JP2004180395A - Disconnection detector for voltage detection line of capacitor device - Google Patents

Disconnection detector for voltage detection line of capacitor device Download PDF

Info

Publication number
JP2004180395A
JP2004180395A JP2002342214A JP2002342214A JP2004180395A JP 2004180395 A JP2004180395 A JP 2004180395A JP 2002342214 A JP2002342214 A JP 2002342214A JP 2002342214 A JP2002342214 A JP 2002342214A JP 2004180395 A JP2004180395 A JP 2004180395A
Authority
JP
Japan
Prior art keywords
voltage
cell
voltage detection
detection line
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342214A
Other languages
Japanese (ja)
Other versions
JP3839397B2 (en
Inventor
Shinji Kato
真志 加藤
Koichi Yamamoto
康一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002342214A priority Critical patent/JP3839397B2/en
Publication of JP2004180395A publication Critical patent/JP2004180395A/en
Application granted granted Critical
Publication of JP3839397B2 publication Critical patent/JP3839397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily detect presence of disconnection in a voltage detection line while restraining complexity of device configuration. <P>SOLUTION: A central processing unit 56 detects the cell voltage of each capacitor cell 41 of a capacitor 13 corresponding to a control command inputted from a control device 17 in starting a vehicle or the like. A switching device 52b of a bypass circuit 52 connected with each capacitor cell 41 in parallel is set to an ON state as bypass processing. The cell voltage is detected upon execution of the bypass processing, a variation in a detected value of the cell voltage is calculated just before/ after the bypass processing is executed. It is determined whether or not the variation in the calculated cell voltage is larger than a prescribed determination value. If a determination result is "NO", a voltage detection line 42 is determined as normal. If the determination result is "YES", the voltage detection line 42 is determined as abnormal and as the voltage detection line 42 being disconnected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電装置の電圧検出線の断線検知装置に関する。
【0002】
【従来の技術】
従来、例えば二次電池等からなる複数の単位セルを直列に接続してなる組電池(バッテリ)において、各単位セルに並列に接続されたセル電圧検出回路およびバイパス回路を備え、各セル電圧検出回路により検出される端子間電圧に応じて各単位セルが満充電状態か否かを判定し、満充電状態であると判定されたセルへの充電電流をバイパス回路へ通電させることで各単位セルの端子間電圧のばらつきを調整すると共に、検出される端子間電圧に応じて各単位セルへの充電電流を設定するバッテリの充電装置が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平4−299032号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来技術の一例に係るバッテリの充電装置において、各セルの端子間電圧を検出するセル電圧検出回路は、各セルの入出力端子に接続された電圧検出線を介して各セルに並列に接続されている。ここで、例えば電圧検出線に断線が生じると、各セルの端子間電圧を正確に検出することができなくなるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、例えば断線検知用の装置等を新たに備えることで装置構成が複雑化することを抑制しつつ、電圧検出線の断線の有無を容易に検知することが可能な蓄電装置の電圧検出線の断線検知装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の蓄電装置の電圧検出線の断線検知装置は、複数のセル(例えば、実施の形態でのキャパシタセル41)が直列に接続されてなる蓄電装置(例えば、実施の形態でのキャパシタ13)の各前記セルの端子(例えば、実施の形態での正極側端子41a、負極側端子41b)と、各前記セルの端子間電圧を検出するセル電圧検出手段(例えば、実施の形態でのセル電圧検出回路51)とを接続する蓄電装置の電圧検出線の断線検知装置であって、前記電圧検出線を介して各前記セルに並列に接続され、バイパス抵抗(例えば、実施の形態でのバイパス抵抗52a)および該バイパス抵抗への通電のオン/オフを切替可能なスイッチング素子(例えば、実施の形態でのスイッチング素子52b)を具備するバイパス回路(例えば、実施の形態でのバイパス回路52)と、前記電圧検出線を介して各前記セルに並列に接続され、所定の基準電圧(例えば、実施の形態での回生制限閾電圧VR)を生成するための抵抗(例えば、実施の形態での第1抵抗55aおよび第2抵抗55c)を具備する基準電圧生成回路(例えば、実施の形態での基準電圧生成回路55)と、前記スイッチング素子により前記バイパス抵抗への通電をオンとする通電手段(例えば、実施の形態でのステップS02)と、前記スイッチング素子により前記バイパス抵抗への通電のオン/オフが切り替えられる際に、前記バイパス抵抗への通電がオフであるときに前記セル電圧検出手段により検出される前記端子間電圧と、前記バイパス抵抗への通電がオンであるときに前記セル電圧検出手段により検出される前記端子間電圧との差の変化の有無に応じて前記電圧検出線の断線の有無を判定する判定手段(例えば、実施の形態でのステップS05)とを備えることを特徴としている。
【0006】
上記構成の蓄電装置の電圧検出線の断線検知装置によれば、互いに接続されたセル同士の間(つまり、一方のセルの入出力端子と他方のセルの入出力端子との接点、あるいは、一方のセルの入出力端子と他方のセルの入出力端子とを接続する接続線等)から分岐するようにして設けられた電圧検出線は、各セルの端子間電圧を検出するセル電圧検出手段に接続されている。ここで、適宜のセルの端子間電圧を、このセルに並列に接続されたセル電圧検出手段によって検出する際に、電圧検出線が正常であれば、スイッチング素子のオン/オフに関わらず、同等の端子間電圧が検出される。
一方、電圧検出線に断線が生じると、スイッチング素子のオン/オフに応じて検出結果に差異が生じる。すなわち、電圧検出線に断線が生じると、この電圧検出線に接続されていた、隣り合うセルの各端子間電圧が合成された電圧が検出されるようになる。ここで、スイッチング素子がオフのときには、合成された電圧が、隣り合う各セルに並列に接続されていた各基準電圧生成回路の抵抗によって分圧された値が検出され、スイッチング素子がオンのときには、合成された電圧が、隣り合う各セルに並列に接続されていた各基準電圧生成回路の抵抗およびバイパス抵抗によって分圧された値が検出される。
これにより、スイッチング素子のオン/オフに応じて、セル電圧検出手段の検出結果が変化する場合には、電圧検出線に断線が生じていると判断することができる。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態に係る蓄電装置の電圧検出線の断線検知装置について添付図面を参照しながら説明する。
本実施の形態による蓄電装置の電圧検出線の断線検知装置10は、例えば燃料電池車両やハイブリッド車両等の車両に搭載されており、例えば図1に示すように、燃料電池11と、電流・電圧制御器12と、キャパシタ13と、出力制御器14と、走行用モータ15と、保護装置16と、制御装置17と、電流センサ21と、電圧センサ22と、キャパシタ温度センサ23と、アクセル開度センサ31と、ブレーキスイッチ32と、IGスイッチ33とを備えて構成される燃料電池車両においては、例えば図2に示すように、キャパシタ13と、保護装置16と、制御装置17とを備えて構成されている。
【0008】
燃料電池11は、陽イオン交換膜等からなる固体高分子電解質膜を、アノード触媒およびガス拡散層からなる燃料極(アノード)と、カソード触媒およびガス拡散層からなる酸素極(カソード)とで挟持してなる電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セルを多数組積層して構成されている。
燃料電池11のアノードには、高圧の水素タンクによって水素からなる燃料ガス(反応ガス)が供給され、アノードのアノード触媒上で触媒反応によりイオン化された水素は、適度に加湿された固体高分子電解質膜を介してカソードへと移動し、この移動に伴って発生する電子が外部回路に取り出され、直流の電気エネルギーとして利用される。カソードには、例えば酸素を含む酸化剤ガス(反応ガス)である空気がエアーコンプレッサによって供給され、このカソードにおいて、水素イオン、電子及び酸素が反応して水が生成される。
【0009】
燃料電池11から取り出される発電電流は電流・電圧制御器12に入力されており、この電流・電圧制御器12には、蓄電装置をなす、例えば電気二重層コンデンサや電解コンデンサ等からなるキャパシタ13が接続されている。
そして、燃料電池11とキャパシタ13は、出力制御器14を介して、電気的負荷である走行用モータ15に対して並列に接続されている。
電流・電圧制御器12は、例えばDC−DCチョッパ等を備えて構成されており、制御装置17から出力される電流指令値つまり燃料電池11に対する発電指令に基づいて、燃料電池11から取り出される発電電流の電流値を制御する。
【0010】
出力制御器14は、例えばパルス幅変調(PWM)によるPWMインバータを備えており、制御装置17から出力される制御指令に応じて走行用モータ15の駆動および回生動作を制御する。例えば走行用モータ15の駆動時には、制御装置17から出力されるトルク指令に基づき、電流・電圧制御器12およびキャパシタ13から出力される直流電力を3相交流電力に変換して走行用モータ15へ供給する。一方、走行用モータ15の回生時には、走行用モータ15から出力される3相交流電力を直流電力に変換し、キャパシタ13を充電する。
なお、走行用モータ15は、例えば界磁として永久磁石を利用する永久磁石式の3相交流同期モータとされており、出力制御器14から供給される3相交流電力により駆動制御されると共に、車両の減速時に駆動輪側から走行用モータ15側に駆動力が伝達されると、走行用モータ15は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。
【0011】
キャパシタ13は、例えば図2に示すように、電気二重層コンデンサや電解コンデンサ等からなる複数のキャパシタセル41,…,41が直列に接続されて構成されており、キャパシタ13には各キャパシタセル41の入出力端子に接続された電圧検出線42,42を介して保護装置16が接続されている。
保護装置16は、例えば図2に示すように、各キャパシタセル41の端子間電圧(セル電圧)を検出するセル電圧検出回路51と、各キャパシタセル41へ通電される充電電流をバイパスし、各キャパシタセル41を放電可能なバイパス回路52と、バイパス制御部53と、セル電圧判定部54と、基準電圧生成回路55と、中央処理部(CPU)56とを備えて構成され、セル電圧検出回路51およびバイパス回路52および基準電圧生成回路55は、電圧検出線42,42を介して各キャパシタセル41に並列に接続されている。
【0012】
バイパス回路52は、例えば、バイパス抵抗52a(抵抗値Rb)およびバイパス抵抗52aへの通電のオン/オフを切替可能なスイッチング素子52bとしてのNPNトランジスタを備えて構成されており、NPNトランジスタのエミッタは対応するキャパシタセル41の負極側端子41bに接続され、コレクタはバイパス抵抗52aを介して対応するキャパシタセル41の正極側端子41aに接続されている。
バイパス制御部53は、例えばORゲート等を備えて構成され、バイパス回路52のスイッチング素子52bのオン/オフ動作を制御しており、セル電圧判定部54または中央処理部56から論理「ハイ」レベルの信号が入力されると、NPNトランジスタをオン状態に設定する論理「ハイ」レベルのオン信号をNPNトランジスタのベースへ入力するようになっている。
【0013】
セル電圧判定部54は、例えばコンパレータ等を備えて構成され、基準電圧生成回路55にて生成される所定の基準電圧、例えば所定の回生制限閾電圧VR(例えば、VR=2.5V)と、キャパシタセル41の端子間電圧(セル電圧)Vcとを比較し、この比較結果に応じた信号をスイッチング素子52bのベースへ入力する。例えば、コンパレータの非反転入力端子へ入力されたセル電圧が、コンパレータの反転入力端子へ入力された回生制限閾電圧VRを超えている場合にはスイッチング素子52bをオン状態に設定する論理「ハイ」レベルのオン信号をスイッチング素子52bのベースへ入力する。これにより、対応するキャパシタセル41はバイパス抵抗52aを介して放電すると共に、このキャパシタセル41へ通電される充電電流はバイパス抵抗52aへバイパスされるようになっている。
【0014】
基準電圧生成回路55は、例えば対応するキャパシタセル41の正極側端子41aに接続された第1抵抗55a(抵抗値r1)と、第1抵抗55aとキャパシタセル41の負極側端子41bとを接続するツェナーダイオード55bおよび第2抵抗55c(抵抗値r2)と備えて構成され、ツェナーダイオード55bおよび第2抵抗55cは互いに並列に接続されている。そして、ツェナーダイオード55bのカソードは、セル電圧判定部54のコンパレータの反転入力端子に接続されており、第1抵抗55aとツェナーダイオード55bによって生成される所定の基準電圧がコンパレータの反転入力端子に入力されている。
中央処理部56は、所定のタイミング(例えば、車両の作動開始時等)で制御装置17から入力される制御指令に応じて、バイパス回路52のスイッチング素子52bをオン状態に設定する論理「ハイ」レベルのオン信号をバイパス制御部53へ入力する。さらに、中央処理部56は、論理「ハイ」レベルのオン信号をバイパス制御部53へ入力する前後においてセル電圧検出回路51から出力されるセル電圧の検出結果を比較し、この比較結果に基づいて電圧検出線42に断線が生じているか否かを判定する。
【0015】
すなわち、セル電圧検出回路51によって対応するキャパシタセル41のセル電圧を検出する場合に、キャパシタセル41の正極側端子41aおよび負極側端子41bに接続された電圧検出線42,42が正常であれば、セル電圧検出回路51の検出対象とされるキャパシタセル41の端子間電圧そのものが、そのまま検出されるので、スイッチング素子52bのオン/オフに関わらず、同等のセル電圧が検出される。
一方、電圧検出線42に断線が生じると、スイッチング素子52bのオン/オフに応じてセル電圧の検出結果に差異が生じる。すなわち、電圧検出線42に断線が生じると、例えば図3(a),(b)に示すように、この電圧検出線42に接続されていた、隣り合うキャパシタセル41−1,41−2の各セル電圧V1,V2が合成された電圧(V1+V2)が検出されるようになる。
【0016】
例えば図3(a)に示すように、スイッチング素子52bがオフのときには、合成された電圧(V1+V2)が、隣り合う各キャパシタセル41−1,41−2に並列に接続されていた各基準電圧生成回路55,55の抵抗値R1,R2によって分圧された値VOFF、例えば下記数式(1)におけるVOFFが検出される。
また、例えば図3(b)に示すように、スイッチング素子52bがオンのときには、合成された電圧(V1+V2)が、隣り合う各キャパシタセル41−1,41−2に並列に接続されていた各基準電圧生成回路55,55の抵抗値R1,R2およびバイパス抵抗52aの抵抗値Rbによって分圧された値VON、例えば下記数式(2)におけるVONが検出される。
なお、各基準電圧生成回路55,55の抵抗値R1,R2は、例えば直列に接続された第1抵抗55aと第2抵抗55cの合成抵抗(r1+r2)とされている。
これにより、スイッチング素子52bのオン/オフに応じて、セル電圧検出回路51の検出結果が変化する場合には、電圧検出線42に断線が生じていると判断することができる。
【0017】
【数1】

Figure 2004180395
【0018】
【数2】
Figure 2004180395
【0019】
制御装置17は、例えば、車両の運転状態や、燃料電池11のアノードに供給される反応ガスに含まれる水素の濃度や、燃料電池11のアノードから排出される排出ガスに含まれる水素の濃度や、燃料電池11の発電状態、例えば各複数の燃料電池セルの出力電圧や、燃料電池11から取り出される発電電流等に基づき、エアーコンプレッサおよび水素タンクから燃料電池11へ供給される各反応ガスの流量に対する指令値を出力し、燃料電池11の発電状態を制御すると共に、燃料電池11に対する発電指令を電流・電圧制御器12へ出力し、燃料電池11から取り出される発電電流の電流値を制御する。
【0020】
また、制御装置17は、出力制御器14に具備されたPWMインバータの電力変換動作を制御しており、例えば走行用モータ15の駆動時においては、運転者によるアクセルペダルの踏み込み操作量等に係るアクセル開度の信号に基づいてトルク指令を算出する。そして、制御装置17が、このトルク指令を出力制御器14に入力することで、トルク指令に応じたパルス幅変調信号がPWMインバータに入力され、要求されたトルクを発生させるための各相電流が走行用モータ15の各相へと出力される。
さらに、制御装置17は、キャパシタ13の状態、例えば保護装置16の各セル電圧検出回路51から出力される各キャパシタセル41のセル電圧の検出結果や、例えばキャパシタ13の温度や、複数のキャパシタセル41,…,41のセル電圧の和である総電圧の検出値に基づき、走行用モータ15の回生動作を制御する。
【0021】
さらに、制御装置17は、所定のタイミング(例えば、車両の作動開始時等)で、複数のキャパシタセル41,…,41に対して順次、各キャパシタセル41に対応するバイパス回路52のスイッチング素子52bをオン状態に設定することを指示する制御指令を中央処理部56へ出力し、電圧検出線42の断線の有無を検知する処理を開始する。
このため、制御装置17には、例えば、燃料電池11から取り出される発電電流の電流値を検出する電流センサ21から出力される検出信号と、セル電圧の総和である総電圧を検出する電圧センサ22から出力される検出信号と、キャパシタ13の温度を検出するキャパシタ温度センサ23から出力される検出信号と、アクセル開度センサ31から出力される検出信号と、運転者によるブレーキ操作の有無を検知するブレーキスイッチ32から出力される信号と、車両の作動を指示するIGスイッチ33から出力される信号とが入力されている。
【0022】
本実施の形態による蓄電装置の電圧検出線の断線検知装置10は上記構成を備えており、次に、この蓄電装置の電圧検出線の断線検知装置10の動作について添付図面を参照しながら説明する。
【0023】
先ず、例えば図2に示すステップS01においては、車両の作動開始時等に制御装置17から入力される制御指令に応じて、バイパス処理の実行直前におけるキャパシタ13の各キャパシタセル41のセル電圧を検出する。
次に、ステップS02においては、バイパス処理として、各キャパシタセル41に並列に接続されたバイパス回路52のスイッチング素子52bをオン状態に設定する論理「ハイ」レベルの信号を出力する。
次に、ステップS03においては、バイパス処理の実行直後におけるキャパシタ13の各キャパシタセル41のセル電圧を検出する。
【0024】
次に、ステップS04においては、バイパス処理の実行直前と実行直後におけるセル電圧の検出値の偏差を算出する。
次に、ステップS05においては、算出したセル電圧の偏差が所定判定値よりも大きいか否かを判定する。
この判定結果が「NO」の場合には、ステップS06に進む。
一方、この判定結果が「YES」の場合には、ステップS07に進む。
ステップS06においては、電圧検出線42が正常状態であると判定し、一連の処理を終了する。
ステップS07においては、電圧検出線42が異常状態であり、電圧検出線42の断線が生じていると判定し、一連の処理を終了する。
【0025】
上述したように、本実施の形態による蓄電装置の電圧検出線の断線検知装置10によれば、互いに直列接続された複数のキャパシタセル41,…,41同士の間のセル電圧のばらつきを低減し、各セル電圧を均等化するために設けられたバイパス回路52に対して、適宜のタイミングで通電のオン/オフを切り替え、この切換処理の前後においてセル電圧検出回路51により検出されるセル電圧の検出結果を比較することにより、例えば専用の検査装置等を新たに備える必要無しに、電圧検出線42が正常であるか否かを容易に検知することができる。
【0026】
なお、上述した実施の形態においては、走行用モータ15と電気エネルギーの授受を行う蓄電装置をキャパシタ13としたが、これに限定されず、例えばリチウムイオン電池等の二次電池からなる複数のセルを直列に接続してなる組電池等であってもよい。
【0027】
【発明の効果】
以上説明したように、請求項1に記載の本発明の蓄電装置の電圧検出線の断線検知装置によれば、互いに接続された複数のセル同士の端子間電圧のばらつきを低減するために設けられたバイパス回路に対して、適宜のタイミングで通電のオン/オフを切り替え、この切換処理の前後において検出される端子間電圧を比較することにより、例えば専用の検査装置等を新たに備える必要無しに、電圧検出線の断線の有無を容易に検知することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る蓄電装置の電圧検出線の断線検知装置を搭載する燃料電池車両の構成図である。
【図2】本発明の一実施形態に係る蓄電装置の電圧検出線の断線検知装置の構成図である。
【図3】図3(a)は電圧検出線の断線時であって、スイッチング素子がオフ状態での保護装置の回路図を簡略化して示す図であり、図3(b)は電圧検出線の断線時であって、スイッチング素子がオン状態における保護装置の回路図を簡略化して示す図である。
【図4】図1に示す車載モータの回生制御装置の動作を示すフローチャートである。
【符号の説明】
10 蓄電装置の電圧検出線の断線検知装置
13 キャパシタ(蓄電装置)
41 キャパシタセル(セル)
51 セル電圧検出回路(セル電圧検出手段)
52 バイパス回路
52a バイパス抵抗
52b スイッチング素子
55 基準電圧生成回路
55a 第1抵抗
55c 第2抵抗
ステップS02 通電手段
ステップS05 判定手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disconnection detection device for a voltage detection line of a power storage device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a battery pack (battery) formed by connecting a plurality of unit cells including, for example, a secondary battery in series, a cell voltage detection circuit and a bypass circuit connected in parallel to each unit cell are provided. It is determined whether each unit cell is in a fully charged state according to a voltage between terminals detected by a circuit, and a charging current for a cell determined to be in a fully charged state is supplied to a bypass circuit to allow each unit cell to be charged. There is known a battery charger that adjusts the variation of the inter-terminal voltage and sets the charging current to each unit cell according to the detected inter-terminal voltage (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 4-29932
[Problems to be solved by the invention]
By the way, in the battery charger according to the example of the related art, a cell voltage detection circuit that detects a terminal voltage of each cell is connected in parallel to each cell via a voltage detection line connected to an input / output terminal of each cell. It is connected to the. Here, for example, if a disconnection occurs in the voltage detection line, there arises a problem that the inter-terminal voltage of each cell cannot be accurately detected.
The present invention has been made in view of the above circumstances. For example, it is possible to easily detect the presence / absence of disconnection of a voltage detection line while suppressing the device configuration from being complicated by newly providing a disconnection detection device or the like. It is an object of the present invention to provide a disconnection detection device for a voltage detection line of a power storage device that can perform the disconnection.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, a disconnection detection device for a voltage detection line of a power storage device according to the present invention according to claim 1 includes a plurality of cells (for example, the capacitor cell 41 in the embodiment). Are connected in series (for example, the capacitor 13 in the embodiment), the terminals of the cells (for example, the positive terminal 41a and the negative terminal 41b in the embodiment), and the terminals of the cells. A disconnection detection device for a voltage detection line of a power storage device connected to a cell voltage detection means (for example, the cell voltage detection circuit 51 in the embodiment) for detecting a voltage between terminals, wherein each of the devices is connected via the voltage detection line. A bypass resistor (for example, the bypass resistor 52a in the embodiment) and a switching element (for example, a switch in the embodiment) that are connected in parallel to the cell and that can switch on / off of energization to the bypass resistor. (E.g., the bypass circuit 52 in the embodiment) including the switching element 52b), and a predetermined reference voltage (e.g., in the embodiment) connected to each of the cells via the voltage detection line. (For example, the first resistance 55a and the second resistance 55c in the embodiment) for generating the regenerative limiting threshold voltage VR (for example, the reference voltage generation circuit in the embodiment) 55), energizing means for turning on the current to the bypass resistor by the switching element (for example, step S02 in the embodiment), and switching on / off of the current to the bypass resistor by the switching element. In this case, the voltage between the terminals detected by the cell voltage detecting means when the current supply to the bypass resistor is turned off, and the voltage applied to the bypass resistor is turned off. Determining means for determining whether or not the voltage detection line is disconnected according to whether or not there is a change in the difference between the terminal voltage and the voltage detected by the cell voltage detecting means when is ON. Step S05).
[0006]
According to the disconnection detection device for the voltage detection line of the power storage device having the above configuration, between the cells connected to each other (that is, the contact between the input / output terminal of one cell and the input / output terminal of the other cell, or one A voltage detection line provided so as to branch from the input / output terminal of one cell and the input / output terminal of the other cell) is connected to a cell voltage detection means for detecting a voltage between terminals of each cell. It is connected. Here, when the voltage between the terminals of an appropriate cell is detected by the cell voltage detecting means connected in parallel to this cell, if the voltage detection line is normal, the same is applied regardless of the on / off state of the switching element. Is detected.
On the other hand, if a disconnection occurs in the voltage detection line, a difference occurs in the detection result depending on whether the switching element is on or off. That is, when a disconnection occurs in the voltage detection line, a voltage that is connected to the voltage detection line and that is obtained by combining the voltages between the terminals of adjacent cells is detected. Here, when the switching element is off, a value obtained by dividing the combined voltage by the resistance of each reference voltage generation circuit connected in parallel to each adjacent cell is detected, and when the switching element is on, The value obtained by dividing the combined voltage by the resistance and bypass resistance of each reference voltage generation circuit connected in parallel to each adjacent cell is detected.
Accordingly, when the detection result of the cell voltage detecting means changes in accordance with ON / OFF of the switching element, it can be determined that the voltage detection line is disconnected.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a disconnection detection device for a voltage detection line of a power storage device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
A disconnection detecting device 10 for detecting a voltage of a power storage device according to the present embodiment is mounted on a vehicle such as a fuel cell vehicle or a hybrid vehicle, for example, as shown in FIG. Controller 12, capacitor 13, output controller 14, traveling motor 15, protection device 16, control device 17, current sensor 21, voltage sensor 22, capacitor temperature sensor 23, accelerator opening A fuel cell vehicle including a sensor 31, a brake switch 32, and an IG switch 33 includes, for example, a capacitor 13, a protection device 16, and a control device 17, as shown in FIG. Have been.
[0008]
The fuel cell 11 sandwiches a solid polymer electrolyte membrane composed of a cation exchange membrane or the like between a fuel electrode (anode) composed of an anode catalyst and a gas diffusion layer and an oxygen electrode (cathode) composed of a cathode catalyst and a gas diffusion layer. The fuel cell is formed by laminating a large number of fuel cells each having the above-mentioned electrolyte electrode structure sandwiched between a pair of separators.
A fuel gas (reaction gas) composed of hydrogen is supplied to the anode of the fuel cell 11 from a high-pressure hydrogen tank, and hydrogen ionized by a catalytic reaction on the anode catalyst of the anode is converted into a moderately humidified solid polymer electrolyte. The electrons move to the cathode via the membrane, and electrons generated by the movement are taken out to an external circuit and used as DC electric energy. Air, which is an oxidizing gas containing oxygen (reactive gas), is supplied to the cathode by an air compressor. At the cathode, hydrogen ions, electrons, and oxygen react to generate water.
[0009]
The generated current taken out of the fuel cell 11 is input to a current / voltage controller 12, and the current / voltage controller 12 includes a capacitor 13 that constitutes a power storage device, such as an electric double layer capacitor or an electrolytic capacitor. It is connected.
The fuel cell 11 and the capacitor 13 are connected in parallel to a traveling motor 15 as an electric load via an output controller 14.
The current / voltage controller 12 includes, for example, a DC-DC chopper and the like. The current / voltage controller 12 generates electric power extracted from the fuel cell 11 based on a current command value output from the control device 17, that is, a power generation command for the fuel cell 11. Controls the current value of the current.
[0010]
The output controller 14 includes, for example, a PWM inverter based on pulse width modulation (PWM), and controls the driving and the regenerative operation of the traveling motor 15 according to a control command output from the control device 17. For example, at the time of driving the traveling motor 15, the DC power output from the current / voltage controller 12 and the capacitor 13 is converted into three-phase AC power based on the torque command output from the control device 17 to the traveling motor 15. Supply. On the other hand, during regeneration of the traveling motor 15, the three-phase AC power output from the traveling motor 15 is converted into DC power, and the capacitor 13 is charged.
The traveling motor 15 is, for example, a permanent magnet type three-phase AC synchronous motor using a permanent magnet as a field, and is driven and controlled by three-phase AC power supplied from the output controller 14. When the driving force is transmitted from the driving wheels to the traveling motor 15 when the vehicle decelerates, the traveling motor 15 functions as a generator to generate a so-called regenerative braking force, and recovers the kinetic energy of the vehicle body as electric energy. I do.
[0011]
As shown in FIG. 2, for example, the capacitor 13 is configured by connecting a plurality of capacitor cells 41,..., 41 composed of an electric double layer capacitor, an electrolytic capacitor, and the like in series. The protection device 16 is connected via voltage detection lines 42, 42 connected to the input / output terminals of the power supply.
For example, as shown in FIG. 2, the protection device 16 bypasses the charging current supplied to each of the capacitor cells 41 and the cell voltage detection circuit 51 that detects the voltage between the terminals (cell voltage) of each of the capacitor cells 41. A cell voltage detection circuit, which includes a bypass circuit 52 capable of discharging the capacitor cell 41, a bypass control unit 53, a cell voltage determination unit 54, a reference voltage generation circuit 55, and a central processing unit (CPU) 56 The reference numeral 51, the bypass circuit 52, and the reference voltage generation circuit 55 are connected in parallel to the respective capacitor cells 41 via the voltage detection lines 42, 42.
[0012]
The bypass circuit 52 includes, for example, a bypass resistor 52a (resistance value Rb) and an NPN transistor as a switching element 52b capable of switching on / off of energization to the bypass resistor 52a. The collector is connected to the negative terminal 41b of the corresponding capacitor cell 41, and the collector is connected to the positive terminal 41a of the corresponding capacitor cell 41 via the bypass resistor 52a.
The bypass control unit 53 includes, for example, an OR gate, controls the on / off operation of the switching element 52b of the bypass circuit 52, and receives a logic “high” level from the cell voltage determination unit 54 or the central processing unit 56. Is input, a logic "high" level ON signal for setting the NPN transistor to the ON state is input to the base of the NPN transistor.
[0013]
The cell voltage determination unit 54 includes, for example, a comparator and the like, and includes a predetermined reference voltage generated by the reference voltage generation circuit 55, for example, a predetermined regeneration limiting threshold voltage VR (for example, VR = 2.5V), The voltage between the terminals of the capacitor cell 41 (cell voltage) Vc is compared, and a signal corresponding to the comparison result is input to the base of the switching element 52b. For example, when the cell voltage input to the non-inverting input terminal of the comparator exceeds the regenerative limit threshold voltage VR input to the inverting input terminal of the comparator, logic "high" for setting the switching element 52b to the ON state. A level ON signal is input to the base of the switching element 52b. Thereby, the corresponding capacitor cell 41 is discharged via the bypass resistor 52a, and the charging current supplied to the capacitor cell 41 is bypassed to the bypass resistor 52a.
[0014]
The reference voltage generating circuit 55 connects, for example, a first resistor 55a (resistance value r1) connected to the positive terminal 41a of the corresponding capacitor cell 41, and connects the first resistor 55a to the negative terminal 41b of the capacitor cell 41. It comprises a zener diode 55b and a second resistor 55c (resistance value r2), and the zener diode 55b and the second resistor 55c are connected in parallel with each other. The cathode of the Zener diode 55b is connected to the inverting input terminal of the comparator of the cell voltage determination unit 54, and a predetermined reference voltage generated by the first resistor 55a and the Zener diode 55b is input to the inverting input terminal of the comparator. Have been.
The central processing unit 56 sets a logic “high” to set the switching element 52b of the bypass circuit 52 to an on state according to a control command input from the control device 17 at a predetermined timing (for example, at the start of operation of the vehicle). The level ON signal is input to the bypass control unit 53. Further, the central processing unit 56 compares the detection result of the cell voltage output from the cell voltage detection circuit 51 before and after inputting the logical “high” level ON signal to the bypass control unit 53, and based on the comparison result. It is determined whether or not the voltage detection line 42 is disconnected.
[0015]
That is, when the cell voltage of the corresponding capacitor cell 41 is detected by the cell voltage detection circuit 51, if the voltage detection lines 42, 42 connected to the positive terminal 41a and the negative terminal 41b of the capacitor cell 41 are normal. Since the voltage between terminals of the capacitor cell 41 to be detected by the cell voltage detection circuit 51 is directly detected, an equivalent cell voltage is detected regardless of whether the switching element 52b is on or off.
On the other hand, when the voltage detection line 42 is disconnected, a difference occurs in the detection result of the cell voltage according to the on / off of the switching element 52b. That is, when the voltage detection line 42 is disconnected, for example, as shown in FIGS. 3A and 3B, the adjacent capacitor cells 41-1 and 41-2 connected to the voltage detection line 42 are connected. A voltage (V1 + V2) obtained by combining the cell voltages V1 and V2 is detected.
[0016]
For example, as shown in FIG. 3A, when the switching element 52b is off, the combined voltage (V1 + V2) is applied to each of the reference voltages connected in parallel to the adjacent capacitor cells 41-1 and 41-2. The value VOFF divided by the resistance values R1 and R2 of the generation circuits 55 and 55, for example, VOFF in the following equation (1) is detected.
Further, for example, as shown in FIG. 3B, when the switching element 52b is on, the combined voltage (V1 + V2) is connected in parallel to each of the adjacent capacitor cells 41-1 and 41-2. A value VON divided by the resistance values R1 and R2 of the reference voltage generation circuits 55 and 55 and the resistance value Rb of the bypass resistor 52a, for example, VON in the following equation (2) is detected.
The resistance values R1, R2 of the reference voltage generation circuits 55, 55 are, for example, a combined resistance (r1 + r2) of the first resistance 55a and the second resistance 55c connected in series.
Accordingly, when the detection result of the cell voltage detection circuit 51 changes according to the on / off of the switching element 52b, it can be determined that the voltage detection line 42 is disconnected.
[0017]
(Equation 1)
Figure 2004180395
[0018]
(Equation 2)
Figure 2004180395
[0019]
The control device 17 may control, for example, the operating state of the vehicle, the concentration of hydrogen contained in the reaction gas supplied to the anode of the fuel cell 11, the concentration of hydrogen contained in the exhaust gas discharged from the anode of the fuel cell 11, and the like. The flow rate of each reaction gas supplied from the air compressor and the hydrogen tank to the fuel cell 11 based on the power generation state of the fuel cell 11, for example, the output voltage of each of the plurality of fuel cells, the power generation current extracted from the fuel cell 11, and the like. And outputs a command value to the current / voltage controller 12 to control the power generation state of the fuel cell 11, and controls the current value of the power generation current extracted from the fuel cell 11.
[0020]
In addition, the control device 17 controls the power conversion operation of the PWM inverter provided in the output controller 14, and for example, when the driving motor 15 is driven, the control device 17 relates to the amount of depression of the accelerator pedal by the driver. A torque command is calculated based on the accelerator opening signal. Then, the controller 17 inputs this torque command to the output controller 14, whereby a pulse width modulation signal corresponding to the torque command is input to the PWM inverter, and each phase current for generating the requested torque is generated. It is output to each phase of the traveling motor 15.
Further, the control device 17 determines the state of the capacitor 13, for example, the detection result of the cell voltage of each capacitor cell 41 output from each cell voltage detection circuit 51 of the protection device 16, the temperature of the capacitor 13, The regenerative operation of the traveling motor 15 is controlled based on the detected value of the total voltage which is the sum of the cell voltages of 41,.
[0021]
Further, the control device 17 sequentially switches the plurality of capacitor cells 41,..., 41 at a predetermined timing (for example, at the time of starting the operation of the vehicle). Is output to the central processing unit 56 to start the process of detecting whether or not the voltage detection line 42 is disconnected.
For this reason, the control device 17 includes, for example, a detection signal output from a current sensor 21 for detecting a current value of a generated current extracted from the fuel cell 11 and a voltage sensor 22 for detecting a total voltage which is a sum of cell voltages. , A detection signal output from a capacitor temperature sensor 23 that detects the temperature of the capacitor 13, a detection signal output from an accelerator opening sensor 31, and the presence or absence of a brake operation by the driver. A signal output from the brake switch 32 and a signal output from the IG switch 33 instructing the operation of the vehicle are input.
[0022]
The voltage detection line disconnection detection device 10 of the power storage device according to the present embodiment has the above-described configuration. Next, the operation of the voltage detection line disconnection detection device 10 of the power storage device will be described with reference to the accompanying drawings. .
[0023]
First, for example, in step S01 shown in FIG. 2, the cell voltage of each capacitor cell 41 of the capacitor 13 immediately before the execution of the bypass process is detected in accordance with a control command input from the control device 17 at the time of starting operation of the vehicle or the like. I do.
Next, in step S02, as a bypass process, a signal of a logic “high” level for setting the switching element 52b of the bypass circuit 52 connected in parallel to each capacitor cell 41 to the ON state is output.
Next, in step S03, the cell voltage of each capacitor cell 41 of the capacitor 13 immediately after the execution of the bypass process is detected.
[0024]
Next, in step S04, a deviation between the cell voltage detection values immediately before and immediately after the execution of the bypass process is calculated.
Next, in step S05, it is determined whether or not the calculated cell voltage deviation is larger than a predetermined determination value.
If this determination is "NO", the flow proceeds to step S06.
On the other hand, if this determination is "YES", the flow proceeds to step S07.
In step S06, it is determined that voltage detection line 42 is in a normal state, and a series of processing ends.
In step S07, it is determined that the voltage detection line 42 is in an abnormal state and the voltage detection line 42 is disconnected, and a series of processing ends.
[0025]
As described above, according to the disconnection detecting device 10 of the voltage detection line of the power storage device according to the present embodiment, the variation in the cell voltage between the plurality of capacitor cells 41,... The on / off of energization of the bypass circuit 52 provided for equalizing each cell voltage is switched at an appropriate timing, and the cell voltage detected by the cell voltage detection circuit 51 before and after this switching processing is switched. By comparing the detection results, it is possible to easily detect whether or not the voltage detection line 42 is normal without having to newly provide a dedicated inspection device or the like.
[0026]
In the above-described embodiment, the power storage device that exchanges electric energy with the traveling motor 15 is the capacitor 13. However, the present invention is not limited to this. For example, a plurality of cells including a secondary battery such as a lithium ion battery may be used. May be connected in series.
[0027]
【The invention's effect】
As described above, according to the disconnection detection device for the voltage detection line of the power storage device of the present invention described in claim 1, the disconnection detection device is provided to reduce the variation in the voltage between terminals of a plurality of cells connected to each other. The bypass circuit is switched on / off at an appropriate timing, and the terminal voltages detected before and after this switching process are compared, so that, for example, there is no need to newly provide a dedicated inspection device or the like. In addition, the presence or absence of disconnection of the voltage detection line can be easily detected.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell vehicle equipped with a disconnection detection device for a voltage detection line of a power storage device according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a disconnection detection device for a voltage detection line of the power storage device according to the embodiment of the present invention.
FIG. 3A is a diagram showing a simplified circuit diagram of the protection device when the voltage detection line is disconnected and the switching element is off, and FIG. 3B is a diagram showing the voltage detection line. FIG. 4 is a diagram showing a simplified circuit diagram of the protection device when the disconnection is made and the switching element is in an ON state.
FIG. 4 is a flowchart showing an operation of the regenerative control device for the vehicle-mounted motor shown in FIG.
[Explanation of symbols]
10 Disconnection detection device for voltage detection line of power storage device 13 Capacitor (power storage device)
41 Capacitor cell (cell)
51 Cell Voltage Detection Circuit (Cell Voltage Detection Means)
52 bypass circuit 52a bypass resistor 52b switching element 55 reference voltage generating circuit 55a first resistor 55c second resistor step S02 energizing means step S05 determining means

Claims (1)

複数のセルが直列に接続されてなる蓄電装置の各前記セルの端子と、各前記セルの端子間電圧を検出するセル電圧検出手段とを接続する蓄電装置の電圧検出線の断線検知装置であって、
前記電圧検出線を介して各前記セルに並列に接続され、バイパス抵抗および該バイパス抵抗への通電のオン/オフを切替可能なスイッチング素子を具備するバイパス回路と、
前記電圧検出線を介して各前記セルに並列に接続され、所定の基準電圧を生成するための抵抗を具備する基準電圧生成回路と、
前記スイッチング素子により前記バイパス抵抗への通電をオンとする通電手段と、
前記スイッチング素子により前記バイパス抵抗への通電のオン/オフが切り替えられる際に、前記バイパス抵抗への通電がオフであるときに前記セル電圧検出手段により検出される前記端子間電圧と、前記バイパス抵抗への通電がオンであるときに前記セル電圧検出手段により検出される前記端子間電圧との差の変化の有無に応じて前記電圧検出線の断線の有無を判定する判定手段と
を備えることを特徴とする蓄電装置の電圧検出線の断線検知装置。
A disconnection detection device for a voltage detection line of a power storage device that connects a terminal of each cell of the power storage device having a plurality of cells connected in series and a cell voltage detection unit that detects a voltage between terminals of each cell. hand,
A bypass circuit that is connected in parallel to each of the cells via the voltage detection line and includes a bypass resistor and a switching element capable of switching on / off of energization to the bypass resistor;
A reference voltage generation circuit that is connected in parallel to each of the cells via the voltage detection line and includes a resistor for generating a predetermined reference voltage;
Energizing means for energizing the bypass resistor by the switching element;
When the switching element switches on / off of energization to the bypass resistor, the inter-terminal voltage detected by the cell voltage detection means when energization to the bypass resistor is off, and the bypass resistor And determining means for determining the presence or absence of disconnection of the voltage detection line in accordance with the presence or absence of a change in the difference between the terminal voltage and the terminal voltage detected by the cell voltage detection means when energization to the cell is on. A disconnection detection device for a voltage detection line of a power storage device.
JP2002342214A 2002-11-26 2002-11-26 Device for detecting disconnection of voltage detection line of power storage device Expired - Fee Related JP3839397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342214A JP3839397B2 (en) 2002-11-26 2002-11-26 Device for detecting disconnection of voltage detection line of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342214A JP3839397B2 (en) 2002-11-26 2002-11-26 Device for detecting disconnection of voltage detection line of power storage device

Publications (2)

Publication Number Publication Date
JP2004180395A true JP2004180395A (en) 2004-06-24
JP3839397B2 JP3839397B2 (en) 2006-11-01

Family

ID=32704333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342214A Expired - Fee Related JP3839397B2 (en) 2002-11-26 2002-11-26 Device for detecting disconnection of voltage detection line of power storage device

Country Status (1)

Country Link
JP (1) JP3839397B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280171A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Power supply device for vehicles
JP2007139664A (en) * 2005-11-21 2007-06-07 Nec Electronics Corp Battery voltage monitoring device
JP2007259667A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Vehicular power supply unit and method for detecting disconnection in reference connection line thereof
WO2007119682A1 (en) * 2006-04-13 2007-10-25 Panasonic Corporation Battery pack and method for detecting disconnection of same
JP2008157808A (en) * 2006-12-25 2008-07-10 Toshiba Corp Battery pack system
US7852047B2 (en) 2007-09-20 2010-12-14 Denso Corporation Disconnection detection device of assembled battery system and disconnection detection method of same
JP2011002350A (en) * 2009-06-19 2011-01-06 Yazaki Corp Voltage measuring device for battery pack composed of plurality of unit cells
US20110148425A1 (en) * 2009-12-23 2011-06-23 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
JP2013162722A (en) * 2012-02-08 2013-08-19 Asahi Kasei Electronics Co Ltd Balancing circuit
JP2013172544A (en) * 2012-02-21 2013-09-02 Omron Automotive Electronics Co Ltd Battery pack monitoring device
JP2014023228A (en) * 2012-07-16 2014-02-03 Denso Corp Battery monitoring device
JP2017175836A (en) * 2016-03-25 2017-09-28 株式会社ケーヒン Voltage detector
CN111381176A (en) * 2018-12-28 2020-07-07 奥特润株式会社 Device and method for controlling the measurement of the cell voltage of a fuel cell
CN113203888A (en) * 2021-04-30 2021-08-03 广东电网有限责任公司韶关供电局 Non-voltage detection method, device, equipment and storage medium for grounding disconnecting link

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362428B2 (en) * 2009-04-24 2013-12-11 矢崎総業株式会社 Disconnection detector

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583219B2 (en) * 2005-03-30 2010-11-17 三洋電機株式会社 Power supply for vehicle
JP2006280171A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Power supply device for vehicles
JP4620571B2 (en) * 2005-11-21 2011-01-26 ルネサスエレクトロニクス株式会社 Battery voltage monitoring device
JP2007139664A (en) * 2005-11-21 2007-06-07 Nec Electronics Corp Battery voltage monitoring device
JP2011043505A (en) * 2005-11-21 2011-03-03 Renesas Electronics Corp Battery voltage measuring device
JP2007259667A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Vehicular power supply unit and method for detecting disconnection in reference connection line thereof
WO2007119682A1 (en) * 2006-04-13 2007-10-25 Panasonic Corporation Battery pack and method for detecting disconnection of same
US8030893B2 (en) 2006-04-13 2011-10-04 Panasonic Corporation Battery pack and method for detecting disconnection of same
JP4693761B2 (en) * 2006-12-25 2011-06-01 株式会社東芝 Assembled battery system
JP2008157808A (en) * 2006-12-25 2008-07-10 Toshiba Corp Battery pack system
US7852047B2 (en) 2007-09-20 2010-12-14 Denso Corporation Disconnection detection device of assembled battery system and disconnection detection method of same
JP2011002350A (en) * 2009-06-19 2011-01-06 Yazaki Corp Voltage measuring device for battery pack composed of plurality of unit cells
US8717035B2 (en) * 2009-12-23 2014-05-06 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
US20110148425A1 (en) * 2009-12-23 2011-06-23 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
JP2013162722A (en) * 2012-02-08 2013-08-19 Asahi Kasei Electronics Co Ltd Balancing circuit
JP2013172544A (en) * 2012-02-21 2013-09-02 Omron Automotive Electronics Co Ltd Battery pack monitoring device
JP2014023228A (en) * 2012-07-16 2014-02-03 Denso Corp Battery monitoring device
JP2017175836A (en) * 2016-03-25 2017-09-28 株式会社ケーヒン Voltage detector
CN111381176A (en) * 2018-12-28 2020-07-07 奥特润株式会社 Device and method for controlling the measurement of the cell voltage of a fuel cell
US11271229B2 (en) 2018-12-28 2022-03-08 Hyundai Kefico Corporation Method of controlling measurement of cell voltage of fuel cell and apparatus for executing the same
CN111381176B (en) * 2018-12-28 2022-08-02 现代凯菲克株式会社 Device and method for controlling the measurement of the cell voltage of a fuel cell
CN113203888A (en) * 2021-04-30 2021-08-03 广东电网有限责任公司韶关供电局 Non-voltage detection method, device, equipment and storage medium for grounding disconnecting link
CN113203888B (en) * 2021-04-30 2022-04-15 广东电网有限责任公司韶关供电局 Non-voltage detection method, device, equipment and storage medium for grounding disconnecting link

Also Published As

Publication number Publication date
JP3839397B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3816436B2 (en) Control device for fuel cell vehicle
JP3842015B2 (en) Idle control device for fuel cell vehicle
JP4397739B2 (en) Method for setting voltage state of fuel cell vehicle
JP4545285B2 (en) Fuel cell vehicle start control device
US20070129859A1 (en) Control apparatus for fuel cell vehicle
JP6174876B2 (en) Dual power load drive system and fuel cell vehicle
US8027759B2 (en) Fuel cell vehicle system
JP3863092B2 (en) In-vehicle motor regeneration control device
JP3839397B2 (en) Device for detecting disconnection of voltage detection line of power storage device
JP4554151B2 (en) Control device for fuel cell vehicle
JP4615379B2 (en) Fuel cell system
JP5081738B2 (en) Fuel cell vehicle
JP4056863B2 (en) Fault detection device for voltage detection circuit
JP4053410B2 (en) In-vehicle motor regeneration control device
JP4451056B2 (en) Control device for fuel cell vehicle
JP2005302446A (en) Fuel cell power supply device
JP2004187332A (en) Controller for fuel cell vehicle
JP2021141668A (en) Electric vehicle
JP2021082493A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees