JP2004181314A - Method for decontaminating contaminated soil by microorganism - Google Patents
Method for decontaminating contaminated soil by microorganism Download PDFInfo
- Publication number
- JP2004181314A JP2004181314A JP2002349557A JP2002349557A JP2004181314A JP 2004181314 A JP2004181314 A JP 2004181314A JP 2002349557 A JP2002349557 A JP 2002349557A JP 2002349557 A JP2002349557 A JP 2002349557A JP 2004181314 A JP2004181314 A JP 2004181314A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- treated
- contaminated soil
- contaminated
- microorganisms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、汚染土に含まれた汚染物質を微生物によって分解する微生物による汚染土の浄化方法に関する。
【0002】
【従来の技術】
工場跡地の土壌内には、トリクロロエチレンなどの有機塩素系化合物や、重油やガソリンなどの石油系炭化水素が含まれていることがあり、このような土壌をそのまま放置すると、上述した有機塩素系化合物等の汚染物質が地下水等を介して環境に拡散するおそれがある。そのため、かかる汚染土壌に対しては所定の浄化処理を行わねばならない。
【0003】
一方、微生物の活性を利用して環境中の汚染物質を分解無害化する技術、すなわちバイオレメディエーションの研究が進んできており、従来から原油による海洋汚染などの浄化に適用されてきたが、最近では汚染土壌へも適用されるようになってきた。
【0004】
バイオレメディエーションとは、細菌やかびなどの微生物の分解能力を利用して汚染物質を分解し、無害化する方法であり、汚染物質が含まれた土壌などを微生物の活動に最適な水分・栄養・通気などの環境に調整して微生物の活性を向上させることにより、自然状態よりも効率よく汚染物質の分解を行うことができる。
【0005】
バイオレメディエーションを用いて汚染土壌中の汚染物質を浄化するにあたっては、まず、汚染土壌を掘削して掘削汚染土を仮用地に移動し、次いで、仮用地にて掘削汚染土内の汚染物質を微生物で分解する。そして、汚染物質が分解処理された後は、処理済み土を元の位置に埋め戻すといった手順が一般的である。
【0006】
【特許文献1】
特開2000−254635号公報
【0007】
【発明が解決しようとする課題】
しかしながら、掘削された汚染土に分解菌を添加して該汚染土内の汚染物質を分解するには、添加した分解菌の増殖を待たねばならないため、汚染物質の分解には時間がかかるという問題を生じていた。
【0008】
かかる問題は、汚染土の土量が多かったり、仮用地の広さや土量の関係で処理工期をいくつかに分けなければならない場合、さらに深刻となる。
【0009】
本発明は、上述した事情を考慮してなされたもので、汚染土内の汚染物質を短期間に微生物分解可能な微生物による汚染土の浄化方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る微生物による汚染土の浄化方法は請求項1に記載したように、第1の汚染土に含まれる第1の汚染物質を該第1の汚染土内の微生物で分解して処理済み土とし、次いで、前記微生物によって分解が可能な第2の汚染物質を含む第2の汚染土に前記処理済み土の少なくとも一部を添加するものである。
【0011】
また、本発明に係る微生物による汚染土の浄化方法は、前記第2の汚染物質を前記第1の汚染物質と同一としたものである。
【0012】
また、本発明に係る微生物による汚染土の浄化方法は請求項3に記載したように、所定の汚染物質が含まれた汚染土を所定の土量ずつに分けて複数の処理対象土とし、該複数の処理対象土のうち、任意に選択された処理対象土に含まれる前記汚染物質を該処理対象土内の微生物で分解して処理済み土とし、前記複数の処理対象土のうち、微生物分解処理が行われていない未処理土に前記処理済み土の少なくとも一部を添加することによって該未処理土に含まれる前記汚染物質を微生物分解して処理済み土とし、前記処理対象土がすべて処理済み土となるまで、前記処理済み土を前記未処理土に添加する工程を繰り返し行うものである。
【0013】
また、本発明に係る微生物による汚染土の浄化方法は請求項4に記載したように、地盤内に拡がる汚染土壌領域を掘削するとともに掘削された汚染土を処理対象土とし、該処理対象土に含まれる汚染物質を該処理対象土内の微生物で分解して処理済み土とし、前記汚染土壌領域からあらたに汚染土として掘削された処理対象土に前記処理済み土の少なくとも一部を添加することによって該処理対象土に含まれる前記汚染物質を微生物分解して処理済み土とし、前記汚染土壌領域から掘削された処理対象土がすべて処理済み土となるまで、前記処理済み土を前記処理対象土に添加する工程を繰り返し行うものである。
【0014】
請求項1の発明に係る微生物による汚染土の浄化方法においては、まず、第1の汚染土に含まれる第1の汚染物質を該第1の汚染土内の微生物で分解し、分解が所望の程度まで進行した第1の汚染土を処理済み土とする。
【0015】
分解処理中は、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで微生物の活性や増殖の促進を図るのが望ましい。
【0016】
対象となる第1の汚染物質としては、油をはじめ、好気性環境下で微生物分解可能なものを全て含むものとする。
【0017】
第1の汚染土内の微生物は、土中菌として元々存在する場合をはじめ、別途添加する場合も含む。
【0018】
すなわち、第1の汚染物質が自然界に存在する原油等であれば、第1の汚染土中に生息する頻度の高い微生物、例えばシュードモナス属の菌体をそのまま利用することができる。
【0019】
一方、第1の汚染土内で元々生息している土中菌を分解菌として利用することができない場合、すなわち、第1の汚染物質を分解できる微生物の菌体数が第1の汚染土内にあまり存在しない場合には、他の環境で生息している微生物から対象となる第1の汚染物質を分解できる微生物をスクリーニングにより単離して育種し、これを第1の汚染土に添加するようにしてもよい。
【0020】
次に、第2の汚染土に上述した処理済み土の少なくとも一部を添加する。第2の汚染土に処理済み土を添加する場合には、該処理済み土を第2の汚染土内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。
【0021】
ここで、第2の汚染土に含まれる第2の汚染物質は、好気性環境下で微生物分解可能でかつ第1の汚染土に含まれる第1の汚染物質の分解に用いた微生物で分解できるのであれば、第1の汚染物質と異なってもかまわないが、これらの汚染物質が同一であれば、下記の作用効果を確実に期待できるため、本発明は、第2の汚染物質が第1の汚染物質と同一である場合により適した方法であると言える。
【0022】
このように第1の汚染土内の微生物で該第1の汚染土に含まれる第1の汚染物質を微生物分解させると、微生物としての分解菌は、第1の汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、第1の汚染土内では優占種となる。
【0023】
したがって、第1の汚染物質の分解が所望の程度まで進行した第1の汚染土を処理済み土とし、該処理済み土の少なくとも一部を第2の汚染物質を含む第2の汚染土に添加するようにすれば、該添加の段階において、処理済み土内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土が添加された第2の汚染土内では、第2の汚染物質の微生物分解が添加直後から速やかに進行する。
【0024】
そのため、第2の汚染土内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0025】
なお、第2の汚染土内には微生物の分解対象となる第2の汚染物質が含まれているため、処理済み土が添加された第2の汚染土内において微生物が増殖し、あるいは分解活性が向上することは言うまでもない。
【0026】
請求項3に係る発明においては、まず、所定の汚染物質が含まれた汚染土を所定の土量ずつに分け、これらを複数の処理対象土とする。
【0027】
次に、これら複数の処理対象土のうち、任意に選択された処理対象土に含まれる汚染物質を該処理対象土内の微生物で分解し、分解が所望の程度まで進行した処理対象土を処理済み土とする。
【0028】
分解処理中は、請求項1に係る発明と同様、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで微生物の活性や増殖の促進を図るのが望ましい。
【0029】
対象となる汚染物質としては、上述した第1の汚染物質と同様であるので、ここでは説明を省略するとともに、処理済み土とするための微生物に関しても、土中菌として元々存在する場合をはじめ、別途添加する場合も含まれることは請求項1と同様であり、その説明については省略する。
【0030】
次に、上述した複数の処理対象土のうち、微生物分解処理が行われていない未処理土に上述した処理済み土の少なくとも一部を添加する。かかる未処理土に処理済み土を添加する場合には、該処理済み土を未処理土内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。
【0031】
次に、処理対象土がすべて処理済み土となるまで、上述した未処理土への処理済み土の添加工程を繰り返し行う。
【0032】
このように最初に任意に選択された処理対象土に含まれる汚染物質を該処理対象土内の微生物で分解させると、微生物としての分解菌は、汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、処理対象土内では優占種となる。
【0033】
したがって、汚染物質の分解が所望の程度まで進行した処理対象土を処理済み土とし、該処理済み土の少なくとも一部を未処理土に添加するようにすれば、該添加の段階において、処理済み土内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土が添加された未処理土内では、汚染物質の微生物分解が添加直後から速やかに進行する。
【0034】
そのため、未処理土内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0035】
なお、未処理土内には微生物の分解対象となる汚染物質が含まれているため、処理済み土が添加された未処理土内において微生物が増殖し、あるいは分解活性が向上することは言うまでもない。
【0036】
ここで、未処理土への処理済み土の添加工程において、複数の未処理土に対する処理済み土の添加の時期は任意であり、同時に添加してもよいし、時間をずらしながら添加するようにしてもよい。
【0037】
前者の場合には、微生物分解の工期を全体として短縮することが可能となり、後者の場合には、攪拌、通気、栄養塩の添加、水分補給といった添加後の養生を順次行えばよいため、微生物分解に必要な養生設備を簡素化することが可能となる。
【0038】
また、未処理土への処理済み土の添加工程を繰り返し行うにつれて、未処理土がひとつずつ減少し、処理済み土が一つずつ増加することになるが、かかる複数の処理済み土のうち、いずれを未処理土に添加するかは任意であり、微生物処理が終了した直後の処理済み土を使用するのが望ましいが、最初に微生物処理された処理済み土を継続して養生しておき、これを使用するようにしてもかまわない。
【0039】
汚染土が発生する場所と微生物分解処理を行う場所については、特に限定されるものではなく、汚染土が掘削される汚染土壌領域に隣接して微生物分解処理を行うようにしてもよいし、汚染土壌領域から離れた場所まで汚染土を運搬し、しかる後、微生物分解処理を行うようにしてもよい。
【0040】
請求項4に係る発明においては、まず、地盤内に拡がる汚染土壌領域を掘削するとともに掘削された汚染土を処理対象土とする。
【0041】
次に、処理対象土に含まれる汚染物質を該処理対象土内の微生物で分解し、分解が所望の程度まで進行した処理対象土を処理済み土とする。
【0042】
分解処理中は、請求項1に係る発明と同様、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで微生物の活性や増殖の促進を図るのが望ましい。
【0043】
対象となる汚染物質としては、上述した第1の汚染物質と同様であるので、ここでは説明を省略するとともに、処理済み土とするための微生物に関しても、土中菌として元々存在する場合をはじめ、別途添加する場合も含まれることは請求項1と同様であり、その説明については省略する。
【0044】
次に、汚染土壌領域からあらたに汚染土として掘削された処理対象土に、上述した処理済み土の少なくとも一部を添加する。かかる処理対象土に処理済み土を添加する場合には、該処理済み土を他の処理対象土内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。
【0045】
このような処理済み土を処理対象土に添加する工程については、汚染土壌領域から掘削された処理対象土がすべて処理済み土となるまで繰り返し行う。
【0046】
このようにすると、微生物としての分解菌は、汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、処理対象土内では優占種となる。
【0047】
したがって、汚染物質の分解が所望の程度まで進行した処理対象土を処理済み土とし、該処理済み土の少なくとも一部を、汚染土壌領域からあらたに汚染土として掘削された処理対象土に添加するようにすれば、該添加の段階において、処理済み土内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土が添加された処理対象土内では、汚染物質の微生物分解が添加直後から速やかに進行する。
【0048】
そのため、処理対象土内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0049】
なお、処理対象土内には微生物の分解対象となる汚染物質が含まれているため、処理済み土が添加された処理対象土内において微生物が増殖し、あるいは分解活性が向上することは言うまでもない。
【0050】
【発明の実施の形態】
以下、本発明に係る微生物による汚染土の浄化方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0051】
(第1実施形態)
【0052】
図1は、本実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャートである。同図に示すように、本実施形態に係る微生物による汚染土の浄化方法において、まず、図2(a)に示すように汚染土壌領域1に拡がる汚染土壌を掘削し、掘削された汚染土2を第1の汚染土とする(ステップ101)。
【0053】
汚染土2は、同図に示すように汚染土壌領域1に隣接する地表に設けられた仮用地に仮置きすればよい。
【0054】
次に、図2(b)に示すように汚染土2に含まれる第1の汚染物質、例えば油を該汚染土2の土中菌である分解菌3で微生物分解し、次いで、分解が所望の程度まで進行した汚染土2を処理済み土4とする(ステップ102)。
【0055】
分解処理中は、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や増殖の促進を図るのが望ましい。
【0056】
次に、処理済み土4内の分解菌3の分解活性や菌体量を維持すべく、好気性環境を保ちながら、栄養塩や水分を適宜添加しつつ、該処理済み土4を保存する(ステップ103)。なお、かかる工程は、次工程までの経過時間により、これを省略することができる。
【0057】
次に、処理済み土4を、図3に示すように汚染土壌領域1とは異なる場所に存在する汚染土壌領域11を掘削して生じた第2の汚染土としての汚染土12に添加する(ステップ104)。
【0058】
処理済み土4の添加量は、汚染土12の重量に対し、例えば8重量%〜10重量%程度とすることが考えられる。8重量%未満では、後述する作用を得ることが困難であり、10重量%以上では、処理済み土4及び汚染土12の総重量が大きくなり、攪拌その他の養生工程が大規模になるからである。
【0059】
汚染土12に処理済み土4を添加する場合には、該処理済み土を汚染土12内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。なお、分解処理中はやはり、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や菌体数の維持あるいは増加を図るのが望ましい。
【0060】
汚染土12内に含まれる第2の汚染物質は、分解菌3によって分解が可能な物質であればどのような物質でもよく、必ずしも第1の汚染物質と同一である必要はない。
【0061】
このように汚染土2内の分解菌3によって該汚染土に含まれる第1の汚染物質を微生物分解させると、分解菌3は、第1の汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、汚染土2内では優占種となる。
【0062】
したがって、第1の汚染物質の分解が所望の程度まで進行した汚染土2を処理済み土4とし、該処理済み土の一部を第2の汚染物質を含む汚染土12に添加するようにすれば、該添加の段階において、処理済み土4内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土4が添加された汚染土12内では、第2の汚染物質の微生物分解が添加直後から速やかに進行する。
【0063】
以上説明したように、本実施形態に係る微生物による汚染土の浄化方法によれば、第2の汚染物質を分解可能な分解菌3は、処理済み土4内において優占種となり、分解活性が十分に高く、あるいは多量の分解酵素が生成された状態となっているため、かかる処理済み土4を汚染土12に添加すれば、第2の汚染物質の微生物分解が添加直後から速やかに進行する。
【0064】
そのため、汚染土12内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0065】
なお、汚染土12に含まれる第2の汚染物質は、好気性環境下で微生物分解可能でかつ汚染土2に含まれる第1の汚染物質の分解に用いた分解菌3で分解できるのであれば、第1の汚染物質と異なってもかまわないが、これらの汚染物質が同一であれば、上述した作用効果をより確実に期待することができる。言い換えれば、本実施形態に係る微生物による汚染土の浄化方法は、第2の汚染物質が第1の汚染物質と同一である場合により適した方法であると言える。
【0066】
次に、本実施形態に係る微生物による汚染土の浄化方法の作用効果を室内試験で確認したので、実験概要及びその結果について以下に述べる。
【0067】
まず、第1の汚染物質をC重油とするとともに該C重油で汚染された汚染土を第1の汚染土とし、これを油分解菌で分解処理したものを処理済み土として用意した。かかる処理済み土は、油分濃度が1,200mg/kg・dry(ソクステック抽出装置で計測した値)であった。また、第2の汚染物質も第1の汚染物質と同様、C重油とするとともに該C重油で汚染された汚染土を第2の汚染土として用意した。かかる第2の汚染土は、油分濃度が3,900mg/kg・dry(ソクステック抽出装置で計測した値)であった。なお、処理済み土及び第2の汚染土は、2mmの篩にかけて土粒子の粒径を均一にした。
【0068】
次に、栄養塩であるハイポネックス(商品名)を、油汚染土の炭素量(T―C)と窒素量(T―N)との比(C/N比)が約20になるよう、10gあたり0.1gの割合で汚染土に添加するとともに、十分な量の蒸留水を添加し、かかる状態で一ヶ月間、微生物分解を行った。
【0069】
ここで、処理済み土の添加量については、5重量%、8重量%とした。また、分解処理中においては、1週間に一度の割合で第2の汚染土を十分に攪拌するとともに、減少した水分を補充し、エアコンプレッサーで通気を行った。
【0070】
なお、油分解時には二酸化炭素が発生するため、これを検出する試薬として、水酸化ナトリウムも1週間に一度の割合で第2の汚染土に添加した。
【0071】
計測方法としては、1週間に一度の割合で水酸化ナトリウムに吸収された炭酸ガスをTOC計で計測するとともに、一ヶ月に一度の割合でノルマルヘキサン抽出による油分含有量をソクステック装置で計測した。
【0072】
処理済み土を添加した時点からの経過日数と炭酸ガス発生量との関係を示したものを表1及び図4に示す。
【0073】
【表1】
【0074】
これらの図表でわかるように、試験開始時(処理済み土の添加時)から1週間経過した時点では、処理済み土の添加の有無による炭酸ガス発生量に違いは見られなかったが、2週間後には、処理済み土を添加しない場合に比べ、8重量%の処理済み土を加えたものは、炭酸ガス発生量が約10%多くなり、処理済み土の添加によって油分解速度の上昇傾向が確認された。
【0075】
処理済み土を添加してから一ヶ月経過した時点での油分含有量を図5に示す。
【0076】
同図でわかるように、試験開始一ヶ月後、処理済み土を添加しない場合には、油分含有量が3,900mg/kg・dryと分解処理が全く進行していないのに対し、8重量%の処理済み土を加えたものは、油分含有量が3,200mg/kg・dryに減少していることがわかる。これは、比率にして約80%低減したことに相当し、処理済み土の添加によって初期段階における油分解速度が促進されていることが確認された。
【0077】
すなわち、上述した炭酸ガスの発生量の結果と併せ考えれば、処理済み土を8重量%添加すれば、微生物分解処理の速度を約20%促進することが可能であり、例えば処理済み土を添加しない場合に90日間の処理日数が必要な場合であれば、該処理日数を72日に短縮することが可能となる。
【0078】
(第2実施形態)
【0079】
次に、第2実施形態について説明する。なお、第1実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0080】
図6は、本実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャートである。同図に示すように、本実施形態に係る微生物による汚染土の浄化方法において、まず、図7(a)に示すように汚染土壌領域21に拡がる汚染土壌を掘削し、掘削された汚染土を所定の土量ずつ、例えば5つに分け、これらを複数の処理対象土22a〜22eとする(ステップ111)。
【0081】
処理対象土22a〜22eは、同図に示すように汚染土壌領域21近傍の地表に設けられた仮用地に畝状に仮置きすればよい。
【0082】
次に、これら複数の処理対象土22a〜22eのうち、図7(b)に示すように任意に選択された処理対象土としての処理対象土22aに含まれる汚染物質、例えば油を該処理対象土に存在する分解菌3で微生物分解し、次いで、分解が所望の程度まで進行した処理対象土22aを処理済み土24aとする(ステップ112)。
【0083】
分解処理中は、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や増殖の促進を図るのが望ましい。
【0084】
次に、処理済み土24aを、図8(a)に示すように微生物分解処理が行われていない未処理土としての処理対象土22bに添加する(ステップ114)。
【0085】
処理済み土24aの添加量は、第1実施形態と同様、処理対象土22bの重量に対し、例えば8重量%〜10重量%程度とすることが考えられる。
【0086】
処理対象土22bに処理済み土24aを添加する場合には、該処理済み土を処理対象土22b内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。なお、分解処理中はやはり、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や菌体数の維持あるいは増加を図るのが望ましい。
【0087】
このように最初に任意に選択された処理対象土22a内の分解菌3を用いて該処理対象土に含まれる汚染物質を微生物分解させると、分解菌3は、汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、処理対象土22a内では優占種となる。
【0088】
したがって、汚染物質の分解が所望の程度まで進行した処理対象土22aを処理済み土24aとし、該処理済み土の一部を処理対象土22bに添加するようにすれば、該添加の段階において、処理済み土24a内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土24aが添加された処理対象土22b内では、汚染物質の微生物分解が添加直後から速やかに進行し、短期間に処理済み土24bとなる。
【0089】
次に、処理済み土24bを処理対象土22cに添加し(ステップ115)、該処理対象土22cを処理済み土24cとする。以下、処理対象土22a〜22eがすべて処理済み土24a〜24eとなるまで、上述した処理済み土を未処理土に添加する工程を繰り返し行う(ステップ116、117)。
【0090】
次に、処理済み土24a〜24eを図8(b)に示すように掘削領域25に埋め戻す(ステップ118)。
【0091】
以上説明したように、本実施形態に係る微生物による汚染土の浄化方法によれば、汚染物質を分解可能な分解菌3は処理済み土24a〜24d内において優占種となり、分解活性が十分に高く、あるいは多量の分解酵素が生成された状態となっているため、かかる処理済み土4を処理対象土22b〜22eに添加すれば、汚染物質の微生物分解が添加直後から速やかに進行する。
【0092】
そのため、処理対象土22a〜22e内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0093】
本実施形態では、地盤内に拡がる汚染土壌領域21を掘削し、次いで、掘削された汚染土を所定の土量ずつに分け、これらを複数の処理対象土22a〜22eとして汚染土壌領域21に隣接する地表に設けられた仮用地に畝状に仮置きするようにしたが、汚染土壌領域21と微生物分解処理を行う場所とが離れていてもかまわない。
【0094】
例えば、微生物分解処理を行うプラントを所定の地域に設置しておき、汚染土壌領域から掘削された汚染土を運搬して該プラントに搬入し、次いで、該汚染土を複数の処理対象土に分割して上述した微生物分割処理を行うようにしてもよい。
【0095】
また、本実施形態では、処理対象土22a内の汚染物質が微生物分解されてなる処理済み土24aの一部を処理対象土22bに添加し、次いで、該処理済み土の一部を処理対象土22cに添加する、すなわち、微生物分解処理するごとに生じる処理済み土を、次の処理対象土に順次添加するようにしたが、これに代えて、処理対象土22a内の汚染物質が微生物分解されてなる処理済み土24aの一部を処理対象土22b〜22eにそれぞれ添加するようにしてもかまわない。
【0096】
(第3実施形態)
【0097】
次に、第3実施形態について説明する。なお、上述した各実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0098】
図9は、本実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャートである。同図に示すように、本実施形態に係る微生物による汚染土の浄化方法において、まず、図10(a)に示すように、地盤内に拡がる汚染土壌領域31を掘削するとともに、掘削された汚染土を処理対象土32aとする(ステップ121)。
【0099】
処理対象土32aは、順次行われる掘削作業の支障とならぬ程度に汚染土壌領域31から離隔した位置にて畝状に仮置きすればよい。
【0100】
次に、処理対象土32aに含まれる汚染物質、例えば油を該処理対象土に存在する微生物である分解菌3で微生物分解し、次いで、分解が所望の程度まで進行した処理対象土32aを処理済み土34aとする(ステップ122)。
【0101】
分解処理中は、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や増殖の促進を図るのが望ましい。
【0102】
次に、図10(b)に示すように、汚染土壌領域31からあらたに汚染土として掘削された処理対象土32bに、上述した処理済み土34aの少なくとも一部を添加する(ステップ124)。
【0103】
処理済み土34aの添加量は、第1実施形態と同様、処理対象土32bの重量に対し、例えば8重量%〜10重量%程度とすることが考えられる。
【0104】
処理対象土32bに処理済み土34aを添加する場合には、該処理済み土を処理対象土32b内に均一に分散させるべく、適宜攪拌混合を行うのが望ましい。なお、分解処理中はやはり、必要に応じて通気を行うとともに、栄養塩や水分を適宜添加することで分解菌3の活性や菌体数の維持あるいは増加を図るのが望ましい。
【0105】
このようにすると、分解菌3は、汚染物質を分解していく過程において、他の土中菌よりも菌体数が増え、処理対象土22a内では優占種となる。
【0106】
したがって、汚染物質の分解が所望の程度まで進行した処理対象土32aを処理済み土34aとし、該処理済み土の一部を処理対象土32bに添加するようにすれば、該添加の段階において、処理済み土34a内の分解菌の活性が既に十分に高くなっており、あるいは多量の分解酵素が生成されているため、かかる処理済み土34aが添加された処理対象土32b内では、汚染物質の微生物分解が添加直後から速やかに進行し、短期間に処理済み土34bとなる。
【0107】
次に、図10(c)に示すように、汚染土壌領域31からあらたに汚染土として掘削された処理対象土32cに、上述した処理済み土34bの少なくとも一部を添加する(ステップ125)。
【0108】
以下、このような処理済み土を処理対象土に添加する工程については、汚染土壌領域31から掘削された処理対象土がすべて処理済み土となるまで繰り返し行う。
【0109】
以上説明したように、本実施形態に係る微生物による汚染土の浄化方法によれば、汚染物質を分解可能な分解菌3は処理済み土34a、34b・・・内において優占種となり、分解活性が十分に高く、あるいは多量の分解酵素が生成された状態となっているため、かかる処理済み土34a、34b・・・を処理対象土32b、32c・・・に添加すれば、汚染物質の微生物分解が添加直後から速やかに進行する。
【0110】
そのため、処理対象土32a、32b、32c・・・内の微生物を用いる場合に比べ、該微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0111】
【発明の効果】
以上述べたように、本発明に係る微生物による汚染土の浄化方法によれば、汚染物質を分解可能な微生物は処理済み土内において優占種となり、分解活性が十分に高く、あるいは多量の分解酵素が生成された状態となっているため、かかる処理済み土を第2の汚染土や処理対象土に添加すれば、汚染物質の微生物分解が添加直後から速やかに進行する。
【0112】
そのため、微生物を第2の汚染土や処理対象土に直接添加する場合に比べ、微生物の増殖や分解活性の向上あるいは分解酵素の生成を待つ必要がない分だけ、より短時間で微生物分解を終了させることが可能となる。
【0113】
【図面の簡単な説明】
【図1】第1実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャート。
【図2】第1実施形態に係る微生物による汚染土の浄化方法を用いて汚染土を処理する様子を示した作業図。
【図3】引き続き第1実施形態に係る微生物による汚染土の浄化方法を用いて汚染土を処理する様子を示した作業図。
【図4】第1実施形態に係る微生物による汚染土の浄化方法の作用を室内試験によって確認した結果を示したグラフ。
【図5】同じく第1実施形態に係る微生物による汚染土の浄化方法の作用を室内試験によって確認した結果を示したグラフ。
【図6】第2実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャート。
【図7】第2実施形態に係る微生物による汚染土の浄化方法を用いて汚染土を処理する様子を示した作業図。
【図8】引き続き第2実施形態に係る微生物による汚染土の浄化方法を用いて汚染土を処理する様子を示した作業図。
【図9】第3実施形態に係る微生物による汚染土の浄化方法の手順を示したフローチャート。
【図10】第3実施形態に係る微生物による汚染土の浄化方法を用いて汚染土を処理する様子を示した作業図。
【符号の説明】
2 第1の汚染土
3 分解菌(微生物)
4 処理済み土
12 第2の汚染土
22a〜22e 処理対象土
24a〜24e 処理済み土
32a〜32c 処理対象土
34a〜34c 処理済み土[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying contaminated soil with microorganisms that decomposes pollutants contained in the contaminated soil with microorganisms.
[0002]
[Prior art]
Organochlorine compounds such as trichloroethylene and petroleum hydrocarbons such as heavy oil and gasoline may be contained in the soil of the former factory site. And other contaminants may diffuse into the environment through groundwater and the like. Therefore, a predetermined purification treatment must be performed on such contaminated soil.
[0003]
On the other hand, research on bioremediation, a technique for decomposing and detoxifying pollutants in the environment using the activity of microorganisms, has been progressing, and it has been applied to the purification of marine pollution by crude oil. It has also been applied to contaminated soils.
[0004]
Bioremediation is a method of decomposing and detoxifying contaminants by utilizing the decomposing ability of microorganisms such as bacteria and fungi. By adjusting the environment such as ventilation to improve the activity of microorganisms, it is possible to decompose pollutants more efficiently than in the natural state.
[0005]
When purifying contaminants in contaminated soil using bioremediation, first, the contaminated soil is excavated, the excavated contaminated soil is moved to a temporary site, and then the contaminants in the excavated contaminated soil are removed from the temporary site using microorganisms. Decompose with. After the contaminants are decomposed, a general procedure is to bury the treated soil in its original position.
[0006]
[Patent Document 1]
JP 2000-254635 A
[0007]
[Problems to be solved by the invention]
However, in order to add decomposing bacteria to the excavated contaminated soil to decompose pollutants in the contaminated soil, it is necessary to wait for the growth of the added decomposing bacteria, so that it takes time to decompose the pollutants. Was occurring.
[0008]
Such a problem becomes more serious when the amount of contaminated soil is large or when the treatment period has to be divided into several depending on the size of the temporary site and the amount of soil.
[0009]
The present invention has been made in consideration of the above-described circumstances, and has as its object to provide a method for purifying contaminated soil using microorganisms capable of biodegrading contaminants in contaminated soil in a short period of time.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method for purifying contaminated soil by microorganisms according to the present invention includes, as described in
[0011]
In the method for purifying contaminated soil by microorganisms according to the present invention, the second contaminant is the same as the first contaminant.
[0012]
Further, in the method for purifying contaminated soil by microorganisms according to the present invention, as described in
[0013]
In addition, the method for purifying contaminated soil by microorganisms according to the present invention excavates a contaminated soil area extending in the ground and treats the excavated contaminated soil as a soil to be treated, as described in
[0014]
In the method for purifying contaminated soil by microorganisms according to the first aspect of the present invention, first, the first contaminant contained in the first contaminated soil is decomposed by the microorganisms in the first contaminated soil, and the decomposition is desired. The first contaminated soil that has progressed to the extent is treated soil.
[0015]
During the decomposition treatment, it is desirable to perform aeration as needed and to promote the activity and growth of microorganisms by appropriately adding nutrients and water.
[0016]
The first contaminants to be used include all substances that can be degraded by microorganisms in an aerobic environment, such as oil.
[0017]
The microorganisms in the first contaminated soil include those originally added as soil bacteria and those added separately.
[0018]
That is, if the first contaminant is crude oil or the like existing in the natural world, a microorganism that frequently inhabits the first contaminated soil, for example, a bacterium of the genus Pseudomonas can be used as it is.
[0019]
On the other hand, when soil bacteria originally inhabiting in the first contaminated soil cannot be used as decomposing bacteria, that is, the number of microorganisms capable of decomposing the first contaminant is increased in the first contaminated soil. In the case where the microorganisms do not exist in a large amount, microorganisms capable of decomposing the first contaminant of interest from microorganisms living in other environments are isolated and bred by screening, and added to the first contaminated soil. It may be.
[0020]
Next, at least a part of the treated soil described above is added to the second contaminated soil. When the treated soil is added to the second contaminated soil, it is desirable to appropriately mix and stir the treated soil so as to uniformly disperse the treated soil in the second contaminated soil.
[0021]
Here, the second contaminant contained in the second contaminated soil is microbial decomposable in an aerobic environment and can be decomposed by the microorganism used for decomposing the first contaminant contained in the first contaminated soil. In this case, the first contaminant may be different from the first contaminant. However, if these contaminants are the same, the following effects can be reliably obtained. This is a more suitable method when the contaminants are the same.
[0022]
As described above, when microorganisms in the first contaminated soil cause the first contaminant contained in the first contaminated soil to undergo microbial degradation, the decomposing bacteria as microorganisms degrade the first contaminant. In the above, the number of cells increases more than other soil bacteria, and it becomes a dominant species in the first contaminated soil.
[0023]
Therefore, the first contaminated soil in which the decomposition of the first contaminant has progressed to a desired degree is treated soil, and at least a part of the treated soil is added to the second contaminated soil containing the second contaminant. In this case, the activity of the decomposing bacteria in the treated soil has already been sufficiently increased, or a large amount of the degrading enzyme has been generated, so that the treated soil was added. In the second contaminated soil, the microbial decomposition of the second contaminant proceeds promptly immediately after the addition.
[0024]
Therefore, as compared with the case of using microorganisms in the second contaminated soil, it is possible to terminate the microbial decomposition in a shorter time because there is no need to wait for the growth of the microorganisms, improvement of the decomposition activity or generation of the degrading enzyme. It becomes.
[0025]
Since the second contaminated soil contains the second contaminant to be decomposed by microorganisms, the microorganisms proliferate in the second contaminated soil to which the treated soil is added, or the degrading activity is increased. Needless to say, this is improved.
[0026]
In the invention according to
[0027]
Next, of the plurality of soils to be treated, the contaminants contained in the arbitrarily selected soil to be treated are decomposed by microorganisms in the soil to be treated, and the soil to be treated which has been decomposed to a desired degree is treated. Soiled soil.
[0028]
During the decomposition treatment, similarly to the first aspect of the present invention, it is desirable that aeration is performed as necessary and that the activity and growth of microorganisms are promoted by appropriately adding nutrients and water.
[0029]
The contaminants to be treated are the same as the above-mentioned first contaminants, and thus the description thereof is omitted here. Regarding the microorganisms used as the treated soil, there are cases where the microorganisms originally exist as soil bacteria. It is the same as in
[0030]
Next, at least a part of the treated soil described above is added to the untreated soil that has not been subjected to the microbial decomposition treatment among the plurality of treatment target soils described above. When the treated soil is added to the untreated soil, it is desirable to perform appropriate stirring and mixing in order to uniformly disperse the treated soil in the untreated soil.
[0031]
Next, the above-described process of adding the treated soil to the untreated soil is repeatedly performed until all the soil to be treated becomes the treated soil.
[0032]
When the contaminants contained in the soil to be treated arbitrarily selected first are decomposed by the microorganisms in the soil to be treated, the decomposing bacteria as microorganisms cause other substances in the process of decomposing the contaminants. The number of cells increases more than soil bacteria, and it becomes a dominant species in the soil to be treated.
[0033]
Therefore, if the soil to be treated in which the decomposition of the contaminants has progressed to a desired degree is treated soil, and at least a part of the treated soil is added to the untreated soil, at the stage of the addition, Since the activity of degrading bacteria in the soil is already sufficiently high or a large amount of degrading enzyme has been generated, in untreated soil to which such treated soil has been added, microbial degradation of pollutants immediately after addition Proceed quickly from.
[0034]
Therefore, compared to the case of using microorganisms in untreated soil, it is possible to terminate microbial degradation in a shorter time, because there is no need to wait for the growth of the microorganisms, improvement of the degradation activity or generation of the degrading enzyme. .
[0035]
In addition, since the untreated soil contains pollutants to be decomposed by microorganisms, it is needless to say that the microorganisms grow in the untreated soil to which the treated soil is added, or the decomposition activity is improved. .
[0036]
Here, in the process of adding the treated soil to the untreated soil, the timing of addition of the treated soil to a plurality of untreated soils is arbitrary, and they may be added at the same time, or may be added at staggered times. You may.
[0037]
In the former case, it is possible to shorten the period of the microbial decomposition as a whole, and in the latter case, the curing after addition such as stirring, aeration, addition of nutrients, and water replenishment can be performed sequentially, so that the microorganism It is possible to simplify the curing equipment required for decomposition.
[0038]
In addition, as the process of adding the treated soil to the untreated soil is repeated, the untreated soil decreases one by one, and the treated soil increases one by one. Which one to add to the untreated soil is optional, it is desirable to use the treated soil immediately after the microbial treatment is completed, but the treated soil that has been first microbial treated is continuously cured, This may be used.
[0039]
The place where the contaminated soil is generated and the place where the microbial decomposition treatment is performed are not particularly limited, and the microbial decomposition treatment may be performed adjacent to the contaminated soil area where the contaminated soil is excavated. The contaminated soil may be transported to a location distant from the soil area, and then subjected to a microbial decomposition treatment.
[0040]
In the invention according to
[0041]
Next, contaminants contained in the soil to be treated are decomposed by microorganisms in the soil to be treated, and the soil to be treated that has been decomposed to a desired degree is treated soil.
[0042]
During the decomposition treatment, similarly to the first aspect of the present invention, it is desirable that aeration is performed as necessary and that the activity and growth of microorganisms are promoted by appropriately adding nutrients and water.
[0043]
The contaminants to be treated are the same as the above-mentioned first contaminants, and thus the description thereof is omitted here. Regarding the microorganisms used as the treated soil, there are cases where the microorganisms originally exist as soil bacteria. It is the same as in
[0044]
Next, at least a part of the treated soil described above is added to the soil to be treated newly excavated as the contaminated soil from the contaminated soil region. When the treated soil is added to the soil to be treated, it is desirable to appropriately mix and mix the treated soil to uniformly disperse the treated soil in the other soil to be treated.
[0045]
The process of adding the treated soil to the soil to be treated is repeatedly performed until all the soil to be treated excavated from the contaminated soil region becomes the treated soil.
[0046]
In this way, in the process of decomposing contaminants, the number of decomposing bacteria as microorganisms increases compared to other soil bacteria, and becomes a dominant species in the soil to be treated.
[0047]
Therefore, the soil to be treated in which the decomposition of the contaminants has progressed to a desired degree is regarded as treated soil, and at least a part of the treated soil is added to the treated soil newly excavated as contaminated soil from the contaminated soil region. By doing so, the activity of the decomposing bacteria in the treated soil is already sufficiently high or a large amount of degrading enzyme is generated at the stage of the addition. In the target soil, the microbial decomposition of the pollutant proceeds promptly immediately after the addition.
[0048]
Therefore, as compared with the case of using microorganisms in the soil to be treated, there is no need to wait for the growth of the microorganisms, the improvement of the decomposition activity, or the generation of the degrading enzyme, so that the microbial decomposition can be completed in a shorter time. .
[0049]
Since the soil to be treated contains a pollutant to be decomposed by microorganisms, it goes without saying that the microorganisms proliferate in the soil to be treated to which the treated soil is added, or the decomposition activity is improved. .
[0050]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for purifying contaminated soil by microorganisms according to the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to components and the like that are substantially the same as those in the related art, and description thereof is omitted.
[0051]
(1st Embodiment)
[0052]
FIG. 1 is a flowchart showing a procedure of a method for purifying contaminated soil by microorganisms according to the present embodiment. As shown in the figure, in the method of purifying contaminated soil by microorganisms according to the present embodiment, first, as shown in FIG. Is the first contaminated soil (step 101).
[0053]
The contaminated
[0054]
Next, as shown in FIG. 2B, a first contaminant, for example, oil contained in the contaminated
[0055]
During the decomposition treatment, it is desirable to promote ventilation and activity of the decomposing
[0056]
Next, in order to maintain the decomposition activity of the decomposing
[0057]
Next, the treated
[0058]
It is conceivable that the added amount of the treated
[0059]
When the treated
[0060]
The second contaminant contained in the contaminated
[0061]
As described above, when the first contaminant contained in the contaminated soil is microbially decomposed by the decomposing
[0062]
Therefore, the contaminated
[0063]
As described above, according to the method for purifying contaminated soil by microorganisms according to the present embodiment, the decomposing
[0064]
Therefore, compared with the case of using the microorganisms in the contaminated
[0065]
The second contaminant contained in the contaminated
[0066]
Next, the effects of the method for purifying contaminated soil by microorganisms according to the present embodiment were confirmed by a laboratory test, and the outline of the experiment and the results will be described below.
[0067]
First, the first contaminant was C heavy oil, and the contaminated soil contaminated with the C heavy oil was first contaminated soil, which was decomposed with oil-decomposing bacteria to prepare a treated soil. This treated soil had an oil concentration of 1,200 mg / kg · dry (a value measured by a Soxtec extractor). Similarly to the first pollutant, the second pollutant was C heavy oil, and the contaminated soil contaminated with the C heavy oil was prepared as the second contaminated soil. The second contaminated soil had an oil concentration of 3,900 mg / kg · dry (a value measured by a Soxtec extraction device). The treated soil and the second contaminated soil were sieved through a 2 mm sieve to make the particle size of the soil particles uniform.
[0068]
Next, 10 g of Hyponex (trade name), which is a nutrient salt, was added so that the ratio (C / N ratio) between the amount of carbon (TC) and the amount of nitrogen (TN) of the oil-contaminated soil was about 20. 0.1 g of the solution was added to the contaminated soil at the same time, and a sufficient amount of distilled water was added.
[0069]
Here, the added amount of the treated soil was 5% by weight and 8% by weight. In addition, during the decomposition treatment, the second contaminated soil was sufficiently stirred once a week, the reduced water was replenished, and ventilation was performed with an air compressor.
[0070]
Since carbon dioxide is generated during oil cracking, sodium hydroxide was also added to the second contaminated soil once a week as a reagent for detecting carbon dioxide.
[0071]
As a measuring method, the carbon dioxide gas absorbed in the sodium hydroxide was measured once a week with a TOC meter, and the oil content by normal hexane extraction was measured once a month with a Soxtec device.
[0072]
Table 1 and FIG. 4 show the relationship between the number of days elapsed since the addition of the treated soil and the amount of generated carbon dioxide.
[0073]
[Table 1]
[0074]
As can be seen from these charts, at one week after the start of the test (at the time of addition of the treated soil), there was no difference in the amount of carbon dioxide generated by the presence or absence of the treated soil, but two weeks. Later, compared with the case where the treated soil was not added, when the treated soil of 8 wt% was added, the amount of carbon dioxide gas generated increased by about 10%, and the oil decomposition rate tended to increase due to the addition of the treated soil. confirmed.
[0075]
FIG. 5 shows the oil content one month after the addition of the treated soil.
[0076]
As can be seen from the figure, one month after the start of the test, when the treated soil was not added, the oil content was 3,900 mg / kg · dry and the decomposition treatment had not progressed at all, whereas the oil content was 8% by weight. It can be seen that the oil content of the soil to which the treated soil was added was reduced to 3,200 mg / kg · dry. This corresponds to a reduction of about 80% in proportion, and it was confirmed that the addition of the treated soil accelerated the oil decomposition rate in the initial stage.
[0077]
That is, considering the above-mentioned results of the amount of generated carbon dioxide gas, adding 8% by weight of the treated soil can accelerate the speed of the microbial decomposition treatment by about 20%. Otherwise, if 90 days are required, the number of processing days can be reduced to 72 days.
[0078]
(2nd Embodiment)
[0079]
Next, a second embodiment will be described. In addition, the same reference numerals are given to components and the like that are substantially the same as those in the first embodiment, and description thereof is omitted.
[0080]
FIG. 6 is a flowchart showing the procedure of the method for purifying contaminated soil by microorganisms according to the present embodiment. As shown in the figure, in the method for purifying contaminated soil by microorganisms according to the present embodiment, first, as shown in FIG. 7A, contaminated soil spreading to the contaminated
[0081]
The
[0082]
Next, as shown in FIG. 7B, of the plurality of soils to be treated 22a to 22e, contaminants, for example, oil contained in the soil to be treated 22a, which is arbitrarily selected as the soil to be treated, are removed. Microbial degradation is performed by the degrading
[0083]
During the decomposition treatment, it is desirable to promote ventilation and activity of the decomposing
[0084]
Next, as shown in FIG. 8A, the treated
[0085]
As in the first embodiment, the amount of the treated
[0086]
When adding the treated
[0087]
When the contaminants contained in the soil to be treated are microbial-decomposed using the
[0088]
Therefore, if the
[0089]
Next, the treated
[0090]
Next, the processed
[0091]
As described above, according to the method for purifying contaminated soil by microorganisms according to the present embodiment, the degrading
[0092]
Therefore, compared with the case of using the microorganisms in the
[0093]
In the present embodiment, the contaminated
[0094]
For example, a plant that performs microbial decomposition treatment is installed in a predetermined area, and contaminated soil excavated from a contaminated soil area is transported and carried into the plant, and then the contaminated soil is divided into a plurality of soils to be treated. Then, the above-described microorganism division processing may be performed.
[0095]
In the present embodiment, a part of the treated
[0096]
(Third embodiment)
[0097]
Next, a third embodiment will be described. Note that the same reference numerals are given to components and the like that are substantially the same as those in the above-described embodiments, and description thereof will be omitted.
[0098]
FIG. 9 is a flowchart illustrating a procedure of the method for purifying contaminated soil by microorganisms according to the present embodiment. As shown in the figure, in the method of purifying contaminated soil by microorganisms according to the present embodiment, first, as shown in FIG. 10A, a contaminated
[0099]
The
[0100]
Next, the contaminants, for example, oil contained in the soil to be treated 32a are microbial-degraded by the decomposing
[0101]
During the decomposition treatment, it is desirable to promote ventilation and activity of the decomposing
[0102]
Next, as shown in FIG. 10B, at least a part of the above-described treated
[0103]
Similar to the first embodiment, the amount of the treated
[0104]
When the treated
[0105]
In this manner, in the process of decomposing contaminants, the number of the decomposing
[0106]
Therefore, if the
[0107]
Next, as shown in FIG. 10C, at least a part of the above-described treated
[0108]
Hereinafter, the step of adding the treated soil to the treated soil is repeatedly performed until all the treated soil excavated from the contaminated
[0109]
As described above, according to the method for purifying contaminated soil by microorganisms according to the present embodiment, the decomposing
[0110]
Therefore, as compared with the case of using microorganisms in the
[0111]
【The invention's effect】
As described above, according to the method for purifying contaminated soil by microorganisms according to the present invention, microorganisms capable of decomposing contaminants become dominant species in the treated soil and have sufficiently high decomposition activity or a large amount of decomposition. Since the enzyme has been generated, if the treated soil is added to the second contaminated soil or the soil to be treated, the microbial decomposition of the contaminant proceeds promptly immediately after the addition.
[0112]
Therefore, compared to the case where microorganisms are directly added to the second contaminated soil or the soil to be treated, the microbial degradation can be completed in a shorter time because there is no need to wait for the growth of microorganisms, improvement of decomposition activity, or generation of degrading enzymes. It is possible to do.
[0113]
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of a method for purifying contaminated soil by microorganisms according to a first embodiment.
FIG. 2 is a work diagram showing a state of treating contaminated soil using the method for purifying contaminated soil by microorganisms according to the first embodiment.
FIG. 3 is a work diagram showing a state where the contaminated soil is treated using the method for purifying contaminated soil by microorganisms according to the first embodiment.
FIG. 4 is a graph showing the result of confirming the operation of the method for purifying contaminated soil by microorganisms according to the first embodiment by a laboratory test.
FIG. 5 is a graph showing the result of confirming the operation of the method of purifying contaminated soil by microorganisms according to the first embodiment by a laboratory test.
FIG. 6 is a flowchart showing a procedure of a method for purifying contaminated soil by microorganisms according to the second embodiment.
FIG. 7 is a work diagram showing a state of treating contaminated soil using the method for purifying contaminated soil by microorganisms according to the second embodiment.
FIG. 8 is a work diagram showing a state in which contaminated soil is treated using the method for purifying contaminated soil by microorganisms according to the second embodiment.
FIG. 9 is a flowchart showing a procedure of a method for purifying contaminated soil by microorganisms according to the third embodiment.
FIG. 10 is a work diagram showing a state of treating contaminated soil using the method for purifying contaminated soil by microorganisms according to the third embodiment.
[Explanation of symbols]
2 First contaminated soil
3 decomposing bacteria (microorganisms)
4 treated soil
12 Second contaminated soil
22a-22e Soil to be treated
24a-24e treated soil
32a-32c Processing target soil
34a-34c treated soil
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002349557A JP2004181314A (en) | 2002-12-02 | 2002-12-02 | Method for decontaminating contaminated soil by microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002349557A JP2004181314A (en) | 2002-12-02 | 2002-12-02 | Method for decontaminating contaminated soil by microorganism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004181314A true JP2004181314A (en) | 2004-07-02 |
Family
ID=32752059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002349557A Pending JP2004181314A (en) | 2002-12-02 | 2002-12-02 | Method for decontaminating contaminated soil by microorganism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004181314A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007003644A1 (en) | 2007-01-21 | 2008-07-24 | Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung Stiftung des öffentlichen Rechts | Bioremediation process for the accelerated biodegradation of petroleum hydrocarbons in the polar sea ice-covered regions and bacterial and enzyme mixtures as a means of carrying out the process |
EP2067540A1 (en) | 2007-11-29 | 2009-06-10 | Cleanfield ApS | Underground in situ bioremediation using site-specific microorganisms |
CN104174646A (en) * | 2014-08-29 | 2014-12-03 | 东南大学 | Method and system for purifying soil with pesticide degradation-resistant organic pollutants by using microbial fuel cell |
-
2002
- 2002-12-02 JP JP2002349557A patent/JP2004181314A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007003644A1 (en) | 2007-01-21 | 2008-07-24 | Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung Stiftung des öffentlichen Rechts | Bioremediation process for the accelerated biodegradation of petroleum hydrocarbons in the polar sea ice-covered regions and bacterial and enzyme mixtures as a means of carrying out the process |
US8444962B2 (en) | 2007-01-21 | 2013-05-21 | Stiftung Alfred-Wegener-Insitut fuer Polar-und Meeresforschung | Bioremediation method for accelerated biological decomposition of petroleum hydrocarbons in sea ice-covered polar regions, and bacteria and enzyme mixtures as agents for carrying out said method |
US8968718B2 (en) | 2007-01-21 | 2015-03-03 | Alfred-Wegener-Institut Helmholtz-Zentrum Fuer Polar-Und Meeresforschung | Bioremediation method for accelerated biological decomposition of petroleum hydrocarbons in sea ice-covered polar regions, and bacteria and enzyme mixtures as agents for carrying out said method |
EP2067540A1 (en) | 2007-11-29 | 2009-06-10 | Cleanfield ApS | Underground in situ bioremediation using site-specific microorganisms |
CN104174646A (en) * | 2014-08-29 | 2014-12-03 | 东南大学 | Method and system for purifying soil with pesticide degradation-resistant organic pollutants by using microbial fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Morillo et al. | Advanced technologies for the remediation of pesticide-contaminated soils | |
US6423531B1 (en) | Advanced organic-inorganic solid-chemical composition and methods for anaerobic bioremediation | |
Nano et al. | Combined slurry and solid-phase bioremediation of diesel contaminated soils | |
Ellis et al. | Bioremediation of oil contaminated land | |
Maheshwari et al. | To decontaminate wastewater employing bioremediation technologies | |
Liu et al. | Remediation of weathered diesel-oil contaminated soils using biopile systems: An amendment selection and pilot-scale study | |
Hassan et al. | Bioaugmentation-assisted bioremediation and biodegradation mechanisms for PCB in contaminated environments: A review on sustainable clean-up technologies | |
JP2006198476A (en) | Method for making contaminated deposit harmless | |
Srivastava | Bioremediation technology: a greener and sustainable approach for restoration of environmental pollution | |
Thakur et al. | Polycyclic Aromatic Hydrocarbon (PAH)–Contaminated Soil Decontamination Through Vermiremediation | |
JP4767472B2 (en) | Purification method of contaminated soil by microorganisms | |
JP2004181314A (en) | Method for decontaminating contaminated soil by microorganism | |
JP2005021748A (en) | Wall for preventing diffusion of volatile organic compound, method for constructing wall, and method for purifying volatile organic compound | |
JP2879808B2 (en) | How to clean contaminated soil | |
Olatunji et al. | Comparison of bioremediation capabilities of poultry droppings and avocado pear seed cake in petroleum polluted soil | |
JP2006007182A (en) | In situ bioremediation construction method accompanied by preculture, and system therefor | |
JP2004025158A (en) | Cleaning method of polluted stratum and apparatus therefor | |
JP2003164850A (en) | Method and apparatus for bio-remedying contaminated soil or groundwater | |
CN113003910A (en) | Method for remodeling aerobic interface of polluted river and lake bottom mud-water | |
JP3374228B2 (en) | How to restore contaminated groundwater and soil | |
Harmsen | Bioremediation of polluted sediment: a matter of time or effort | |
Kujat | A comparison of popular remedial technologies for petroleum contaminated soils from leaking underground storage tanks | |
Rana et al. | Microbial assisted restoration of contaminated agricultural soil for sustainable environment | |
JP3961193B2 (en) | Purification method of contaminated soil | |
Rao et al. | Clean up Technology: Bioremediation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080303 |