁の給気口径よりも大きいことを特徴とする気体ばね装置。
A gas spring, a gas source serving as a gas supply source to the gas spring, an air supply valve, and a first gas pipe forming a gas flow path from the gas source to the gas spring via the air supply valve. An exhaust valve that exhausts gas from the gas spring, a height adjustment valve having an air supply port and an exhaust port that can supply and exhaust gas to and from the gas spring, and between the gas spring and the height adjustment valve. A second gas pipe forming a gas flow path, and a third gas pipe forming a gas flow path from the gas source to the height adjustment valve,
The gas spring device, wherein a port diameter of the air supply valve and / or a port diameter of the exhaust valve is larger than an exhaust diameter of the height adjustment valve and / or an air supply diameter of the height adjustment valve.
気体ばねと、該気体ばねへの気体の供給源である気体源と、給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす第1気体管と、該第1気体管に繋がり前記気体ばねから気体を排気する排気弁と、前記気体ばねに対して気体を給排気できる給気口及び排気口を有する高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす第2気体管と、前記気体源から前記高さ調整弁の前記給気口への気体の流路をなす第3気体管とを備え、
第1気体管の径は、第2気体管の径及び/又は第3気体管の径よりも大きいことを特徴とする気体ばね装置。
A gas spring, a gas source serving as a gas supply source to the gas spring, an air supply valve, and a first gas pipe forming a gas flow path from the gas source to the gas spring via the air supply valve. An exhaust valve connected to the first gas pipe and exhausting gas from the gas spring; a height adjustment valve having an air supply port and an exhaust port capable of supplying and exhausting gas to and from the gas spring; A second gas pipe forming a gas flow path between the height adjustment valves, and a third gas pipe forming a gas flow path from the gas source to the air supply port of the height adjustment valve,
A gas spring device wherein the diameter of the first gas pipe is larger than the diameter of the second gas pipe and / or the diameter of the third gas pipe.
気体ばねと、該気体ばねへの気体の供給源である気体源と、少なくとも一つの給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす少なくとも一つの第1気体管と、前記気体ばねから気体を排気する少なくとも一つの排気弁と、前記気体源から前記気体ばねへ供給される気体が通過する給気口及び前記気体ばねから排気される気体が通過する排気口を夫々1個以上有する少なくとも一つの高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす少なくとも一つの第2気体管と、前記気体源から前記高さ調整弁への気体の流路をなす少なくとも一つの第3気体管とを備え、
前記給気弁のポートの合計開口面積及び/又は前記排気弁のポートの合計開口面積が、前記高さ調整弁の排気口の合計開口面積及び/又は前記高さ調整弁の給気口の合計開口面積よりも大きいことを特徴とする気体ばね装置。
A gas spring, a gas source that is a supply source of gas to the gas spring, at least one supply valve, and at least a gas flow path from the gas source to the gas spring through the supply valve to the gas spring. One first gas pipe, at least one exhaust valve for exhausting gas from the gas spring, an air supply port through which gas supplied from the gas source to the gas spring passes, and gas exhausted from the gas spring At least one height adjustment valve having at least one exhaust port through which the gas passes, at least one second gas pipe forming a gas flow path between the gas spring and the height adjustment valve, and the gas source And at least one third gas pipe forming a gas flow path from the to the height adjustment valve,
The total opening area of the port of the air supply valve and / or the total opening area of the port of the exhaust valve is equal to the total opening area of the exhaust port of the height adjustment valve and / or the total of the air supply port of the height adjustment valve. A gas spring device characterized by being larger than an opening area.
気体ばねと、該気体ばねへの気体の供給源である気体源と、少なくとも一つの給気弁と、前記気体源から前記給気弁を介して前記気体ばねへの気体の流路をなす少なくとも一つの第1気体管と、該第1気体管に繋り前記気体ばねから気体を排気する少なくとも一つの排気弁と、前記気体源から前記気体ばねへ供給される気体が通過する給気口及び前記気体ばねから排気される気体が通過する排気口を夫々1個以上有する少なくとも一つの高さ調整弁と、前記気体ばね及び前記高さ調整弁の間の気体の流路をなす少なくとも一つの第2気体管と、前記気体源から前記高さ調整弁の前記給気口への気体の流路をなす少なくとも一つの第3気体管とを備え、
第1気体管の合計断面積は、第2気体管の合計断面積及び/又は第3気体管の合計断面積よりも大きいことを特徴とする気体ばね装置。
A gas spring, a gas source that is a supply source of gas to the gas spring, at least one supply valve, and at least a gas flow path from the gas source to the gas spring through the supply valve to the gas spring. One first gas pipe, at least one exhaust valve connected to the first gas pipe and exhausting gas from the gas spring, an air supply port through which gas supplied from the gas source to the gas spring passes, and At least one height adjustment valve having at least one exhaust port through which the gas exhausted from the gas spring passes, and at least one first airflow path forming a gas flow path between the gas spring and the height adjustment valve; 2 gas pipe, and at least one third gas pipe forming a gas flow path from the gas source to the air supply port of the height adjustment valve,
The gas spring device according to claim 1, wherein a total cross-sectional area of the first gas pipe is larger than a total cross-sectional area of the second gas pipe and / or a total cross-sectional area of the third gas pipe.
前記第2気体管は、気体の流れを締め切ることができる締切弁を介することなく、前記気体ばね及び前記高さ調整弁の間で気体が直接に流れる構成であることを特徴とする請求項1乃至4のいずれかに記載の気体ばね装置。The said 2nd gas pipe is a structure which gas flows directly between the said gas spring and the said height adjustment valve, without interposing the shut-off valve which can shut off the flow of gas, The said 1st gas is characterized by the above-mentioned. The gas spring device according to any one of claims 1 to 4. 前記気体ばね、前記給気弁、前記第1気体管、前記排気弁、前記高さ調整弁、前記第2気体管、及び前記第3気体管の組み合わせは、対になっていることを特徴とする請求項1乃至5のいずれかに記載の気体ばね装置。A combination of the gas spring, the supply valve, the first gas pipe, the exhaust valve, the height adjustment valve, the second gas pipe, and the third gas pipe is a pair. The gas spring device according to any one of claims 1 to 5, wherein: 鉄道台車と、車体と、該車体を支持する空気ばね装置とを備える車体傾斜装置であって、
前記空気ばね装置は、請求項1乃至6のいずれかに記載の気体ばね装置であることを特徴とする車体傾斜装置。
A railway bogie, a vehicle body, and a vehicle body tilting device including an air spring device that supports the vehicle body,
The vehicle body tilt device according to claim 1, wherein the air spring device is the gas spring device according to claim 1.
JP2002349165A 2002-11-29 2002-11-29 Car body tilting device Expired - Fee Related JP4292792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349165A JP4292792B2 (en) 2002-11-29 2002-11-29 Car body tilting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349165A JP4292792B2 (en) 2002-11-29 2002-11-29 Car body tilting device

Publications (2)

Publication Number Publication Date
JP2004182029A true JP2004182029A (en) 2004-07-02
JP4292792B2 JP4292792B2 (en) 2009-07-08

Family

ID=32751802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349165A Expired - Fee Related JP4292792B2 (en) 2002-11-29 2002-11-29 Car body tilting device

Country Status (1)

Country Link
JP (1) JP4292792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284990A (en) * 2006-04-17 2007-11-01 Toa Harbor Works Co Ltd Attachment for removing object adhered to sea baserock and device for removing object adhered to sea baserock
JP2008296755A (en) * 2007-05-31 2008-12-11 Sumitomo Metal Ind Ltd Attitude control method for vehicle body, and railway vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284990A (en) * 2006-04-17 2007-11-01 Toa Harbor Works Co Ltd Attachment for removing object adhered to sea baserock and device for removing object adhered to sea baserock
JP4664228B2 (en) * 2006-04-17 2011-04-06 東亜建設工業株式会社 Submarine bedrock removal attachment and underwater bedrock removal device
JP2008296755A (en) * 2007-05-31 2008-12-11 Sumitomo Metal Ind Ltd Attitude control method for vehicle body, and railway vehicle

Also Published As

Publication number Publication date
JP4292792B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5182239B2 (en) Railway vehicle body tilt control device
JP7434551B2 (en) Track vehicle tilt system, tilt control method, and track vehicle
JP2653317B2 (en) Body inclination control method for railway vehicle with air spring
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JP2004182029A (en) Gas spring device and car body inclining device
JP4698290B2 (en) Tilt control system for railway vehicles
JP2008100614A (en) Device and method for inclining railroad vehicle body
JP4292973B2 (en) Railway vehicle body tilt control method and apparatus
JP2012086656A (en) Attitude control system of railway vehicle
JP4478529B2 (en) Railway vehicle
JP4292817B2 (en) Vehicle height adjusting device and railway vehicle
JP2006327392A (en) Body tilt control system of railroad vehicle
JP3832184B2 (en) Body tilt control device
JP4469234B2 (en) Railway vehicle body tilt control method and vehicle body tilt control device
JP2003137091A (en) Car body tilting device of rolling stock
RU2800617C1 (en) Tilt system and tilt control method for rail vehicle and rail vehicle
JP2008007041A (en) Device and method for controlling inclination of railroad vehicle body
JPH07125633A (en) Method for restoring position of body in abnormal condition of rolling stock body inclination control mechanism
JP2002234437A (en) Vehicle body tilting device
JP2003237572A (en) Differential pressure regulating valve for rolling stock
JP5151252B2 (en) Body posture control method and railway vehicle
JP3513974B2 (en) Fail-safe mechanism of bogie for railway vehicle with control device
JP7032182B2 (en) Railroad vehicle body tilting device
JPH0382665A (en) Air spring control method for railroad vehicle
JP2004130939A (en) Air suspension system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4292792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees